1
|
Papouskova K, Zimmermannova O, Sychrova H. Distinct regions of its first intracellular loop contribute to the proper localization, transport activity and substrate-affinity adjustment of the main yeast K + importer Trk1. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184369. [PMID: 38969203 DOI: 10.1016/j.bbamem.2024.184369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Trk1 is the main K+ importer of Saccharomyces cerevisiae. Its proper functioning enables yeast cells to grow in environments with micromolar amounts of K+. Although the structure of Trk1 has not been experimentally determined, the transporter is predicted to be composed of four MPM (transmembrane segment - pore loop - transmembrane segment) motifs which are connected by intracellular loops. Of those, in particular the first loop (IL1) is unique in its length; it forms more than half of the entire protein. The deletion of the majority of IL1 does not abolish the transport activity of Trk1. However IL1 is thought to be involved in the modulation of the transporter's functioning. In this work, we prepared a series of internally shortened versions of Trk1 that lacked various parts of IL1, and we studied their properties in S. cerevisiae cells without chromosomal copies of TRK genes. Using this approach, we were able to determine that both N- and C-border regions of IL1 are necessary for the proper localization of Trk1. Moreover, the N-border part of IL1 is also important for the functioning of Trk1, as its absence resulted in a decrease in the transporter's substrate affinity. In addition, in the internal part of IL1, we newly identified a stretch of amino-acid residues that are indispensable for retaining the transporter's maximum velocity, and another region whose deletion affected the ability of Trk1 to adjust its affinity in response to external levels of K+.
Collapse
Affiliation(s)
- Klara Papouskova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague 4, Czech Republic.
| | - Olga Zimmermannova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague 4, Czech Republic.
| | - Hana Sychrova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague 4, Czech Republic.
| |
Collapse
|
2
|
Papoušková K, Gómez M, Kodedová M, Ramos J, Zimmermannová O, Sychrová H. Heterologous expression reveals unique properties of Trk K + importers from nonconventional biotechnologically relevant yeast species together with their potential to support Saccharomyces cerevisiae growth. Yeast 2023; 40:68-83. [PMID: 36539385 DOI: 10.1002/yea.3834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
In the model yeast Saccharomyces cerevisiae, Trk1 is the main K+ importer. It is involved in many important physiological processes, such as the maintenance of ion homeostasis, cell volume, intracellular pH, and plasma-membrane potential. The ScTrk1 protein can be of great interest to industry, as it was shown that changes in its activity influence ethanol production and tolerance in S. cerevisiae and also cell performance in the presence of organic acids or high ammonium under low K+ conditions. Nonconventional yeast species are attracting attention due to their unique properties and as a potential source of genes that encode proteins with unusual characteristics. In this work, we aimed to study and compare Trk proteins from Debaryomyces hansenii, Hortaea werneckii, Kluyveromyces marxianus, and Yarrowia lipolytica, four biotechnologically relevant yeasts that tolerate various extreme environments. Heterologous expression in S. cerevisiae cells lacking the endogenous Trk importers revealed differences in the studied Trk proteins' abilities to support the growth of cells under various cultivation conditions such as low K+ or the presence of toxic cations, to reduce plasma-membrane potential or to take up Rb+ . Examination of the potential of Trks to support the stress resistance of S. cerevisiae wild-type strains showed that Y. lipolytica Trk1 is a promising tool for improving cell tolerance to both low K+ and high salt and that the overproduction of S. cerevisiae's own Trk1 was the most efficient at improving the growth of cells in the presence of highly toxic Li+ ions.
Collapse
Affiliation(s)
- Klára Papoušková
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Marcos Gómez
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, Spain
| | - Marie Kodedová
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - José Ramos
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, Spain
| | - Olga Zimmermannová
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Hana Sychrová
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| |
Collapse
|
3
|
Masaryk J, Kale D, Pohl P, Ruiz-Castilla FJ, Zimmermannová O, Obšilová V, Ramos J, Sychrová H. The second intracellular loop of the yeast Trk1 potassium transporter is involved in regulation of activity, and interaction with 14-3-3 proteins. Comput Struct Biotechnol J 2023; 21:2705-2716. [PMID: 37168872 PMCID: PMC10165143 DOI: 10.1016/j.csbj.2023.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Potassium is an essential intracellular ion, and a sufficient intracellular concentration of it is crucial for many processes; therefore it is fundamental for cells to precisely regulate K+ uptake and efflux through the plasma membrane. The uniporter Trk1 is a key player in K+ acquisition in yeasts. The TRK1 gene is expressed at a low and stable level; thus the activity of the transporter needs to be regulated at a posttranslational level. S. cerevisiae Trk1 changes its activity and affinity for potassium ion quickly and according to both internal and external concentrations of K+, as well as the membrane potential. The molecular basis of these changes has not been elucidated, though phosphorylation is thought to play an important role. In this study, we examined the role of the second, short, and highly conserved intracellular hydrophilic loop of Trk1 (IL2), and identified two phosphorylable residues (Ser882 and Thr900) as very important for 1) the structure of the loop and consequently for the targeting of Trk1 to the plasma membrane, and 2) the upregulation of the transporter's activity reaching maximal affinity under low external K+ conditions. Moreover, we identified three residues (Thr155, Ser414, and Thr900) within the Trk1 protein as strong candidates for interaction with 14-3-3 regulatory proteins, and showed, in an in vitro experiment, that phosphorylated Thr900 of the IL2 indeed binds to both isoforms of yeast 14-3-3 proteins, Bmh1 and Bmh2.
Collapse
Affiliation(s)
- Jakub Masaryk
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Membrane Transport, 14200 Prague 4, Czech Republic
| | - Deepika Kale
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Membrane Transport, 14200 Prague 4, Czech Republic
| | - Pavel Pohl
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, 25250 Vestec, Czech Republic
| | - Francisco J. Ruiz-Castilla
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 140 71 Córdoba, Spain
| | - Olga Zimmermannová
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Membrane Transport, 14200 Prague 4, Czech Republic
| | - Veronika Obšilová
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, 25250 Vestec, Czech Republic
| | - José Ramos
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 140 71 Córdoba, Spain
| | - Hana Sychrová
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Membrane Transport, 14200 Prague 4, Czech Republic
- Corresponding author.
| |
Collapse
|
4
|
Kulik N, Kale D, Spurna K, Shamayeva K, Hauser F, Milic S, Janout H, Zayats V, Jacak J, Ludwig J. Dimerisation of the Yeast K + Translocation Protein Trk1 Depends on the K + Concentration. Int J Mol Sci 2022; 24:ijms24010398. [PMID: 36613841 PMCID: PMC9820094 DOI: 10.3390/ijms24010398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
In baker's yeast (Saccharomyces cerevisiae), Trk1, a member of the superfamily of K-transporters (SKT), is the main K+ uptake system under conditions when its concentration in the environment is low. Structurally, Trk1 is made up of four domains, each similar and homologous to a K-channel α subunit. Because most K-channels are proteins containing four channel-building α subunits, Trk1 could be functional as a monomer. However, related SKT proteins TrkH and KtrB were crystallised as dimers, and for Trk1, a tetrameric arrangement has been proposed based on molecular modelling. Here, based on Bimolecular Fluorescence Complementation experiments and single-molecule fluorescence microscopy combined with molecular modelling; we provide evidence that Trk1 can exist in the yeast plasma membrane as a monomer as well as a dimer. The association of monomers to dimers is regulated by the K+ concentration.
Collapse
Affiliation(s)
- Natalia Kulik
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Deepika Kale
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Karin Spurna
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Katsiaryna Shamayeva
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Fabian Hauser
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstr, 21, 4020 Linz, Austria
| | - Sandra Milic
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstr, 21, 4020 Linz, Austria
| | - Hannah Janout
- Bioinformatics, University of Applied Sciences Upper Austria, 4232 Hagenberg, Austria
- Institute of Symbolic AI, Johannes Kepler University, 4040 Linz, Austria
| | - Vasilina Zayats
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Jaroslaw Jacak
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstr, 21, 4020 Linz, Austria
| | - Jost Ludwig
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
- Correspondence:
| |
Collapse
|
5
|
Ruiz-Castilla FJ, Ruiz Pérez FS, Ramos-Moreno L, Ramos J. Candida albicans Potassium Transporters. Int J Mol Sci 2022; 23:ijms23094884. [PMID: 35563275 PMCID: PMC9105532 DOI: 10.3390/ijms23094884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Potassium is basic for life. All living organisms require high amounts of intracellular potassium, which fulfils multiple functions. To reach efficient potassium homeostasis, eukaryotic cells have developed a complex and tightly regulated system of transporters present both in the plasma membrane and in the membranes of internal organelles that allow correct intracellular potassium content and distribution. We review the information available on the pathogenic yeast Candida albicans. While some of the plasma membrane potassium transporters are relatively well known and experimental data about their nature, function or regulation have been published, in the case of most of the transporters present in intracellular membranes, their existence and even function have just been deduced because of their homology with those present in other yeasts, such as Saccharomyces cerevisiae. Finally, we analyse the possible links between pathogenicity and potassium homeostasis. We comment on the possibility of using some of these transporters as tentative targets in the search for new antifungal drugs.
Collapse
|
6
|
Pan YT, Li L, Yang JY, Li B, Zhang YZ, Wang P, Huang L. Involvement of Protein Kinase CgSat4 in Potassium Uptake, Cation Tolerance, and Full Virulence in Colletotrichum gloeosporioides. FRONTIERS IN PLANT SCIENCE 2022; 13:773898. [PMID: 35463420 PMCID: PMC9021643 DOI: 10.3389/fpls.2022.773898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/17/2022] [Indexed: 05/31/2023]
Abstract
The ascomycete Colletotrichum gloeosporioides is a causal agent of anthracnose on crops and trees and causes enormous economic losses in the world. Protein kinases have been implicated in the regulation of growth and development, and responses to extracellular stimuli. However, the mechanism of the protein kinases regulating phytopathogenic fungal-specific processes is largely unclear. In the study, a serine/threonine CgSat4 was identified in C. gloeosporioides. The CgSat4 was localized in the cytoplasm. Targeted gene deletion showed that CgSat4 was essential for vegetative growth, sporulation, and full virulence. CgSat4 is involved in K+ uptake by regulating the localization and expression of the potassium transporter CgTrk1. CgSat4 is required for the cation stress resistance by altering the phosphorylation of CgHog1. Our study provides insights into potassium acquisition and the pathogenesis of C. gloeosporioides.
Collapse
Affiliation(s)
- Yu-Ting Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Ji-Yun Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Bing Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yun-Zhao Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ping Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
7
|
Shamayeva K, Spurna K, Kulik N, Kale D, Munko O, Spurny P, Zayats V, Ludwig J. MPM motifs of the yeast SKT protein Trk1 can assemble to form a functional K +-translocation system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183513. [PMID: 33245894 DOI: 10.1016/j.bbamem.2020.183513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
The yeast Trk1 polypeptide, like other members of the Superfamily of K Transporters (SKT proteins) consists of four Membrane-Pore-Membrane motifs (MPMs A-D) each of which is homologous to a single K-channel subunit. SKT proteins are thought to have evolved from ancestral K-channels via two gene duplications and thus single MPMs might be able to assemble when located on different polypeptides. To test this hypothesis experimentally we generated a set of partial gene deletions to create alleles encoding one, two, or three MPMs, and analysed the cellular localisation and interactions of these Trk1 fragments using GFP tags and Bimolecular Fluorescence Complementation (BiFC). The function of these partial Trk1 proteins either alone or in combinations was assessed by expressing the encoding genes in a K+-uptake deficient strain lacking also the K-channel Tok1 (trk1,trk2,tok1Δ) and (i) analysing their ability to promote growth in low [K+] media and (ii) by ion flux measurements using "microelectrode based ion flux estimation" (MIFE). We found that proteins containing only one or two MPM motifs can interact with each other and assemble with a polypeptide consisting of the rest of the Trk system to form a functional K+-translocation system.
Collapse
Affiliation(s)
- Katsiaryna Shamayeva
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 373 33 Nove Hrady, Czech Republic.
| | - Karin Spurna
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 373 33 Nove Hrady, Czech Republic.
| | - Natalia Kulik
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 373 33 Nove Hrady, Czech Republic.
| | - Deepika Kale
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 373 33 Nove Hrady, Czech Republic.
| | - Oksana Munko
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 373 33 Nove Hrady, Czech Republic; University of South Bohemia in Ceske Budejovice, Faculty of Science, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
| | - Pavel Spurny
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 373 33 Nove Hrady, Czech Republic.
| | - Vasilina Zayats
- Centre of New Technologies, University of Warsaw, Stefana Banacha 2c, 02-097 Warsaw, Poland.
| | - Jost Ludwig
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 373 33 Nove Hrady, Czech Republic.
| |
Collapse
|