1
|
Safrina O, Vorontsova I, Donaldson PJ, Schilling TF. Zebrafish Optical Development Requires Regulated Water Permeability by Aquaporin 0. Invest Ophthalmol Vis Sci 2024; 65:42. [PMID: 39330988 PMCID: PMC11437712 DOI: 10.1167/iovs.65.11.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Purpose Optical development of the zebrafish eye relies on the movement of the highly refractive lens nucleus from an anterior to a central location in the optical axis during development. We have shown that this mechanism in turn depends on the function of Aquaporin 0a (Aqp0a), a multifunctional and extremely abundant protein in lens fiber cell membranes. Here, we probe the specific cellular functions necessary for rescuing lens nucleus centralization defects in aqp0a-/- null mutants by stable overexpression of an Aqp0 orthologue from a killifish, MIPfun. Methods We test in vivo requirements for lens transparency and nucleus centralization of MIPfun for auto-adhesion, water permeability (Pf), and Pf sensitivity to regulation by Ca2+ or pH by overexpression of MIPfun mutants previously shown to have defects in these functions in vitro or in silico. Results Water permeability of MIPfun is essential for rescuing lens transparency and nucleus centralization defects, whereas auto-adhesion is not. Furthermore, water permeability regulation by Ca2+ and pH appear residue-dependent, because some Ca2+-insensitive mutants fail to rescue, and pH-insensitive mutants only partially rescue defects. MIPfun lacking Pf sensitivity to both, Ca2+ and pH, also fails to rescue lens nucleus centralization. Conclusion This study shows that regulation of water permeability by Aqp0 plays a key role in the centralization of the zebrafish lens nucleus, providing the first direct evidence for water transport in this aspect of optical development.
Collapse
Affiliation(s)
- Olga Safrina
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States
| | - Irene Vorontsova
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States
- Department of Physiology, The University of Auckland, Aotearoa New Zealand National Eye Centre, Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, The University of Auckland, Aotearoa New Zealand National Eye Centre, Auckland, New Zealand
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States
| |
Collapse
|
2
|
Freites JA, Tobias DJ. Molecular Dynamics Simulations of the Eye Lens Water Channel Aquaporin 0 from Fish. J Phys Chem B 2024; 128:7577-7585. [PMID: 39052430 PMCID: PMC11317983 DOI: 10.1021/acs.jpcb.4c03015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Aquaporin 0 (AQP0) plays a key role in water circulation in the eye lens through a variety of functions. In contrast to mammalian genomes, zebrafish contains two aqp0 genes leading to a separation of AQP0 multiple functions between the two gene products, Aqp0a and Aqp0b. A notable feature of the zebrafish AQP0 paralogs is the increased water permeability of Aqp0b relative to Aqp0a as well as a severa lfold increase relative to mammalian AQP0. Here, we report equilibrium molecular dynamics (MD) simulations on the microsecond timescale to identify the structural basis underlying the differences in water permeability between zebrafish AQP0 paralogs and between AQP0 mammalian and fish orthologs. Our simulations are able to reproduce the experimental trends in water permeability. Our results suggest that a substitution of a key Y23 residue in mammalian AQP0 for F23 in fish AQP0 orthologs introduces significant changes in the conformational dynamics of the CS-I structural motif, which, in conjunction with different levels of hydration of the channel vestibule, can account for the differences in permeabilities between fish and mammalian AQP0 orthologs and between zebrafish AQP0 paralogs.
Collapse
Affiliation(s)
- J. Alfredo Freites
- Department of Chemistry, University
of California, Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Douglas J. Tobias
- Department of Chemistry, University
of California, Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| |
Collapse
|
3
|
Mom R, Mocquet V, Auguin D, Réty S. Aquaporin Modulation by Cations, a Review. Curr Issues Mol Biol 2024; 46:7955-7975. [PMID: 39194687 DOI: 10.3390/cimb46080470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Aquaporins (AQPs) are transmembrane channels initially discovered for their role in water flux facilitation through biological membranes. Over the years, a much more complex and subtle picture of these channels appeared, highlighting many other solutes accommodated by AQPs and a dense regulatory network finely tuning cell membranes' water permeability. At the intersection between several transduction pathways (e.g., cell volume regulation, calcium signaling, potassium cycling, etc.), this wide and ancient protein family is considered an important therapeutic target for cancer treatment and many other pathophysiologies. However, a precise and isoform-specific modulation of these channels function is still challenging. Among the modulators of AQPs functions, cations have been shown to play a significant contribution, starting with mercury being historically associated with the inhibition of AQPs since their discovery. While the comprehension of AQPs modulation by cations has improved, a unifying molecular mechanism integrating all current knowledge is still lacking. In an effort to extract general trends, we reviewed all known modulations of AQPs by cations to capture a first glimpse of this regulatory network. We paid particular attention to the associated molecular mechanisms and pinpointed the residues involved in cation binding and in conformational changes tied up to the modulation of the channel function.
Collapse
Affiliation(s)
- Robin Mom
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Vincent Mocquet
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Daniel Auguin
- Laboratoire de Physiologie, Ecologie et Environnement (P2E), UPRES EA 1207/USC INRAE-1328, UFR Sciences et Techniques, Université d'Orléans, F-45067 Orléans, France
| | - Stéphane Réty
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| |
Collapse
|
4
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
5
|
Falato M, Chan R, Chen LY. Aquaglyceroporin AQP7's affinity for its substrate glycerol: Have we reached convergence in the computed values of glycerol-aquaglyceroporin affinity? RSC Adv 2022; 12:3128-3135. [PMID: 35222995 PMCID: PMC8870571 DOI: 10.1039/d1ra07367b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/18/2022] [Indexed: 12/02/2022] Open
Abstract
AQP7 is one of the four human aquaglyceroporins that facilitate glycerol transport across the cell membrane, a biophysical process that is essential in human physiology. Therefore, it is interesting to compute AQP7's affinity for its substrate (glycerol) with reasonable certainty to compare with the experimental data suggesting high affinity in contrast with most computational studies predicting low affinity. In this study aimed at computing the AQP7-glycerol affinity with high confidence, we implemented a direct computation of the affinity from unbiased equilibrium molecular dynamics (MD) simulations of three all-atom systems constituted with 0.16M, 4.32M, and 10.23M atoms, respectively. These three sets of simulations manifested a fundamental physics law that the intrinsic fluctuations of pressure in a system are inversely proportional to the system size (the number of atoms in it). These simulations showed that the computed values of glycerol-AQP7 affinity are dependent upon the system size (the inverse affinity estimations were, respectively, 47.3 mM, 1.6 mM, and 0.92 mM for the three model systems). In this, we obtained a lower bound for the AQP7-glycerol affinity (an upper bound for the dissociation constant). Namely, the AQP7-glycerol affinity is stronger than 1087/M (the dissociation constant is less than 0.92 mM). Additionally, we conducted hyper steered MD (hSMD) simulations to map out the Gibbs free-energy profile. From the free-energy profile, we produced an independent computation of the AQP7-glycerol dissociation constant being approximately 0.18 mM.
Collapse
Affiliation(s)
- Michael Falato
- Department of Physics, University of Texas at San AntonioSan AntonioTexas 78249USA
| | - Ruth Chan
- Department of Physics, University of Texas at San AntonioSan AntonioTexas 78249USA
| | - Liao Y. Chen
- Department of Physics, University of Texas at San AntonioSan AntonioTexas 78249USA
| |
Collapse
|
6
|
Rodriguez RA, Chan R, Liang H, Chen LY. Quantitative study of unsaturated transport of glycerol through aquaglyceroporin that has high affinity for glycerol. RSC Adv 2020; 10:34203-34214. [PMID: 32944226 PMCID: PMC7494219 DOI: 10.1039/d0ra05262k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/08/2020] [Indexed: 11/21/2022] Open
Abstract
The structures of several aquaglyceroporins have been resolved to atomic resolution showing two or more glycerols bound inside a channel and confirming a glycerol-facilitator's affinity for its substrate glycerol. However, the kinetics data of glycerol transport experiments all point to unsaturated transport that is characteristic of low substrate affinity in terms of the Michaelis-Menten kinetics. In this article, we present an in silico-in vitro research focused on AQP3, one of the human aquaglyceroporins that is natively expressed in the abundantly available erythrocytes. We conducted 2.1 μs in silico simulations of AQP3 embedded in a model erythrocyte membrane with intracellular-extracellular asymmetries in leaflet lipid compositions and compartment salt ions. From the equilibrium molecular dynamics (MD) simulations, we elucidated the mechanism of glycerol transport at high substrate concentrations. From the steered MD simulations, we computed the Gibbs free-energy profile throughout the AQP3 channel. From the free-energy profile, we quantified the kinetics of glycerol transport that is unsaturated due to glycerol-glycerol interactions mediated by AQP3 resulting in the concerted movement of two glycerol molecules for the transport of one glycerol molecule across the cell membrane. We conducted in vitro experiments on glycerol uptake into human erythrocytes for a wide range of substrate concentrations and various temperatures. The experimental data quantitatively validated our theoretical-computational conclusions on the unsaturated glycerol transport through AQP3 that has high affinity for glycerol.
Collapse
Affiliation(s)
- Roberto A. Rodriguez
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
| | - Ruth Chan
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
| | - Huiyun Liang
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
- Department of Pharmacology, The University of Texas Health Science Center at San AntonioSan AntonioTexas 78229USA
| | - Liao Y. Chen
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
| |
Collapse
|
7
|
Chan R, Falato M, Liang H, Chen LY. In silico simulations of erythrocyte aquaporins with quantitative in vitro validation. RSC Adv 2020; 10:21283-21291. [PMID: 32612811 PMCID: PMC7328926 DOI: 10.1039/d0ra03456h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modelling water and membrane lipids is an essential element in the computational research of biophysical/biochemical processes such as water transport across the cell membrane. In this study, we examined the accuracies of two popular water models, TIP3P and TIP4P, in the molecular dynamics simulations of erythrocyte aquaporins (AQP1 and AQP3). We modelled the erythrocyte membrane as an asymmetric lipid bilayer with appropriate lipid compositions of its inner and outer leaflet, in comparison with a symmetric lipid bilayer of a single lipid type. We computed the AQP1/3 permeabilities with the transition state theory with full correction for recrossing events. We also conducted cell swelling assays for water transport across the erythrocyte membrane. The experimental results agree with the TIP3P water–erythrocyte membrane model, in confirmation of the expected accuracy of the erythrocyte membrane model, the TIP3P water model, and the CHARMM parameters for water–protein interactions. Quantitatively predictive study of aquaporins in model erythrocyte membrane validated with cellular experiments.![]()
Collapse
Affiliation(s)
- Ruth Chan
- Department of Physics, The University of Texas at San Antonio, San Antonio, Texas 78249 USA
| | - Michael Falato
- Department of Physics, The University of Texas at San Antonio, San Antonio, Texas 78249 USA
| | - Huiyun Liang
- Department of Physics, The University of Texas at San Antonio, San Antonio, Texas 78249 USA.,Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 USA
| | - Liao Y Chen
- Department of Physics, The University of Texas at San Antonio, San Antonio, Texas 78249 USA
| |
Collapse
|
8
|
Chen LY. Application of the Brown dynamics fluctuation-dissipation theorem to the study of Plasmodium berghei transporter protein PbAQP. FRONTIERS IN PHYSICS 2020; 8:119. [PMID: 32457897 PMCID: PMC7250396 DOI: 10.3389/fphy.2020.00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this article, the Brownian dynamics fluctuation-dissipation theorem (BD-FDT) is applied to the study of transport of neutral solutes across the cellular membrane of Plasmodium berghei (Pb), a disease-causing parasite. Pb infects rodents and causes symptoms in laboratory mice that are comparable to human malaria caused by Plasmodium falciparum (Pf). Due to the relative ease of its genetic engineering, P. berghei has been exploited as a model organism for the study of human malaria. P. berghei expresses one type of aquaporin (AQP), PbAQP, and, in parallel, P. falciparum expresses PfAQP. Either PbAQP or PfAQP is a multifunctional channel protein in the plasma membrane of the rodent/human malarial parasite for homeostasis of water, uptake of glycerol, and excretion of some metabolic wastes across the cell membrane. This FDT-study of the channel protein PbAQP is to elucidate how and how strongly it interacts with water, glycerol, and erythritol. It is found that erythritol, which binds deep inside the conducting pore of PbAQP/PfAQP, inhibits the channel protein's functions of conducting water, glycerol etc. This points to the possibility that erythritol, a sugar substitute, may inhibit the malarial parasites in rodents and in humans.
Collapse
Affiliation(s)
- Liao Y Chen
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
9
|
Hall JE, Freites JA, Tobias DJ. Experimental and Simulation Studies of Aquaporin 0 Water Permeability and Regulation. Chem Rev 2019; 119:6015-6039. [PMID: 31026155 DOI: 10.1021/acs.chemrev.9b00106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We begin with the history of aquaporin zero (AQP0), the most prevalent membrane protein in the eye lens, from the early days when AQP0 was a protein of unknown function known as Major Intrinsic Protein 26. We progress through its joining the aquaporin family as a water channel in its own right and discuss how regulation of its water permeability by pH and calcium came to be discovered experimentally and linked to lens homeostasis and development. We review the development of molecular dynamics (MD) simulations of lipid bilayers and membrane proteins, including aquaporins, with an emphasis on simulation studies that have elucidated the mechanisms of water conduction, selectivity, and proton exclusion by aquaporins in general. We also review experimental and theoretical progress toward understanding why mammalian AQP0 has a lower water permeability than other aquaporins and the evolution of our present understanding of how its water permeability is regulated by pH and calcium. Finally, we discuss how MD simulations have elucidated the nature of lipid interactions with AQP0.
Collapse
|