1
|
Kleinau G, Ali AH, Wiechert F, Szczepek M, Schmidt A, Spahn CMT, Liebscher I, Schöneberg T, Scheerer P. Intramolecular activity regulation of adhesion GPCRs in light of recent structural and evolutionary information. Pharmacol Res 2023; 197:106971. [PMID: 38032292 DOI: 10.1016/j.phrs.2023.106971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
The class B2 of GPCRs known as adhesion G protein-coupled receptors (aGPCRs) has come under increasing academic and nonacademic research focus over the past decade due to their physiological importance as mechano-sensors in cell-cell and cell-matrix contexts. A major advance in understanding signal transduction of aGPCRs was achieved by the identification of the so-called Stachel sequence, which acts as an intramolecular agonist at the interface between the N terminus (Nt) and the seven-transmembrane helix domain (7TMD). Distinct extracellular signals received by the Nt are integrated at the Stachel into structural changes of the 7TMD towards an active state conformation. Until recently, little information was available on how the activation process of aGPCRs is realized at the molecular level. In the past three years several structures of the 7TMD plus the Stachel in complex with G proteins have been determined, which provide new insights into the architecture and molecular function of this receptor class. Herein, we review this structural information to extract common and distinct aGPCR features with particular focus on the Stachel binding site within the 7TMD. Our analysis extends the current view of aGPCR activation and exposes similarities and differences not only between diverse aGPCR members, but also compared to other GPCR classes.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Amal Hassan Ali
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Franziska Wiechert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Michal Szczepek
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Andrea Schmidt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Christian M T Spahn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Johannisallee 30, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Johannisallee 30, 04103 Leipzig, Germany; School of Medicine, University of Global Health Equity (UGHE), Kigali, Rwanda.
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Seike T, Niki H. Pheromone Response and Mating Behavior in Fission Yeast. Microbiol Mol Biol Rev 2022; 86:e0013022. [PMID: 36468849 PMCID: PMC9769774 DOI: 10.1128/mmbr.00130-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most ascomycete fungi, including the fission yeast Schizosaccharomyces pombe, secrete two peptidyl mating pheromones: C-terminally modified and unmodified peptides. S. pombe has two mating types, plus and minus, which secrete two different pheromones, P-factor (unmodified) and M-factor (modified), respectively. These pheromones are specifically recognized by receptors on the cell surface of cells of opposite mating types, which trigger a pheromone response. Recognition between pheromones and their corresponding receptors is important for mate discrimination; therefore, genetic changes in pheromone or receptor genes affect mate recognition and cause reproductive isolation that limits gene flow between populations. Such genetic variation in recognition via the pheromone/receptor system may drive speciation. Our recent studies reported that two pheromone receptors in S. pombe might have different stringencies in pheromone recognition. In this review, we focus on the molecular mechanism of pheromone response and mating behavior, emphasizing pheromone diversification and its impact on reproductive isolation in S. pombe and closely related fission yeast species. We speculate that the "asymmetric" system might allow flexible adaptation to pheromone mutational changes while maintaining stringent recognition of mating partners. The loss of pheromone activity results in the extinction of an organism's lineage. Therefore, genetic changes in pheromones and their receptors may occur gradually and/or coincidently before speciation. Our findings suggest that the M-factor plays an important role in partner discrimination, whereas P-factor communication allows flexible adaptation to create variations in S. pombe. Our inferences provide new insights into the evolutionary mechanisms underlying pheromone diversification.
Collapse
Affiliation(s)
- Taisuke Seike
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Hironori Niki
- Microbial Physiology Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
3
|
Dumont ME, Konopka JB. Comparison of Experimental Approaches Used to Determine the Structure and Function of the Class D G Protein-Coupled Yeast α-Factor Receptor. Biomolecules 2022; 12:biom12060761. [PMID: 35740886 PMCID: PMC9220813 DOI: 10.3390/biom12060761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
The Saccharomyces cerevisiae α-factor mating pheromone receptor (Ste2p) has been studied as a model for the large medically important family of G protein-coupled receptors. Diverse yeast genetic screens and high-throughput mutagenesis of STE2 identified a large number of loss-of-function, constitutively-active, dominant-negative, and intragenic second-site suppressor mutants as well as mutations that specifically affect pheromone binding. Facile genetic manipulation of Ste2p also aided in targeted biochemical approaches, such as probing the aqueous accessibility of substituted cysteine residues in order to identify the boundaries of the seven transmembrane segments, and the use of cysteine disulfide crosslinking to identify sites of intramolecular contacts in the transmembrane helix bundle of Ste2p and sites of contacts between the monomers in a Ste2p dimer. Recent publication of a series of high-resolution cryo-EM structures of Ste2p in ligand-free, agonist-bound and antagonist-bound states now makes it possible to evaluate the results of these genetic and biochemical strategies, in comparison to three-dimensional structures showing activation-related conformational changes. The results indicate that the genetic and biochemical strategies were generally effective, and provide guidance as to how best to apply these experimental strategies to other proteins. These strategies continue to be useful in defining mechanisms of signal transduction in the context of the available structures and suggest aspects of receptor function beyond what can be discerned from the available structures.
Collapse
Affiliation(s)
- Mark E. Dumont
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Correspondence: ; Tel.: +1-585-275-2466
| | - James B. Konopka
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, USA;
| |
Collapse
|
4
|
Seike T, Sakata N, Shimoda C, Niki H, Furusawa C. The sixth transmembrane region of a pheromone G-protein coupled receptor, Map3, is implicated in discrimination of closely related pheromones in Schizosaccharomyces pombe. Genetics 2021; 219:6371190. [PMID: 34849842 DOI: 10.1093/genetics/iyab150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 11/14/2022] Open
Abstract
Most sexually reproducing organisms have the ability to recognize individuals of the same species. In ascomycete fungi including yeasts, mating between cells of opposite mating type depends on the molecular recognition of two peptidyl mating pheromones by their corresponding G-protein coupled receptors (GPCRs). Although such pheromone/receptor systems are likely to function in both mate choice and prezygotic isolation, very few studies have focused on the stringency of pheromone receptors. The fission yeast Schizosaccharomyces pombe has two mating types, Plus (P) and Minus (M). Here, we investigated the stringency of the two GPCRs, Mam2 and Map3, for their respective pheromones, P-factor and M-factor, in fission yeast. First, we switched GPCRs between S. pombe and the closely related species Schizosaccharomyces octosporus, which showed that SoMam2 (Mam2 of S. octosporus) is partially functional in S. pombe, whereas SoMap3 (Map3 of S. octosporus) is not interchangeable. Next, we swapped individual domains of Mam2 and Map3 with the respective domains in SoMam2 and SoMap3, which revealed differences between the receptors both in the intracellular regions that regulate the downstream signaling of pheromones and in the activation by the pheromone. In particular, we demonstrated that two amino acid residues of Map3, F214 and F215, are key residues important for discrimination of closely related M-factors. Thus, the differences in these two GPCRs might reflect the significantly distinct stringency/flexibility of their respective pheromone/receptor systems; nevertheless, species-specific pheromone recognition remains incomplete.
Collapse
Affiliation(s)
- Taisuke Seike
- Center for Biosystems Dynamics Research, RIKEN, Osaka 565-0874, Japan
| | - Natsue Sakata
- Center for Biosystems Dynamics Research, RIKEN, Osaka 565-0874, Japan
| | - Chikashi Shimoda
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Hironori Niki
- Genetic Strains Research Center, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research, RIKEN, Osaka 565-0874, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Naider F, Becker JM. A Paradigm for Peptide Hormone-GPCR Analyses. Molecules 2020; 25:E4272. [PMID: 32961885 PMCID: PMC7570734 DOI: 10.3390/molecules25184272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/14/2023] Open
Abstract
Work from our laboratories over the last 35 years that has focused on Ste2p, a G protein-coupled receptor (GPCR), and its tridecapeptide ligand α-factor is reviewed. Our work utilized the yeast Saccharomyces cerevisiae as a model system for understanding peptide-GPCR interactions. It explored the structure and function of synthetic α-factor analogs and biosynthetic receptor domains, as well as designed mutations of Ste2p. The results and conclusions are described using the nuclear magnetic resonance interrogation of synthetic Ste2p transmembrane domains (TMs), the fluorescence interrogation of agonist and antagonist binding, the biochemical crosslinking of peptide analogs to Ste2p, and the phenotypes of receptor mutants. We identified the ligand-binding domain in Ste2p, the functional assemblies of TMs, unexpected and interesting ligand analogs; gained insights into the bound α-factor structure; and unraveled the function and structures of various Ste2p domains, including the N-terminus, TMs, loops connecting the TMs, and the C-terminus. Our studies showed interactions between specific residues of Ste2p in an active state, but not resting state, and the effect of ligand activation on the dimerization of Ste2p. We show that, using a battery of different biochemical and genetic approaches, deep insight can be gained into the structure and conformational dynamics of GPCR-peptide interactions in the absence of a crystal structure.
Collapse
Affiliation(s)
- Fred Naider
- Department of Chemistry, College of Staten Island, CUNY, 2800 Victory Blvd, Staten Island, NY 10314, USA
| | - Jeffrey M. Becker
- Department of Microbiology, University of Tennessee, 610 Ken and Blaire Mossman Building, 1311 Cumberland Avenue, Knoxville, TN 37996, USA
| |
Collapse
|
6
|
Emmerstorfer-Augustin A, Augustin CM, Shams S, Thorner J. Tracking yeast pheromone receptor Ste2 endocytosis using fluorogen-activating protein tagging. Mol Biol Cell 2018; 29:2720-2736. [PMID: 30207829 PMCID: PMC6249837 DOI: 10.1091/mbc.e18-07-0424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To observe internalization of the yeast pheromone receptor Ste2 by fluorescence microscopy in live cells in real time, we visualized only those molecules present at the cell surface at the time of agonist engagement (rather than the total cellular pool) by tagging this receptor at its N-terminus with an exocellular fluorogen-activating protein (FAP). A FAP is a single-chain antibody engineered to bind tightly a nonfluorescent, cell-impermeable dye (fluorogen), thereby generating a fluorescent complex. The utility of FAP tagging to study trafficking of integral membrane proteins in yeast, which possesses a cell wall, had not been examined previously. A diverse set of signal peptides and propeptide sequences were explored to maximize expression. Maintenance of the optimal FAP-Ste2 chimera intact required deletion of two, paralogous, glycosylphosphatidylinositol (GPI)-anchored extracellular aspartyl proteases (Yps1 and Mkc7). FAP-Ste2 exhibited a much brighter and distinct plasma membrane signal than Ste2-GFP or Ste2-mCherry yet behaved quite similarly. Using FAP-Ste2, new information was obtained about the mechanism of its internalization, including novel insights about the roles of the cargo-selective endocytic adaptors Ldb19/Art1, Rod1/Art4, and Rog3/Art7.
Collapse
Affiliation(s)
- Anita Emmerstorfer-Augustin
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Christoph M Augustin
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Shadi Shams
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| |
Collapse
|