1
|
Löwe M, Hänsch S, Hachani E, Schmitt L, Weidtkamp-Peters S, Kedrov A. Probing macromolecular crowding at the lipid membrane interface with genetically-encoded sensors. Protein Sci 2023; 32:e4797. [PMID: 37779215 PMCID: PMC10578116 DOI: 10.1002/pro.4797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Biochemical processes within the living cell occur in a highly crowded environment, where macromolecules, first of all proteins and nucleic acids, occupy up to 30% of the volume. The phenomenon of macromolecular crowding is not an exclusive feature of the cytoplasm and can be observed in the densely protein-packed, nonhomogeneous cellular membranes and at the membrane interfaces. Crowding affects diffusional and conformational dynamics of proteins within the lipid bilayer, alters kinetic and thermodynamic properties of biochemical reactions, and modulates the membrane organization. Despite its importance, the non-invasive quantification of the membrane crowding is not trivial. Here, we developed a genetically-encoded fluorescence-based sensor for probing the macromolecular crowding at the membrane interfaces. Two sensor variants, both composed of fluorescent proteins and a membrane anchor, but differing by flexible linker domains were characterized in vitro, and the procedures for the membrane reconstitution were established. Steric pressure induced by membrane-tethered synthetic and protein crowders altered the sensors' conformation, causing increase in the intramolecular Förster's resonance energy transfer. Notably, the effect of protein crowders only weakly correlated with their molecular weight, suggesting that other factors, such as shape and charge contribute to the crowding via the quinary interactions. Finally, measurements performed in inner membrane vesicles of Escherichia coli validated the crowding-dependent dynamics of the sensors in the physiologically relevant environment. The sensors offer broad opportunities to study interfacial crowding in a complex environment of native membranes, and thus add to the toolbox of methods for studying membrane dynamics and proteostasis.
Collapse
Affiliation(s)
- Maryna Löwe
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Hänsch
- Center for Advanced imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eymen Hachani
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Alexej Kedrov
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Allen WJ, Collinson I. A unifying mechanism for protein transport through the core bacterial Sec machinery. Open Biol 2023; 13:230166. [PMID: 37643640 PMCID: PMC10465204 DOI: 10.1098/rsob.230166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Encapsulation and compartmentalization are fundamental to the evolution of cellular life, but they also pose a challenge: how to partition the molecules that perform biological functions-the proteins-across impermeable barriers into sub-cellular organelles, and to the outside. The solution lies in the evolution of specialized machines, translocons, found in every biological membrane, which act both as gate and gatekeeper across and into membrane bilayers. Understanding how these translocons operate at the molecular level has been a long-standing ambition of cell biology, and one that is approaching its denouement; particularly in the case of the ubiquitous Sec system. In this review, we highlight the fruits of recent game-changing technical innovations in structural biology, biophysics and biochemistry to present a largely complete mechanism for the bacterial version of the core Sec machinery. We discuss the merits of our model over alternative proposals and identify the remaining open questions. The template laid out by the study of the Sec system will be of immense value for probing the many other translocons found in diverse biological membranes, towards the ultimate goal of altering or impeding their functions for pharmaceutical or biotechnological purposes.
Collapse
Affiliation(s)
- William J. Allen
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
3
|
White SH. Fifty Years of Biophysics at the Membrane Frontier. Annu Rev Biophys 2023; 52:21-67. [PMID: 36791747 DOI: 10.1146/annurev-biophys-051622-112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The author first describes his childhood in the South and the ways in which it fostered the values he has espoused throughout his life, his development of a keen fascination with science, and the influences that supported his progress toward higher education. His experiences in ROTC as a student, followed by two years in the US Army during the Vietnam War, honed his leadership skills. The bulk of the autobiography is a chronological journey through his scientific career, beginning with arrival at the University of California, Irvine in 1972, with an emphasis on the postdoctoral students and colleagues who have contributed substantially to each phase of his lab's progress. White's fundamental findings played a key role in the development of membrane biophysics, helping establish it as fertile ground for research. A story gradually unfolds that reveals the deeply collaborative and painstakingly executed work necessary for a successful career in science.
Collapse
Affiliation(s)
- Stephen H White
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA;
| |
Collapse
|
4
|
Zhu Z, Wu Y, Hu W, Zheng X, Chen Y. Valorization of food waste fermentation liquid into single cell protein by photosynthetic bacteria via stimulating carbon metabolic pathway and environmental behaviour. BIORESOURCE TECHNOLOGY 2022; 361:127704. [PMID: 35908636 DOI: 10.1016/j.biortech.2022.127704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Single cell protein (SCP) production by photosynthetic bacteria (PSB) is dependent on the bioavailability of carbon source, while sufficient volatile fatty acids (VFAs) in food waste fermentation liquid might be a potential alternative. It is unclear how the fermentation liquid affects the SCP biosynthesis and the related metabolic mechanism. This work demonstrated that the SCP production could be improved effectively (2088.4 mg/L) with high conversion capacity of carbon source (0.99 mg-biomass/mg-COD) by regulating carbon source level. PSB preferred to utilize the VFAs in food waste fermentation liquid. The carbon metabolic pathways (e.g., the transformation of VFAs to acetyl-CoA, and tricarboxylic acid cycle) involved in the SCP production were enhanced under optimal condition. Moreover, optimal carbon source regulation could significantly stimulate the environmental behaviour of PSB (e.g., two-component system, quorum sensing, and ATP-binding cassette transporter) involved in adaptation to external stimulus and maintaining high bacterial activity, resulting in SCP yield promotion.
Collapse
Affiliation(s)
- Zizeng Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wanying Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Roussel G, Lindner E, White SH. Topology of the SecA ATPase Bound to Large Unilamellar Vesicles. J Mol Biol 2022; 434:167607. [PMID: 35489383 PMCID: PMC10085631 DOI: 10.1016/j.jmb.2022.167607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/27/2022]
Abstract
The soluble cytoplasmic ATPase motor protein SecA powers protein transport across the Escherichia coli inner membrane via the SecYEG translocon. Although dimeric in solution, SecA associates monomerically with SecYEG during secretion according to several crystallographic and cryo-EM structural studies. The steps SecA follows from its dimeric cytoplasmic state to its active SecYEG monomeric state are largely unknown. We have previously shown that dimeric SecA in solution dissociates into monomers upon electrostatic binding to negatively charged lipid vesicles formed from E. coli lipids. Here we address the question of the disposition of SecA on the membrane prior to binding to membrane embedded SecYEG. We mutated to cysteine, one at a time, 25 surface-exposed residues of a Cys-free SecA. To each of these we covalently linked the polarity-sensitive fluorophore NBD whose intensity and fluorescence wavelength-shift change upon vesicle binding report on the the local membrane polarity. We established from these measurements the disposition of SecA bound to the membrane in the absence of SecYEG. Our results confirmed that SecA is anchored in the membrane interface primarily by the positive charges of the N terminus domain. But we found that a region of the nucleotide binding domain II is also important for binding. Both domains are rich in positively charged residues, consistent with electrostatic interactions playing the major role in membrane binding. Selective replacement of positively charged residues in these domains with alanine resulted in weaker binding to the membrane, which allowed us to quantitate the relative importance of the domains in stabilizing SecA on membranes. Fluorescence quenchers inside the vesicles had little effect on NBD fluorescence, indicating that SecA does not penetrate significantly across the membrane. Overall, the topology of SecA on the membrane is consistent with the conformation of SecA observed in crystallographic and cryo-EM structures of SecA-SecYEG complexes, suggesting that SecA can switch between the membrane-associated and the translocon-associated states without significant changes in conformation.
Collapse
Affiliation(s)
- Guillaume Roussel
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, United States
| | - Eric Lindner
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, United States
| | - Stephen H White
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, United States.
| |
Collapse
|
6
|
Kamel M, Löwe M, Schott-Verdugo S, Gohlke H, Kedrov A. Unsaturated fatty acids augment protein transport via the SecA:SecYEG translocon. FEBS J 2021; 289:140-162. [PMID: 34312977 DOI: 10.1111/febs.16140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/01/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022]
Abstract
The translocon SecYEG and the associated ATPase SecA form the primary protein secretion system in the cytoplasmic membrane of bacteria. The secretion is essentially dependent on the surrounding lipids, but the mechanistic understanding of their role in SecA : SecYEG activity is sparse. Here, we reveal that the unsaturated fatty acids (UFAs) of the membrane phospholipids, including tetraoleoyl-cardiolipin, stimulate SecA : SecYEG-mediated protein translocation up to ten-fold. Biophysical analysis and molecular dynamics simulations show that UFAs increase the area per lipid and cause loose packing of lipid head groups, where the N-terminal amphipathic helix of SecA docks. While UFAs do not affect the translocon folding, they promote SecA binding to the membrane, and the effect is enhanced up to fivefold at elevated ionic strength. Tight SecA : lipid interactions convert into the augmented translocation. Our results identify the fatty acid structure as a notable factor in SecA : SecYEG activity, which may be crucial for protein secretion in bacteria, which actively change their membrane composition in response to their habitat.
Collapse
Affiliation(s)
- Michael Kamel
- Synthetic Membrane Systems, Institute for Biochemistry, Heinrich Heine University Düsseldorf, Germany
| | - Maryna Löwe
- Synthetic Membrane Systems, Institute for Biochemistry, Heinrich Heine University Düsseldorf, Germany
| | - Stephan Schott-Verdugo
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Germany
| | - Alexej Kedrov
- Synthetic Membrane Systems, Institute for Biochemistry, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
7
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
King GM, Kosztin I. Towards a Quantitative Understanding of Protein-Lipid Bilayer Interactions at the Single Molecule Level: Opportunities and Challenges. J Membr Biol 2020; 254:17-28. [PMID: 33196888 DOI: 10.1007/s00232-020-00151-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/04/2020] [Indexed: 11/28/2022]
Abstract
Protein-lipid interfaces are among the most fundamental in biology. Yet applying conventional techniques to study the biophysical attributes of these systems is challenging and has left many unknowns. For example, what is the kinetic pathway and energy landscape experienced by a polypeptide chain when in close proximity to a fluid lipid bilayer? Here we review the experimental and theoretical progress we have made in addressing this question from a single molecule perspective. Some remaining impediments are also discussed.
Collapse
Affiliation(s)
- Gavin M King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, 65211, USA. .,Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| | - Ioan Kosztin
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| |
Collapse
|