1
|
Gamage YI, Pan J. Nanoscale Perturbations of Lipid Bilayers Induced by Magainin 2: Insights from AFM Imaging and Force Spectroscopy. Chem Phys Lipids 2024; 263:105421. [PMID: 39067642 DOI: 10.1016/j.chemphyslip.2024.105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
This study explores the impact of the antimicrobial peptide magainin 2 (Mag2) on lipid bilayers with varying compositions. We employed high-resolution atomic force microscopy (AFM) to reveal a dynamic spectrum of structural changes induced by Mag2. Our AFM imaging unveiled distinct structural alterations in zwitterionic POPC bilayers upon Mag2 exposure, notably the formation of nanoscale depressions within the bilayer surface, which we term as "surface pores" to differentiate them from transmembrane pores. These surface pores are characterized by a limited depth that does not appear to fully traverse the bilayer and reach the opposing leaflet. Additionally, our AFM-based force spectroscopy investigation on POPC bilayers revealed a reduction in bilayer puncture force (FP) and Young's modulus (E) upon Mag2 interaction, indicating a weakening of bilayer stability and increased flexibility, which may facilitate peptide insertion. The inclusion of anionic POPG into POPC bilayers elucidated its modulatory effects on Mag2 activity, highlighting the role of lipid composition in peptide-bilayer interactions. In contrast to surface pores, Mag2 treatment of E. coli total lipid extract bilayers resulted in increased surface roughness, which we describe as a fluctuation-like morphology. We speculate that the weaker cohesive interactions between heterogeneous lipids in E. coli bilayers may render them more susceptible to Mag2-induced perturbations. This could lead to widespread disruptions manifested as surface fluctuations throughout the bilayer, rather than the formation of well-defined pores. Together, our findings of nanoscale bilayer perturbations provide useful insights into the molecular mechanisms governing Mag2-membrane interactions.
Collapse
Affiliation(s)
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620, United States.
| |
Collapse
|
2
|
Balleza D. Peptide Flexibility and the Hydrophobic Moment are Determinants to Evaluate the Clinical Potential of Magainins. J Membr Biol 2023; 256:317-330. [PMID: 37097306 DOI: 10.1007/s00232-023-00286-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Using a flexibility prediction algorithm and in silico structural modeling, we have calculated the intrinsic flexibility of several magainin derivatives. In the case of magainin-2 (Mag-2) and magainin H2 (MAG-H2) we have found that MAG-2 is more flexible than its hydrophobic analog, Mag-H2. This affects the degree of bending of both peptides, with a kink around two central residues (R10, R11), whereas, in Mag-H2, W10 stiffens the peptide. Moreover, this increases the hydrophobic moment of Mag-H2, which could explain its propensity to form pores in POPC model membranes, which exhibit near-to-zero spontaneous curvatures. Likewise, the protective effect described in DOPC membranes for this peptide regarding its facilitation in pore formation would be related to the propensity of this lipid to form membranes with negative spontaneous curvature. The flexibility of another magainin analog (MSI-78) is even greater than that of Mag-2. This facilitates the peptide to present a kind of hinge around the central F12 as well as a C-terminal end prone to be disordered. Such characteristics are key to understanding the broad-spectrum antimicrobial actions exhibited by this peptide. These data reinforce the hypothesis on the determinant role of spontaneous membrane curvature, intrinsic peptide flexibility, and specific hydrophobic moment in assessing the bioactivity of membrane-active antimicrobial peptides.
Collapse
Affiliation(s)
- Daniel Balleza
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, Mexico.
| |
Collapse
|
3
|
Mescola A, Ragazzini G, Facci P, Alessandrini A. The potential of AFM in studying the role of the nanoscale amphipathic nature of (lipo)-peptides interacting with lipid bilayers. NANOTECHNOLOGY 2022; 33:432001. [PMID: 35830770 DOI: 10.1088/1361-6528/ac80c9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial peptides (AMPs) and lipopeptides (LPs) represent very promising molecules to fight resistant bacterial infections due to their broad-spectrum of activity, their first target, i.e. the bacterial membrane, and the rapid bactericidal action. For both types of molecules, the action mechanism starts from the membrane of the pathogen agents, producing a disorganization of their phase structure or the formation of pores of different size altering their permeability. This mechanism of action is based on physical interactions more than on a lock-and-key recognition event and it is difficult for the pathogens to rapidly develop an effective resistance. Very small differences in the sequence of both AMPs and LPs might lead to very different effects on the target membrane. Therefore, a correct understanding of their mechanism of action is required with the aim of developing new synthetic peptides, analogues of the natural ones, with specific and more powerful bactericidal activity. Atomic force microscopy (AFM), with its high resolution and the associated force spectroscopy resource, provides a valuable technique to investigate the reorganization of lipid bilayers exposed to antimicrobial or lipopeptides. Here, we present AFM results obtained by ours and other groups on the action of AMPs and LPs on supported lipid bilayers (SLBs) of different composition. We also consider data obtained by fluorescence microscopy to compare the AFM data with another technique which can be used on different lipid bilayer model systems such as SLBs and giant unilamellar vesicles. The outcomes here presented highlight the powerful of AFM-based techniques in detecting nanoscale peptide-membrane interactions and strengthen their use as an exceptional complementary tool toin vivoinvestigations. Indeed, the combination of these approaches can help decipher the mechanisms of action of different antimicrobials and lipopeptides at both the micro and nanoscale levels, and to design new and more efficient antimicrobial compounds.
Collapse
Affiliation(s)
- Andrea Mescola
- CNR-Nanoscience Institute-S3, Via Campi 213/A, I-41125, Modena, Italy
| | - Gregorio Ragazzini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, I-41125, Modena, Italy
| | - Paolo Facci
- CNR-Ibf, Via De Marini 6, I-16149, Genova, Italy
| | - Andrea Alessandrini
- CNR-Nanoscience Institute-S3, Via Campi 213/A, I-41125, Modena, Italy
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, I-41125, Modena, Italy
| |
Collapse
|
4
|
Canepa E, Relini A, Bochicchio D, Lavagna E, Mescola A. Amphiphilic Gold Nanoparticles: A Biomimetic Tool to Gain Mechanistic Insights into Peptide-Lipid Interactions. MEMBRANES 2022; 12:673. [PMID: 35877876 PMCID: PMC9324301 DOI: 10.3390/membranes12070673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023]
Abstract
Functional peptides are now widely used in a myriad of biomedical and clinical contexts, from cancer therapy and tumor targeting to the treatment of bacterial and viral infections. Underlying this diverse range of applications are the non-specific interactions that can occur between peptides and cell membranes, which, in many contexts, result in spontaneous internalization of the peptide within cells by avoiding energy-driven endocytosis. For this to occur, the amphipathicity and surface structural flexibility of the peptides play a crucial role and can be regulated by the presence of specific molecular residues that give rise to precise molecular events. Nevertheless, most of the mechanistic details regulating the encounter between peptides and the membranes of bacterial or animal cells are still poorly understood, thus greatly limiting the biomimetic potential of these therapeutic molecules. In this arena, finely engineered nanomaterials-such as small amphiphilic gold nanoparticles (AuNPs) protected by a mixed thiol monolayer-can provide a powerful tool for mimicking and investigating the physicochemical processes underlying peptide-lipid interactions. Within this perspective, we present here a critical review of membrane effects induced by both amphiphilic AuNPs and well-known amphiphilic peptide families, such as cell-penetrating peptides and antimicrobial peptides. Our discussion is focused particularly on the effects provoked on widely studied model cell membranes, such as supported lipid bilayers and lipid vesicles. Remarkable similarities in the peptide or nanoparticle membrane behavior are critically analyzed. Overall, our work provides an overview of the use of amphiphilic AuNPs as a highly promising tailor-made model to decipher the molecular events behind non-specific peptide-lipid interactions and highlights the main affinities observed both theoretically and experimentally. The knowledge resulting from this biomimetic approach could pave the way for the design of synthetic peptides with tailored functionalities for next-generation biomedical applications, such as highly efficient intracellular delivery systems.
Collapse
Affiliation(s)
- Ester Canepa
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy; (E.C.); (A.R.); (D.B.)
| | - Annalisa Relini
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy; (E.C.); (A.R.); (D.B.)
| | - Davide Bochicchio
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy; (E.C.); (A.R.); (D.B.)
| | - Enrico Lavagna
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy; (E.C.); (A.R.); (D.B.)
| | - Andrea Mescola
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
5
|
Swana KW, Nagarajan R, Camesano TA. Atomic Force Microscopy to Characterize Antimicrobial Peptide-Induced Defects in Model Supported Lipid Bilayers. Microorganisms 2021; 9:microorganisms9091975. [PMID: 34576869 PMCID: PMC8465339 DOI: 10.3390/microorganisms9091975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) interact with bacterial cell membranes through a variety of mechanisms, causing changes extending from nanopore formation to microscale membrane lysis, eventually leading to cell death. Several AMPs also disrupt mammalian cell membranes, despite their significantly different lipid composition and such collateral hemolytic damage hinders the potential therapeutic applicability of the AMP as an anti-microbial. Elucidating the mechanisms underlying the AMP-membrane interactions is challenging due to the variations in the chemical and structural features of the AMPs, the complex compositional variations of cell membranes and the inadequacy of any single experimental technique to comprehensively probe them. (1) Background: Atomic Force Microscopy (AFM) imaging can be used in combination with other techniques to help understand how AMPs alter the orientation and structural organization of the molecules within cell membranes exposed to AMPs. The structure, size, net charge, hydrophobicity and amphipathicity of the AMPs affect how they interact with cell membranes of differing lipid compositions. (2) Methods: Our study examined two different types of AMPs, a 20-amino acid, neutral, α-helical (amphipathic) peptide, alamethicin, and a 13-amino acid, non-α-helical cationic peptide, indolicidin (which intramolecularly folds, creating a hydrophobic core), for their interactions with supported lipid bilayers (SLBs). Robust SLB model membranes on quartz supports, incorporating predominantly anionic lipids representative of bacterial cells, are currently not available and remain to be developed. Therefore, the SLBs of zwitterionic egg phosphatidylcholine (PC), which represents the composition of a mammalian cell membrane, was utilized as the model membrane. This also allows for a comparison with the results obtained from the Quartz Crystal Microbalance with Dissipation (QCM-D) experiments conducted for these peptides interacting with the same zwitterionic SLBs. Further, in the case of alamethicin, because of its neutrality, the lipid charge may be less relevant for understanding its membrane interactions. (3) Results: Using AFM imaging and roughness analysis, we found that alamethicin produced large, unstable defects in the membrane at 5 µM concentrations, and completely removed the bilayer at 10 µM. Indolicidin produced smaller holes in the bilayer at 5 and 10 µM, although they were able to fill in over time. The root-mean-square (RMS) roughness values for the images showed that the surface roughness caused by visible defects peaked after peptide injection and gradually decreased over time. (4) Conclusions: AFM is useful for helping to uncover the dynamic interactions between different AMPs and cell membranes, which can facilitate the selection and design of more efficient AMPs for use in therapeutics and antimicrobial applications.
Collapse
Affiliation(s)
- Kathleen W. Swana
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
- U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA 01760, USA;
| | - Ramanathan Nagarajan
- U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA 01760, USA;
| | - Terri A. Camesano
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
- Correspondence:
| |
Collapse
|
6
|
The Central PXXP Motif Is Crucial for PMAP-23 Translocation across the Lipid Bilayer. Int J Mol Sci 2021; 22:ijms22189752. [PMID: 34575916 PMCID: PMC8467763 DOI: 10.3390/ijms22189752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
PMAP-23, a cathelicidin-derived host defense peptide, does not cause severe membrane permeabilization, but exerts strong and broad-spectrum bactericidal activity. We have previously shown that it forms an amphipathic α-helical structure with a central hinge induced by the PXXP motif, which is implicated in the interaction of PMAP-23 with negatively charged bacterial membranes. Here, we studied the potential roles of the PXXP motif in PMAP-23 translocation across the lipid bilayer by replacing Pro residues with either α-helix former Ala (PMAP-PA) or α-helix breaker Gly (PMAP-PG). Although both PMAP-PA and PMAP-PG led to effective membrane depolarization and permeabilization, they showed less antimicrobial activity than wild-type PMAP-23. Interestingly, we observed that PMAP-23 crossed lipid bilayers much more efficiently than its Pro-substituted derivatives. The fact that the Gly-induced hinge was unable to replace the PXXP motif in PMAP-23 translocation suggests that the PXXP motif has unique structural properties other than the central hinge. Surface plasmon resonance sensorgrams showed that the running buffer almost entirely dissociated PMAP-23 from the membrane surface, while its Pro-substituted derivatives remained significantly bound to the membrane. In addition, kinetic analysis of the sensorgrams revealed that the central PXXP motif allows PMAP-23 to rapidly translocate at the interface between the hydrophilic and hydrophobic phases. Taken together, we propose that the structural and kinetic understanding of the PXXP motif in peptide translocation could greatly aid the development of novel antimicrobial peptides with intracellular targets by promoting peptide entry into bacterial cells.
Collapse
|
7
|
Gheorghe DC, Ilie A, Niculescu AG, Grumezescu AM. Preventing Biofilm Formation and Development on Ear, Nose and Throat Medical Devices. Biomedicines 2021; 9:1025. [PMID: 34440229 PMCID: PMC8394763 DOI: 10.3390/biomedicines9081025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/17/2022] Open
Abstract
Otorhinolaryngology is a vast domain that requires the aid of many resources for optimal performance. The medical devices utilized in this branch share common problems, such as the formation of biofilms. These structured communities of microbes encased in a 3D matrix can develop antimicrobial resistance (AMR), thus making it a problem with challenging solutions. Therefore, it is of concern the introduction in the medical practice involving biomaterials for ear, nose and throat (ENT) devices, such as implants for the trachea (stents), ear (cochlear implants), and voice recovery (voice prosthetics). The surface of these materials must be biocompatible and limit the development of biofilm while still promoting regeneration. In this respect, several surface modification techniques and functionalization procedures can be utilized to facilitate the success of the implants and ensure a long time of use. On this note, this review provides information on the intricate underlying mechanisms of biofilm formation, the large specter of implants and prosthetics that are susceptible to microbial colonization and subsequently related infections. Specifically, the discussion is particularized on biofilm development on ENT devices, ways to reduce it, and recent approaches that have emerged in this field.
Collapse
Affiliation(s)
- Dan Cristian Gheorghe
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- “M.S. Curie” Clinical Emergency Hospital for Children, 077120 Bucharest, Romania
| | - Andrei Ilie
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.I.); (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.I.); (A.-G.N.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 50044 Bucharest, Romania
| |
Collapse
|
8
|
Wieland T, Assmann J, Bethe A, Fidelak C, Gmoser H, Janßen T, Kotthaus K, Lübke-Becker A, Wieler LH, Urban GA. A Real-Time Thermal Sensor System for Quantifying the Inhibitory Effect of Antimicrobial Peptides on Bacterial Adhesion and Biofilm Formation. SENSORS 2021; 21:s21082771. [PMID: 33919962 PMCID: PMC8070953 DOI: 10.3390/s21082771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/15/2023]
Abstract
The increasing rate of antimicrobial resistance (AMR) in pathogenic bacteria is a global threat to human and veterinary medicine. Beyond antibiotics, antimicrobial peptides (AMPs) might be an alternative to inhibit the growth of bacteria, including AMR pathogens, on different surfaces. Biofilm formation, which starts out as bacterial adhesion, poses additional challenges for antibiotics targeting bacterial cells. The objective of this study was to establish a real-time method for the monitoring of the inhibition of (a) bacterial adhesion to a defined substrate and (b) biofilm formation by AMPs using an innovative thermal sensor. We provide evidence that the thermal sensor enables continuous monitoring of the effect of two potent AMPs, protamine and OH-CATH-30, on surface colonization of bovine mastitis-associated Escherichia (E.) coli and Staphylococcus (S.) aureus. The bacteria were grown under static conditions on the surface of the sensor membrane, on which temperature oscillations generated by a heater structure were detected by an amorphous germanium thermistor. Bacterial adhesion, which was confirmed by white light interferometry, caused a detectable amplitude change and phase shift. To our knowledge, the thermal measurement system has never been used to assess the effect of AMPs on bacterial adhesion in real time before. The system could be used to screen and evaluate bacterial adhesion inhibition of both known and novel AMPs.
Collapse
Affiliation(s)
- Tobias Wieland
- Department of Microsystems Engineering (IMTEK)—Laboratory of Sensors, University of Freiburg, 79110 Freiburg, Germany; (H.G.); (K.K.); (G.A.U.)
- Correspondence: ; Tel.: +49-761-203-7268
| | - Julia Assmann
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany; (J.A.); (A.B.); (A.L.-B.); (L.H.W.)
- Robert Koch Institute, ZBS4 Advanced Light and Electron Microscopy, 13353 Berlin, Germany
| | - Astrid Bethe
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany; (J.A.); (A.B.); (A.L.-B.); (L.H.W.)
| | | | - Helena Gmoser
- Department of Microsystems Engineering (IMTEK)—Laboratory of Sensors, University of Freiburg, 79110 Freiburg, Germany; (H.G.); (K.K.); (G.A.U.)
| | | | - Krishan Kotthaus
- Department of Microsystems Engineering (IMTEK)—Laboratory of Sensors, University of Freiburg, 79110 Freiburg, Germany; (H.G.); (K.K.); (G.A.U.)
| | - Antina Lübke-Becker
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany; (J.A.); (A.B.); (A.L.-B.); (L.H.W.)
| | - Lothar H. Wieler
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany; (J.A.); (A.B.); (A.L.-B.); (L.H.W.)
- Robert Koch Institute, 13353 Berlin, Germany
| | - Gerald A. Urban
- Department of Microsystems Engineering (IMTEK)—Laboratory of Sensors, University of Freiburg, 79110 Freiburg, Germany; (H.G.); (K.K.); (G.A.U.)
| |
Collapse
|
9
|
Remington JM, Liao C, Sharafi M, Marie ES, Ferrell JB, Hondal R, Wargo MJ, Schneebeli ST, Li J. Aggregation State of Synergistic Antimicrobial Peptides. J Phys Chem Lett 2020; 11:9501-9506. [PMID: 33108730 PMCID: PMC8299379 DOI: 10.1021/acs.jpclett.0c02094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
By integrating various simulation and experimental techniques, we discovered that antimicrobial peptides (AMPs) may achieve synergy at an optimal concentration and ratio, which can be caused by aggregation of the synergistic peptides. On multiple time and length scales, our studies obtain novel evidence of how peptide coaggregation in solution can affect the disruption of membranes by synergistic AMPs. Our findings provide crucial details about the complex molecular origins of AMP synergy, which will help guide the future development of synergistic AMPs as well as applications of anti-infective peptide cocktail therapies.
Collapse
Affiliation(s)
| | - Chenyi Liao
- Department of Chemistry, University of Vermont, Burlington, VT 05405
| | - Mona Sharafi
- Department of Chemistry, University of Vermont, Burlington, VT 05405
| | - Emma Ste. Marie
- Department of Chemistry, University of Vermont, Burlington, VT 05405
- Department of Biochemistry, University of Vermont, Burlington, VT 05405
| | | | - Robert Hondal
- Department of Chemistry, University of Vermont, Burlington, VT 05405
- Department of Biochemistry, University of Vermont, Burlington, VT 05405
| | - Matthew J. Wargo
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405
| | | | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT 05405
- Corresponding Author Jianing Li ()
| |
Collapse
|
10
|
Mescola A, Ragazzini G, Alessandrini A. Daptomycin Strongly Affects the Phase Behavior of Model Lipid Bilayers. J Phys Chem B 2020; 124:8562-8571. [PMID: 32886515 DOI: 10.1021/acs.jpcb.0c06640] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Daptomycin (DAP) is a calcium-dependent cyclic lipopeptide with great affinity for negatively charged phospholipids bearing the phosphatidylglycerol (PG) headgroup and has been used since 2003 as a last resort antibiotic in the treatment of severe infections caused by Gram-positive bacteria. The first step of its mechanism of action involves the interaction with the bacterial membrane, which not only represents a physical barrier but also accommodates transmembrane proteins, such as receptors, transporters, and enzymes, whose activity is crucial for the survival of bacteria. This results in a less efficient development of resistance strategies by pathogens compared to common antibiotics that activate or inhibit biochemical pathways connected to specific target proteins. Although already on the market, the molecular mechanism of action of DAP is still a controversial subject of investigation and it is most likely the result of a combination of distinct effects. Understanding how DAP targets the membrane of pathogens could be of great help in finding its analogues that could better avoid the development of resistance. Here, exploiting fluorescence microscopy and atomic force microscopy (AFM), we demonstrated that DAP affects the thermodynamic behavior of lipid mixtures containing PG moieties. Regardless of whether the PG lipids are in the liquid or solid phase, DAP preferably interacts with this headgroup and is able to penetrate more deeply into the lipid bilayer in the regions where this headgroup is present. In particular, considering the results of an AFM/spectroscopy investigation, DAP appears to produce a stiffening effect of the domains where PG lipids are mainly in the fluid phase, whereas it causes fluidification of the domains where PG lipids are in the solid phase.
Collapse
Affiliation(s)
- Andrea Mescola
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| | - Gregorio Ragazzini
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy.,Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| | - Andrea Alessandrini
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy.,Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
11
|
Hammond K, Ryadnov MG, Hoogenboom BW. Atomic force microscopy to elucidate how peptides disrupt membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183447. [PMID: 32835656 DOI: 10.1016/j.bbamem.2020.183447] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
Abstract
Atomic force microscopy is an increasingly attractive tool to study how peptides disrupt membranes. Often performed on reconstituted lipid bilayers, it provides access to time and length scales that allow dynamic investigations with nanometre resolution. Over the last decade, AFM studies have enabled visualisation of membrane disruption mechanisms by antimicrobial or host defence peptides, including peptides that target malignant cells and biofilms. Moreover, the emergence of high-speed modalities of the technique broadens the scope of investigations to antimicrobial kinetics as well as the imaging of peptide action on live cells in real time. This review describes how methodological advances in AFM facilitate new insights into membrane disruption mechanisms.
Collapse
Affiliation(s)
- Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; Department of Physics, King's College London, Strand Lane, London WC2R 2LS, UK.
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| |
Collapse
|
12
|
Balleza D, Mescola A, Alessandrini A. Model lipid systems and their use to evaluate the phase state of biomembranes, their mechanical properties and the effect of non-conventional antibiotics: the case of daptomycin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:401-408. [PMID: 32632743 DOI: 10.1007/s00249-020-01445-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/10/2020] [Accepted: 06/20/2020] [Indexed: 12/30/2022]
Abstract
The lipid bilayer is the basis of the structure and function of the cell membrane. The study of the molecular phenomena that affect biological membranes has a great impact on the understanding of cellular physiology. To understand these phenomena, it has become increasingly necessary to develop simple synthetic models that allow the most basic details of such processes to be reproduced. In this short communication, we took advantage of the properties of two well-established lipid model systems, GUVs and SLBs, with compositions mimicking the cell membrane present in mammals and bacteria, to study the thermotropic phase behavior of lipids as well as the effect of daptomycin, a cyclic lipopeptide used as an antibiotic. The study of mechanical and thermodynamical properties of these model systems could contribute to establish a theoretical framework to develop more efficient strategies for biological control.
Collapse
Affiliation(s)
- Daniel Balleza
- Instituto Tecnológico de Educación Superior, Zapopan, 45138, Jalisco, Mexico.
| | - Andrea Mescola
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125, Modena, Italy
| | - Andrea Alessandrini
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125, Modena, Italy
- Dipartimento di Scienze Fisiche, Matematiche e Informatiche, Università di Modena e Reggio Emilia, Via Campi 213/A, 41125, Modena, Italy
| |
Collapse
|
13
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
14
|
Overton K, Greer HM, Ferguson MA, Spain EM, Elmore DE, Núñez ME, Volle CB. Qualitative and Quantitative Changes to Escherichia coli during Treatment with Magainin 2 Observed in Native Conditions by Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:650-659. [PMID: 31876422 PMCID: PMC7430157 DOI: 10.1021/acs.langmuir.9b02726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The bacterial membrane has been suggested as a good target for future antibiotics, so it is important to understand how naturally occurring antibiotics like antimicrobial peptides (AMPs) disrupt those membranes. The interaction of the AMP magainin 2 (MAG2) with the bacterial cell membrane has been well characterized using supported lipid substrates, unilamellar vesicles, and spheroplasts created from bacterial cells. However, to fully understand how MAG2 kills bacteria, we must consider its effect on the outer membrane found in Gram-negative bacteria. Here, we use atomic force microscopy (AFM) to directly investigate MAG2 interaction with the outer membrane of Escherichia coli and characterize the biophysical consequences of MAG2 treatment under native conditions. While propidium iodide penetration indicates that MAG2 permeabilizes cells within seconds, a corresponding decrease in cellular turgor pressure is not observed until minutes after MAG2 application, suggesting that cellular homeostasis machinery may be responsible for helping the cell maintain turgor pressure despite a loss of membrane integrity. AFM imaging and force measurement modes applied in tandem reveal that the outer membrane becomes pitted, more flexible, and more adhesive after MAG2 treatment. MAG2 appears to have a highly disruptive effect on the outer membrane, extending the known mechanism of MAG2 to the Gram-negative outer membrane.
Collapse
Affiliation(s)
- Kanesha Overton
- Department of Biology , Cottey College , 1000 West Austin Boulevard , Nevada , Missouri 64772 , United States
| | - Helen M Greer
- Department of Biology , Cottey College , 1000 West Austin Boulevard , Nevada , Missouri 64772 , United States
| | - Megan A Ferguson
- Department of Chemistry , State University of New York , 1 Hawk Drive , New Paltz , New York 12561 , United States
| | - Eileen M Spain
- Department of Chemistry , Occidental College , 1600 Campus Road , Los Angeles , California 90041 , United States
| | - Donald E Elmore
- Department of Chemistry and Program in Biochemistry , Wellesley College , 106 Central Street , Wellesley , Massachusetts 02481 , United States
| | - Megan E Núñez
- Department of Chemistry and Program in Biochemistry , Wellesley College , 106 Central Street , Wellesley , Massachusetts 02481 , United States
| | - Catherine B Volle
- Department of Biology , Cottey College , 1000 West Austin Boulevard , Nevada , Missouri 64772 , United States
| |
Collapse
|
15
|
Liang Y, Zhang X, Yuan Y, Bao Y, Xiong M. Role and modulation of the secondary structure of antimicrobial peptides to improve selectivity. Biomater Sci 2020; 8:6858-6866. [PMID: 32815940 DOI: 10.1039/d0bm00801j] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Helix is a two-edged sword for AMPs, and conformational modulation of AMPs can control the balance between antimicrobial activity and toxicity.
Collapse
Affiliation(s)
- Yangbin Liang
- Guangzhou First People's Hospital
- School of Biomedical Sciences and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Xinshuang Zhang
- Guangzhou First People's Hospital
- School of Biomedical Sciences and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Yueling Yuan
- Guangzhou First People's Hospital
- School of Biomedical Sciences and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Yan Bao
- Medical Research Center
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation
- Sun Yat-sen Memorial Hospital
- Sun Yat-sen University
- Guangzhou
| | - Menghua Xiong
- Guangzhou First People's Hospital
- School of Biomedical Sciences and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|
16
|
Two/three-dimensional interfacial properties of the novel peptide as a selective destroyer of biomembrane. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|