1
|
Miwa A, Kamiya K. Cell-Penetrating Peptide-Mediated Biomolecule Transportation in Artificial Lipid Vesicles and Living Cells. Molecules 2024; 29:3339. [PMID: 39064917 PMCID: PMC11279660 DOI: 10.3390/molecules29143339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Signal transduction and homeostasis are regulated by complex protein interactions in the intracellular environment. Therefore, the transportation of impermeable macromolecules (nucleic acids, proteins, and drugs) that control protein interactions is essential for modulating cell functions and therapeutic applications. However, macromolecule transportation across the cell membrane is not easy because the cell membrane separates the intra/extracellular environments, and the types of molecular transportation are regulated by membrane proteins. Cell-penetrating peptides (CPPs) are expected to be carriers for molecular transport. CPPs can transport macromolecules into cells through endocytosis and direct translocation. The transport mechanism remains largely unclear owing to several possibilities. In this review, we describe the methods for investigating CPP conformation, translocation, and cargo transportation using artificial membranes. We also investigated biomolecular transport across living cell membranes via CPPs. Subsequently, we show not only the biochemical applications but also the synthetic biological applications of CPPs. Finally, recent progress in biomolecule and nanoparticle transportation via CPPs into specific tissues is described from the viewpoint of drug delivery. This review provides the opportunity to discuss the mechanism of biomolecule transportation through these two platforms.
Collapse
Affiliation(s)
| | - Koki Kamiya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan;
| |
Collapse
|
2
|
Billah MM, Ahmed M, Islam MZ, Yamazaki M. Processes and mechanisms underlying burst of giant unilamellar vesicles induced by antimicrobial peptides and compounds. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184330. [PMID: 38679311 DOI: 10.1016/j.bbamem.2024.184330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
To clarify the damage of lipid bilayer region in bacterial cell membrane caused by antimicrobial peptides (AMPs) and antimicrobial compounds (AMCs), their interactions with giant unilamellar vesicles (GUVs) of various lipid compositions have been examined. The findings revealed two main causes for the leakage: nanopore formation in the membrane and burst of GUVs. Although GUV burst has been explained previously based on the carpet model, the supporting evidence is limited. In this review, to better clarify the mechanism of GUV burst by AMPs, AMCs, and other membrane-active peptides, we described current knowledge of the conditions, characteristics, and detailed processes of GUV burst and the changes in the shape of the GUVs during burst. We identified several physical factors that affect GUV burst, such as membrane tension, electrostatic interaction, structural changes of GUV membrane such as membrane folding, and oil in the membrane. We also clarified one of the physical mechanisms underlying the instability of lipid bilayers that are associated with leakage in the carpet model. Based on these results, we propose a mechanism underlying some types of GUV burst induced by these substances: the growth of a nanopore to a micropore, resulting in GUV burst.
Collapse
Affiliation(s)
- Md Masum Billah
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; Department of Physics, Jashore University and Science and Technology, Jashore 7408, Bangladesh
| | - Marzuk Ahmed
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Md Zahidul Islam
- Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka 422-8529, Japan
| | - Masahito Yamazaki
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka 422-8529, Japan; Department of Physics, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| |
Collapse
|
3
|
Alobaid AA, Skoda MWA, Harris LK, Campbell RA. Translational use of homing peptides: Tumor and placental targeting. J Colloid Interface Sci 2024; 662:1033-1043. [PMID: 38387365 DOI: 10.1016/j.jcis.2024.02.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
HYPOTHESIS Tissue-specific homing peptides have been shown to improve chemotherapeutic efficacy due to their trophism for tumor cells. Other sequences that selectively home to the placenta are providing new and safer therapeutics to treat complications in pregnancy. Our hypothesis is that the placental homing peptide RSGVAKS (RSG) may have binding affinity to cancer cells, and that insight can be gained into the binding mechanisms of RSG and the tumor homing peptide CGKRK to model membranes that mimic the primary lipid compositions of the respective cells. EXPERIMENTS Following cell culture studies on the binding efficacy of the peptides on a breast cancer cell line, a systematic translational characterization is delivered using ellipsometry, Brewster angle microscopy and neutron reflectometry of the extents, structures, and dynamics of the interactions of the peptides with the model membranes on a Langmuir trough. FINDINGS We start by revealing that RSG does indeed have binding affinity to breast cancer cells. The peptide is then shown to exhibit stronger interactions and greater penetration than CGKRK into both model membranes, combined with greater disruption to the lipid component. RSG also forms aggregates bound to the model membranes, yet both peptides bind to a greater extent to the placental than cancer model membranes. The results demonstrate the potential for varying local reservoirs of peptide within cell membranes that may influence receptor binding. The innovative nature of our findings motivates the urgent need for more studies involving multifaceted experimental platforms to explore the use of specific peptide sequences to home to different cellular targets.
Collapse
Affiliation(s)
- Abdulaziz A Alobaid
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom; Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Maximilian W A Skoda
- ISIS Neutron & Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom
| | - Lynda K Harris
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom; Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9WL, United Kingdom; St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom; Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| | - Richard A Campbell
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
4
|
Huang Y, Chandran Suja V, Yang M, Malkovskiy AV, Tandon A, Colom A, Qin J, Fuller GG. Interfacial stresses on droplet interface bilayers using two photon fluorescence lifetime imaging microscopy. J Colloid Interface Sci 2024; 653:1196-1204. [PMID: 37793246 DOI: 10.1016/j.jcis.2023.09.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
HYPOTHESIS Response of lipid bilayers to external mechanical stimuli is an active area of research with implications for fundamental and synthetic cell biology. Developing novel tools for systematically imposing mechanical strains and non-invasively mapping out interfacial (membrane) stress distributions on lipid bilayers can accelerate research in this field. EXPERIMENTS We report a miniature platform to manipulate model cell membranes in the form of droplet interface bilayers (DIBs), and non-invasively measure spatio-temporally resolved interfacial stresses using two photon fluorescence lifetime imaging of an interfacially active molecular flipper (Flipper-TR). We established the effectiveness of the developed framework by investigating interfacial stresses accompanying three key processes associated with DIBs: thin film drainage between lipid monolayer coated droplets, bilayer formation, and bilayer separation. FINDINGS The measurements revealed fundamental aspects of DIBs including the existence of a radially decaying interfacial stress distribution post bilayer formation, and the simultaneous build up and decay of stress respectively at the bilayer corner and center during bilayer separation. Finally, utilizing interfacial rheology measurements and MD simulations, we also reveal that the tested molecular flipper is sensitive to membrane fluidity that changes with interfacial stress - expanding the scientific understanding of how molecular flippers sense stress.
Collapse
Affiliation(s)
- Yaoqi Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Vineeth Chandran Suja
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; School of Engineering and Applied Sciences, Harvard University, MA - 02138, USA.
| | - Menghao Yang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Andrey V Malkovskiy
- Carnegie Institute for Science, Department of Plant Biology, Stanford CA 94305, USA
| | - Arnuv Tandon
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Adai Colom
- Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain; Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Campus Universitario, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Gori A, Lodigiani G, Colombarolli SG, Bergamaschi G, Vitali A. Cell Penetrating Peptides: Classification, Mechanisms, Methods of Study, and Applications. ChemMedChem 2023; 18:e202300236. [PMID: 37389978 DOI: 10.1002/cmdc.202300236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
Cell-penetrating peptides (CPPs) encompass a class of peptides that possess the remarkable ability to cross cell membranes and deliver various types of cargoes, including drugs, nucleic acids, and proteins, into cells. For this reason, CPPs are largely investigated in drug delivery applications in the context of many diseases, such as cancer, diabetes, and genetic disorders. While sharing this functionality and some common structural features, such as a high content of positively charged amino acids, CPPs represent an extremely diverse group of elements, which can differentiate under many aspects. In this review, we summarize the most common characteristics of CPPs, introduce their main distinctive features, mechanistic aspects that drive their function, and outline the most widely used techniques for their structural and functional studies. We highlight current gaps and future perspectives in this field, which have the potential to significantly impact the future field of drug delivery and therapeutics.
Collapse
Affiliation(s)
- Alessandro Gori
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Giulia Lodigiani
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Stella G Colombarolli
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, L.go F. Vito 1, 00168, Roma, Italy
| | - Greta Bergamaschi
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Alberto Vitali
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, L.go F. Vito 1, 00168, Roma, Italy
| |
Collapse
|
6
|
Povilaitis SC, Webb LJ. Leaflet-Dependent Effect of Anionic Lipids on Membrane Insertion by Cationic Cell-Penetrating Peptides. J Phys Chem Lett 2023; 14:5841-5849. [PMID: 37339513 PMCID: PMC10478718 DOI: 10.1021/acs.jpclett.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Cationic membrane-permeating peptides can cross membranes unassisted by transmembrane protein machinery, and there is consensus that anionic lipids facilitate this process. Although membranes are asymmetric in lipid composition, investigations of the impact of anionic lipids on peptide-membrane insertion in model vesicles primarily use symmetric anionic lipid distributions between bilayer leaflets. Here, we investigate the leaflet-specific influence of three anionic lipid headgroups [phosphatidic acid (PA), phosphatidylserine (PS), and phosphatidylglycerol (PG)] on insertion into model membranes by three cationic membrane-permeating peptides (NAF-144-67, R6W3, and WWWK). We report that outer leaflet anionic lipids enhanced peptide-membrane insertion for all peptides while inner leaflet anionic lipids did not have a significant effect except in the case of NAF-144-67 incubated with PA-containing vesicles. The insertion enhancement was headgroup-dependent for arginine-containing peptides but not WWWK. These results provide significant new insight into the potential role of membrane asymmetry in insertion of peptides into model membranes.
Collapse
Affiliation(s)
- Sydney C Povilaitis
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lauren J Webb
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Ono T, Tabata KV, Goto Y, Saito Y, Suga H, Noji H, Morimoto J, Sando S. Label-free quantification of passive membrane permeability of cyclic peptides across lipid bilayers: penetration speed of cyclosporin A across lipid bilayers. Chem Sci 2023; 14:345-349. [PMID: 36687349 PMCID: PMC9811578 DOI: 10.1039/d2sc05785a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Cyclic peptides that passively penetrate cell membranes are under active investigation in drug discovery research. PAMPA (Parallel Artificial Membrane Permeability Assay) and Caco-2 assay are mainly used for permeability measurements in these studies. However, permeability rates across the artificial membrane and the cell monolayer used for these assays are intrinsically different from the ones across pure lipid bilayers. There are also membrane permeability assays for peptides using reconstructed lipid bilayers, but they require labeling for detection, and the absolute membrane permeability of the natural peptides themselves could not be determined. Here, we constructed a lipid bilayer permeability assay and realized the first label-free measurements of the lipid bilayer permeability of cyclic peptides. Quantitative permeability values across lipid bilayers were determined for model cyclic hexapeptides and an important natural product, cyclosporin A (CsA). The obtained quantitative permeability values will provide new and advanced knowledge about the passive permeability of cyclic peptides.
Collapse
Affiliation(s)
- Takahiro Ono
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan
| | - Kazuhito V. Tabata
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of TokyoBunkyo-kuTokyo 113-0033Japan
| | - Yutaro Saito
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of TokyoBunkyo-kuTokyo 113-0033Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan
| | - Jumpei Morimoto
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan
| | - Shinsuke Sando
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan
| |
Collapse
|
8
|
Miwa A, Kamiya K. Control of Enzyme Reaction Initiation inside Giant Unilamellar Vesicles by the Cell-Penetrating Peptide-Mediated Translocation of Cargo Proteins. ACS Synth Biol 2022; 11:3836-3846. [PMID: 36197293 DOI: 10.1021/acssynbio.2c00413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cell-penetrating peptides (CPPs) play important roles in directly delivering biomolecules, such as DNA, proteins, and peptides, into living cells. In artificial lipid membranes, such as planar lipid bilayers, the direct membrane translocation of β-galactosidase via Pep-1 (one of the CPPs) is dependent upon a voltage gradient between the inner and outer leaflets of the lipid membranes. Giant unilamellar vesicles (GUVs) with asymmetric lipid distributions, which are recently generated using microfluidic technologies, can be observed by optical microscopy. Therefore, interactions between CPPs and asymmetric lipid bilayers in different kinds of lipids and the translocation mechanism of proteins via CPPs into GUVs can be investigated at the level of a single asymmetric GUV. This CPP-based system for transporting proteins into GUVs will be applied to control the start of enzyme reactions in GUVs. This study aimed to explore efficient protein translocation into GUVs via CPP and demonstrate that enzymatic reactions start in GUVs using a CPP-mediated direct translocation. The interactions and the enzyme reactions between the CPP (Pep-1 or penetratin)-DNase I complexes and the asymmetric or symmetric GUV membranes containing the negatively or neutrally charged lipids were observed by confocal laser-scanning microscopy. The asymmetric GUVs containing phosphatidylserine (PS) in the inner leaflet showed efficient DNase I translocation into GUVs via penetratin. Finally, the formation of a cross-linked actin network was observed in asymmetric PS GUVs incubated with Pep-1-streptavidin complexes. The CPP-mediated direct translocation can contribute to developing artificial cell models with the capacity to control the initiation of enzymatic reactions.
Collapse
Affiliation(s)
- Akari Miwa
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Koki Kamiya
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|
9
|
Huang Y, Fuller G, Chandran Suja V. Physicochemical characteristics of droplet interface bilayers. Adv Colloid Interface Sci 2022; 304:102666. [PMID: 35429720 DOI: 10.1016/j.cis.2022.102666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/01/2022]
Abstract
Droplet interface bilayer (DIB) is a lipid bilayer formed when two lipid monolayer-coated aqueous droplets are brought in contact within an oil phase. DIBs, especially post functionalization, are a facile model system to study the biophysics of the cell membrane. Continued advances in enhancing and functionalizing DIBs to be a faithful cell membrane mimetic requires a deep understanding of the physicochemical characteristics of droplet interface bilayers. In this review, we provide a comprehensive overview of the current scientific understanding of DIB characteristics starting with the key experimental frameworks for DIB generation, visualization and functionalization. Subsequently we report experimentally measured physical, electrical and transport characteristics of DIBs across physiologically relevant lipids. Advances in simulations and mathematical modelling of DIBs are also discussed, with an emphasis on revealing principles governing the key physicochemical characteristics. Finally, we conclude the review with important outstanding questions in the field.
Collapse
|
10
|
Bechtella L, Chalouhi E, Milán Rodríguez P, Cosset M, Ravault D, Illien F, Sagan S, Carlier L, Lequin O, Fuchs PFJ, Sachon E, Walrant A. Structural Bases for the Involvement of Phosphatidylinositol-4,5-bisphosphate in the Internalization of the Cell-Penetrating Peptide Penetratin. ACS Chem Biol 2022; 17:1427-1439. [PMID: 35608167 DOI: 10.1021/acschembio.1c00974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell-penetrating peptides cross cell membranes through various parallel internalization pathways. Herein, we analyze the role of the negatively charged lipid phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) in the internalization of Penetratin. Contributions of both inner leaflet and outer leaflet pools of PI(4,5)P2 were revealed by quantifying the internalization of Penetratin in cells treated with PI(4,5)P2 binders. Studies on model systems showed that Penetratin has a strong affinity for PI(4,5)P2 and interacts selectively with this lipid, even in the presence of other negatively charged lipids, as demonstrated by affinity photo-crosslinking experiments. Differential scanning calorimetry experiments showed that Penetratin induces lateral segregation in PI(4,5)P2-containing liposomes, which was confirmed by coarse-grained molecular dynamics simulations. NMR experiments indicated that Penetratin adopts a stabilized helical conformation in the presence of PI(4,5)P2-containing membranes, with an orientation parallel to the bilayer plane, which was also confirmed by all-atom simulations. NMR and photo-crosslinking experiments also suggest a rather shallow insertion of the peptide in the membrane. Put together, our findings suggest that PI(4,5)P2 is a privileged interaction partner for Penetratin and that it plays an important role in Penetratin internalization.
Collapse
Affiliation(s)
- Leïla Bechtella
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Edward Chalouhi
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Paula Milán Rodríguez
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Marine Cosset
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Delphine Ravault
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Françoise Illien
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Sandrine Sagan
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Ludovic Carlier
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Olivier Lequin
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Patrick F. J. Fuchs
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
- Université de Paris, UFR Sciences du Vivant, 75013 Paris, France
| | - Emmanuelle Sachon
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
- Sorbonne Université, Mass Spectrometry Sciences Sorbonne Université, MS3U platform, UFR 926, UFR 927, Paris 75005, France
| | - Astrid Walrant
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| |
Collapse
|
11
|
Faugeras V, Duclos O, Bazile D, Thiam AR. Impact of Cyclization and Methylation on Peptide Penetration through Droplet Interface Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5682-5691. [PMID: 35452243 DOI: 10.1021/acs.langmuir.2c00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell-penetrating peptides enter cells via diverse mechanisms, such as endocytosis, active transport, or direct translocation. For the design of orally delivered cell-penetrating peptides, it is crucial to know the contribution of these different mechanisms. In particular, the ability of a peptide to translocate through a lipid bilayer remains a key parameter for the delivery of cargos. However, existing approaches used to assess translocation often provide discrepant results probably because they have different sensitivities to the distinct translocation mechanisms. Here, we focus on the passive permeation of a range of hydrophobic cyclic peptides inspired by somatostatin, a somatotropin release-inhibiting factor. Using droplet interface bilayers (DIB), we assess the passive membrane permeability of these peptides and study the impact of the peptide cyclization and backbone methylation on translocation rates. Cyclization systematically improved the permeability of the tested peptides while methylation did not. By studying the interaction of the peptides with the DIB interfaces, we found membrane insertion and peptide intrinsic diffusion to be two independent factors of permeability. Compared to the industrial gold standard Caco-2 and parallel artificial membrane permeability assay (PAMPA) models, DIBs provide intermediate membrane permeability values, closer to Caco-2. Even for conditions where Caco-2 and PAMPA are discrepant, the DIB approach also gives results closer to Caco-2. Thereupon, DIBs represent a robust alternative to the PAMPA approach for predicting the permeability of peptides, even if the latter present extremely small structural differences.
Collapse
Affiliation(s)
- Vincent Faugeras
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité, F-75005 Paris, France
- Pharmaceutics Development Platform, Sanofi R&D, 94250 Gentilly, France
| | - Olivier Duclos
- Integrated Drug Discovery Platform, Sanofi R&D, 91380 Chilly-Mazarin, France
| | - Didier Bazile
- Pharmaceutics Development Platform, Sanofi R&D, 94250 Gentilly, France
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité, F-75005 Paris, France
| |
Collapse
|
12
|
Sugiyama H, Osaki T, Takeuchi S, Toyota T. Role of Negatively Charged Lipids Achieving Rapid Accumulation of Water-Soluble Molecules and Macromolecules into Cell-Sized Liposomes against a Concentration Gradient. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:112-121. [PMID: 34967642 DOI: 10.1021/acs.langmuir.1c02103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liposomes, molecular self-assemblies resembling biological membranes, are a promising scaffold to investigate the physicochemical logic behind the complexity of living cells. Despite elaborate synthetic studies constructing cell-like chemical systems using liposomes, less attention has been paid to the proactive role of the membrane emerging as dynamics of the molecular self-assembly. This study investigated the liposomes containing anionic phospholipids by exposing them to steady flow conditions using a newly constructed automatic microfluidic observation platform. We demonstrated that the liposomes accumulated even macromolecules under the microfluidic condition without pore formation. By investigating the effect of composition of liposomes and visualizing negatively charged phospholipids upon the flow, we presumed that the external flow caused a compositional asymmetry of anionic phospholipids between the inner/outer leaflets, and the asymmetry enabled a rapid accumulation of those molecules against the concentration gradient. The current study opens new research interests regarding the nature of biological membranes under steady flow conditions.
Collapse
Affiliation(s)
- Hironori Sugiyama
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Toshihisa Osaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki, Kanagawa 213-0012, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
13
|
Challenges and Methods for the Study of CPP Translocation Mechanisms. Methods Mol Biol 2021; 2383:143-152. [PMID: 34766287 DOI: 10.1007/978-1-0716-1752-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Fluorescence-based methods are widely used to detect crossing of peptides across model or biological membranes. For membrane-active peptides, i.e., peptides that have strong membrane tropism, fluorescence experiments must be accompanied by relevant controls, otherwise they can lead to inconsistent interpretation and underestimation of their limitations. Here we describe how to prepare samples to study fluorescent peptide crossing droplet interface bilayer (model membrane) or cell membrane (biological membrane) and the pitfalls that can affect observational qualitative and quantitative data.
Collapse
|
14
|
A Single GUV Method for Revealing the Action of Cell-Penetrating Peptides in Biomembranes. Methods Mol Biol 2021. [PMID: 34766289 DOI: 10.1007/978-1-0716-1752-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The mechanism of entry of cell-penetrating peptides (CPPs) into the cytosol of various cells has been studied by examining the interaction of CPPs with lipid bilayers and their entry into lipid vesicle lumens using various methods. Here we describe a single giant unilamellar vesicle (GUV) method to study CPPs. In this new method, we use GUVs containing small GUVs in the mother GUV lumen or GUVs containing large unilamellar vesicles (LUVs) in the GUV lumen and investigate the interaction of fluorescent probe-labeled CPPs with single GUVs in real time using confocal laser scanning microscopy. This method can detect CPPs in the GUV lumen with high sensitivity, allowing immediate measurement of the time course of entry of CPPs into the vesicle lumen. This method allows simultaneous measurement of the entry of CPPs and of CPP-induced pore formation, allowing the relationship between the two events to be determined. One can also simultaneously measure the entry of CPPs and the CPP concentration in the GUV membrane. The rate of entry of CPPs into a single GUV lumen can be estimated by obtaining the fraction of GUVs into which CPPs entered before a specific time t without pore formation among all examined GUVs (i.e., the fraction of entry) and the lumen intensity due to LUVs with bound CPPs. This method is therefore useful for elucidating the mechanism of entry of CPPs into lipid vesicles.
Collapse
|
15
|
Effect of membrane potential on entry of lactoferricin B-derived 6-residue antimicrobial peptide into single Escherichia coli cells and lipid vesicles. J Bacteriol 2021; 203:JB.00021-21. [PMID: 33558393 PMCID: PMC8092161 DOI: 10.1128/jb.00021-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antimicrobial peptide (AMP) derived from lactoferricin B, LfcinB (4-9) (RRWQWR), and lissamine rhodamine B red-labeled peptide (Rh-LfcinB (4-9)) exhibit strong antimicrobial activities, and they can enter Escherichia coli cells without damaging the cell membranes. Thus, these peptides are cell-penetrating peptide (CPP) -type AMPs. In this study, to elucidate the effect of the membrane potential (Δφ) on the action of the CPP-type AMP, Rh-LfcinB (4-9), we investigated the interactions of Rh-LfcinB (4-9) with single E. coli cells and spheroplasts containing calcein in the cytosol using confocal laser scanning microscopy. At low peptide concentrations, Rh-LfcinB (4-9) entered the cytosol of single E. coli cells and spheroplasts without damaging the cell membranes, and the H+-ionophore carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) suppressed its entry. The studies using the time-kill method indicate that these low concentrations of peptide exhibit antimicrobial activity but CCCP inhibits this activity. Next, we investigated the effect of Δφ on the interaction of Rh-LfcinB (4-9) with single giant unilamellar vesicles (GUVs) comprising E. coli polar lipid extracts and containing a fluorescent probe, Alexa Fluor 647 hydrazide. At low concentrations (0.2-0.5 μM), Rh-LfcinB (4-9) showed significant entry to the single GUV lumen without pore formation in the presence of Δφ. The fraction of entry of peptide increased with increasing negative membrane potential, indicating that the rate of peptide entry into the GUV lumen increased with increasing negative membrane potential. These results indicate that Δφ enhances the entry of Rh-LfcinB (4-9) into single E. coli cells, spheroplasts, and GUVs and its antimicrobial activity.IMPORTANCE: Bacterial cells have a membrane potential (Δφ), but the effect of Δφ on action of cell-penetrating peptide-type antimicrobial peptides (AMPs) is not clear. Here, we investigated the effect of Δφ on the action of fluorescent probe-labeled AMP derived from lactoferricin B, Rh-LfcinB (4-9). At low peptide concentrations, Rh-LfcinB (4-9) enters the cytosol of Escherichia coli cells and spheroplasts without damaging their cell membrane, but a protonophore suppresses this entry and its antimicrobial activity. The rate of entry of Rh-LfcinB (4-9) into the giant unilamellar vesicles (GUVs) comprising E. coli lipids without pore formation increases with increasing Δφ. These results indicate that Δφ enhances the antimicrobial activity of Rh-LfcinB (4-9) and hence LfcinB (4-9) by increasing the rate of their entry into the cytosol.
Collapse
|
16
|
Sachon E, Walrant A, Sagan S, Cribier S, Rodriguez N. Binding and crossing: Methods for the characterization of membrane-active peptides interactions with membranes at the molecular level. Arch Biochem Biophys 2021; 699:108751. [PMID: 33421380 DOI: 10.1016/j.abb.2021.108751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/29/2020] [Accepted: 01/01/2021] [Indexed: 11/16/2022]
Abstract
Antimicrobial and cell-penetrating peptides have been the object of extensive studies for more than 60 years. Initially these two families were studied separately, and more recently parallels have been drawn. These studies have given rise to numerous methodological developments both in terms of observation techniques and membrane models. This review presents some of the most recent original and innovative developments in this field, namely droplet interface bilayers (DIBs), new fluorescence approaches, force measurements, and photolabelling.
Collapse
Affiliation(s)
- Emmanuelle Sachon
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
| | - Astrid Walrant
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
| | - Sandrine Sagan
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
| | - Sophie Cribier
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France.
| | - Nicolas Rodriguez
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
| |
Collapse
|