1
|
Role of membrane mimetics on biophysical EPR studies of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184138. [PMID: 36764474 DOI: 10.1016/j.bbamem.2023.184138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Biological membranes are essential in providing the stability of membrane proteins in a functional state. Functionally stable homogeneous sample is required for biophysical electron paramagnetic resonance (EPR) studies of membrane proteins for obtaining pertinent structural dynamics of the protein. Significant progresses have been made for the optimization of the suitable membrane environments required for biophysical EPR measurements. However, no universal membrane mimetic system is available that can solubilize all membrane proteins suitable for biophysical EPR studies while maintaining the functional integrity. Great efforts are needed to optimize the sample condition to obtain better EPR data quality of membrane proteins that can provide meaningful information on structural dynamics. In this mini-review, we will discuss important aspects of membrane mimetics for biophysical EPR measurements and current progress with some of the recent examples.
Collapse
|
2
|
Abeysekera GS, Love MJ, Manners SH, Billington C, Dobson RCJ. Bacteriophage-encoded lethal membrane disruptors: Advances in understanding and potential applications. Front Microbiol 2022; 13:1044143. [PMID: 36345304 PMCID: PMC9636201 DOI: 10.3389/fmicb.2022.1044143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 09/09/2023] Open
Abstract
Holins and spanins are bacteriophage-encoded membrane proteins that control bacterial cell lysis in the final stage of the bacteriophage reproductive cycle. Due to their efficient mechanisms for lethal membrane disruption, these proteins are gaining interest in many fields, including the medical, food, biotechnological, and pharmaceutical fields. However, investigating these lethal proteins is challenging due to their toxicity in bacterial expression systems and the resultant low protein yields have hindered their analysis compared to other cell lytic proteins. Therefore, the structural and dynamic properties of holins and spanins in their native environment are not well-understood. In this article we describe recent advances in the classification, purification, and analysis of holin and spanin proteins, which are beginning to overcome the technical barriers to understanding these lethal membrane disrupting proteins, and through this, unlock many potential biotechnological applications.
Collapse
Affiliation(s)
- Gayan S. Abeysekera
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michael J. Love
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Health and Environment Group, Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Sarah H. Manners
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Craig Billington
- Health and Environment Group, Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Ahammad T, Khan RH, Sahu ID, Drew DL, Faul E, Li T, McCarrick RM, Lorigan GA. Pinholin S 21 mutations induce structural topology and conformational changes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183771. [PMID: 34499883 DOI: 10.1016/j.bbamem.2021.183771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/23/2022]
Abstract
The bacteriophage infection cycle is terminated at a predefined time to release the progeny virions via a robust lytic system composed of holin, endolysin, and spanin proteins. Holin is the timekeeper of this process. Pinholin S21 is a prototype holin of phage Φ21, which determines the timing of host cell lysis through the coordinated efforts of pinholin and antipinholin. However, mutations in pinholin and antipinholin play a significant role in modulating the timing of lysis depending on adverse or favorable growth conditions. Earlier studies have shown that single point mutations of pinholin S21 alter the cell lysis timing, a proxy for pinholin function as lysis is also dependent on other lytic proteins. In this study, continuous wave electron paramagnetic resonance (CW-EPR) power saturation and double electron-electron resonance (DEER) spectroscopic techniques were used to directly probe the effects of mutations on the structure and conformational changes of pinholin S21 that correlate with pinholin function. DEER and CW-EPR power saturation data clearly demonstrate that increased hydrophilicity induced by residue mutations accelerate the externalization of antipinholin transmembrane domain 1 (TMD1), while increased hydrophobicity prevents the externalization of TMD1. This altered hydrophobicity is potentially accelerating or delaying the activation of pinholin S21. It was also found that mutations can influence intra- or intermolecular interactions in this system, which contribute to the activation of pinholin and modulate the cell lysis timing. This could be a novel approach to analyze the mutational effects on other holin systems, as well as any other membrane protein in which mutation directly leads to structural and conformational changes.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Emily Faul
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Tianyan Li
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
4
|
Ahammad T, Drew DL, Sahu ID, Khan RH, Butcher BJ, Serafin RA, Galende AP, McCarrick RM, Lorigan GA. Conformational Differences Are Observed for the Active and Inactive Forms of Pinholin S 21 Using DEER Spectroscopy. J Phys Chem B 2020; 124:11396-11405. [PMID: 33289567 DOI: 10.1021/acs.jpcb.0c09081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteriophages have evolved with an efficient host cell lysis mechanism to terminate the infection cycle and release the new progeny virions at the optimum time, allowing adaptation with the changing host and environment. Among the lytic proteins, holin controls the first and rate-limiting step of host cell lysis by permeabilizing the inner membrane at an allele-specific time known as "holin triggering". Pinholin S21 is a prototype holin of phage Φ21 which makes many nanoscale holes and destroys the proton motive force, which in turn activates the signal anchor release (SAR) endolysin system to degrade the peptidoglycan layer of the host cell and destruction of the outer membrane by the spanin complex. Like many others, phage Φ21 has two holin proteins: active pinholin and antipinholin. The antipinholin form differs only by three extra amino acids at the N-terminus; however, it has a different structural topology and conformation with respect to the membrane. Predefined combinations of active pinholin and antipinholin fine-tune the lysis timing through structural dynamics and conformational changes. Previously, the dynamics and topology of active pinholin and antipinholin were investigated (Ahammad et al. JPCB 2019, 2020) using continuous wave electron paramagnetic resonance (CW-EPR) spectroscopy. However, detailed structural studies and direct comparison of these two forms of pinholin S21 are absent in the literature. In this study, the structural topology and conformations of active pinholin (S2168) and inactive antipinholin (S2168IRS) in DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) proteoliposomes were investigated using the four-pulse double electron-electron resonance (DEER) EPR spectroscopic technique to measure distances between transmembrane domains 1 and 2 (TMD1 and TMD2). Five sets of interlabel distances were measured via DEER spectroscopy for both the active and inactive forms of pinholin S21. Structural models of the active pinholin and inactive antipinholin forms in DMPC proteoliposomes were obtained using the experimental DEER distances coupled with the simulated annealing software package Xplor-NIH. TMD2 of S2168 remains in the lipid bilayer, and TMD1 is partially externalized from the bilayer with some residues located on the surface. However, both TMDs remain incorporated in the lipid bilayer for the inactive S2168IRS form. This study demonstrates, for the first time, clear structural topology and conformational differences between the two forms of pinholin S21. This work will pave the way for further studies of other holin systems using the DEER spectroscopic technique and will give structural insight into these biological clocks in molecular detail.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.,Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Brandon J Butcher
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Rachel A Serafin
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Alberto P Galende
- Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
5
|
Steger LME, Kohlmeyer A, Wadhwani P, Bürck J, Strandberg E, Reichert J, Grage SL, Afonin S, Kempfer M, Görner AC, Koch J, Walther TH, Ulrich AS. Structural and functional characterization of the pore-forming domain of pinholin S 2168. Proc Natl Acad Sci U S A 2020; 117:29637-29646. [PMID: 33154156 PMCID: PMC7703622 DOI: 10.1073/pnas.2007979117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pinholin S2168 triggers the lytic cycle of bacteriophage φ21 in infected Escherichia coli Activated transmembrane dimers oligomerize into small holes and uncouple the proton gradient. Transmembrane domain 1 (TMD1) regulates this activity, while TMD2 is postulated to form the actual "pinholes." Focusing on the TMD2 fragment, we used synchrotron radiation-based circular dichroism to confirm its α-helical conformation and transmembrane alignment. Solid-state 15N-NMR in oriented DMPC bilayers yielded a helix tilt angle of τ = 14°, a high order parameter (Smol = 0.9), and revealed the azimuthal angle. The resulting rotational orientation places an extended glycine zipper motif (G40xxxS44xxxG48) together with a patch of H-bonding residues (T51, T54, N55) sideways along TMD2, available for helix-helix interactions. Using fluorescence vesicle leakage assays, we demonstrate that TMD2 forms stable holes with an estimated diameter of 2 nm, as long as the glycine zipper motif remains intact. Based on our experimental data, we suggest structural models for the oligomeric pinhole (right-handed heptameric TMD2 bundle), for the active dimer (right-handed Gly-zipped TMD2/TMD2 dimer), and for the full-length pinholin protein before being triggered (Gly-zipped TMD2/TMD1-TMD1/TMD2 dimer in a line).
Collapse
Affiliation(s)
- Lena M E Steger
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Annika Kohlmeyer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Erik Strandberg
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Johannes Reichert
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Marin Kempfer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Anne C Görner
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Julia Koch
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Torsten H Walther
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany;
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany;
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
6
|
Ahammad T, Drew DL, Khan RH, Sahu ID, Faul E, Li T, Lorigan GA. Structural Dynamics and Topology of the Inactive Form of S 21 Holin in a Lipid Bilayer Using Continuous-Wave Electron Paramagnetic Resonance Spectroscopy. J Phys Chem B 2020; 124:5370-5379. [PMID: 32501696 DOI: 10.1021/acs.jpcb.0c03575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacteriophage infection cycle plays a crucial role in recycling the world's biomass. Bacteriophages devise various cell lysis systems to strictly control the length of the infection cycle for an efficient phage life cycle. Phages evolved with lysis protein systems, which can control and fine-tune the length of this infection cycle depending on the host and growing environment. Among these lysis proteins, holin controls the first and rate-limiting step of host cell lysis by permeabilizing the inner membrane at an allele-specific time and concentration hence known as the simplest molecular clock. Pinholin S21 is the holin from phage Φ21, which defines the cell lysis time through a predefined ratio of active pinholin and antipinholin (inactive form of pinholin). Active pinholin and antipinholin fine-tune the lysis timing through structural dynamics and conformational changes. Previously we reported the structural dynamics and topology of active pinholin S2168. Currently, there is no detailed structural study of the antipinholin using biophysical techniques. In this study, the structural dynamics and topology of antipinholin S2168IRS in DMPC proteoliposomes is investigated using electron paramagnetic resonance (EPR) spectroscopic techniques. Continuous-wave (CW) EPR line shape analysis experiments of 35 different R1 side chains of S2168IRS indicated restricted mobility of the transmembrane domains (TMDs), which were predicted to be inside the lipid bilayer when compared to the N- and C-termini R1 side chains. In addition, the R1 accessibility test performed on 24 residues using the CW-EPR power saturation experiment indicated that TMD1 and TMD2 of S2168IRS were incorporated into the lipid bilayer where N- and C-termini were located outside of the lipid bilayer. Based on this study, a tentative model of S2168IRS is proposed where both TMDs remain incorporated into the lipid bilayer and N- and C-termini are located outside of the lipid bilayer. This work will pave the way for the further studies of other holins using biophysical techniques and will give structural insights into these biological clocks in molecular detail.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.,Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Emily Faul
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Tianyan Li
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|