1
|
Bretová K, Svobodová V, Dubový P. Changes in Cx43 and AQP4 Proteins, and the Capture of 3 kDa Dextran in Subpial Astrocytes of the Rat Medial Prefrontal Cortex after Both Sham Surgery and Sciatic Nerve Injury. Int J Mol Sci 2024; 25:10989. [PMID: 39456773 PMCID: PMC11507206 DOI: 10.3390/ijms252010989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
A subpopulation of astrocytes on the brain's surface, known as subpial astrocytes, constitutes the "glia limitans superficialis" (GLS), which is an interface between the brain parenchyma and the cerebrospinal fluid (CSF) in the subpial space. Changes in connexin-43 (Cx43) and aquaporin-4 (AQP4) proteins in subpial astrocytes were examined in the medial prefrontal cortex at postoperative day 1, 3, 7, 14, and 21 after sham operation and sciatic nerve compression (SNC). In addition, we tested the altered uptake of TRITC-conjugated 3 kDa dextran by reactive subpial astrocytes. Cellular immunofluorescence (IF) detection and image analysis were used to examine changes in Cx43 and AQP4 protein levels, as well as TRITC-conjugated 3 kDa dextran, in subpial astrocytes. The intensity of Cx43-IF was significantly increased, but AQP4-IF decreased in subpial astrocytes of sham- and SNC-operated rats during all survival periods compared to naïve controls. Similarly, the uptake of 3 kDa dextran in the GLS was reduced following both sham and SNC operations. The results suggest that both sciatic nerve injury and peripheral tissue injury alone can induce changes in subpial astrocytes related to the spread of their reactivity across the cortical surface mediated by increased amounts of gap junctions. At the same time, water transport and solute uptake were impaired in subpial astrocytes.
Collapse
Affiliation(s)
| | | | - Petr Dubový
- Cellular and Molecular Neurobiology Research Group, Department of Anatomy, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic; (K.B.)
| |
Collapse
|
2
|
Xu H, Cao Y, Ruan J, Wang F, He Y, Yang L, Yu T, Du F, Zhang N, Cao X. The effects of BMP2 and the mechanisms involved in the invasion and angiogenesis of IDH1 mutant glioma cells. J Neurooncol 2024; 170:161-171. [PMID: 39117967 PMCID: PMC11447149 DOI: 10.1007/s11060-024-04789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE This study investigated the effect of an isocitrate dehydrogenase 1 (IDH1) mutation (mutIDH1) on the invasion and angiogenesis of human glioma cells. METHODS Doxycycline was used to induce the expression of mutIDH1 in glioma cells. Transwell and wound healing assays were conducted to assess glioma cell migration and invasion. Western blotting and cell immunofluorescence were used to measure the expression levels of various proteins. The influence of bone morphogenetic protein 2 (BMP2) on invasion, angiogenesis-related factors, BMP2-related receptor expression, and changes in Smad signaling pathway-related proteins were evaluated after treatment with BMP2. Differential gene expression and reference transcription analysis were performed. RESULTS Successful infection with recombinant lentivirus expressing mutIDH1 was demonstrated. The IDH1 mutation promoted glioma cell migration and invasion while positively regulating the expression of vascularization-related factors and BMP2-related receptors. BMP2 exhibited a positive regulatory effect on the migration, invasion, and angiogenesis of mutIDH1-glioma cells, possibly mediated by BMP2-induced alterations in Smad signaling pathway-related factors.After BMP2 treatment, the differential genes of MutIDH1-glioma cells are closely related to the regulation of cell migration and cell adhesion, especially the regulation of Smad-related proteins. KEGG analysis confirmed that it was related to BMP signaling pathway and TGF-β signaling pathway and cell adhesion. Enrichment analysis of gene ontology and genome encyclopedia further confirmed the correlation of these pathways. CONCLUSION Mutation of isocitrate dehydrogenase 1 promotes the migration, invasion, and angiogenesis of glioma cells, through its effects on the BMP2-driven Smad signaling pathway. In addition, BMP2 altered the transcriptional patterns of mutIDH1 glioma cells, enriching different gene loci in pathways associated with invasion, migration, and angiogenesis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
- Department of Pathology, The First People's Hospital of Yinchuan, Yinchuan, 750001, Ningxia, China
| | - Yu Cao
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Jianqiao Ruan
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Fei Wang
- Department of Pathology, The First People's Hospital of Yinchuan, Yinchuan, 750001, Ningxia, China
| | - Yuhong He
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Lina Yang
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Tian Yu
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Fang Du
- School of Information Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Ningmei Zhang
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China.
| | - Xiangmei Cao
- Department of Pathology, Basic Medical School of Ningxia Medical University, 1160 Shengli South Street, Yinchuan, 750004, Ningxia, Hui Autonomous Region, P.R. China.
| |
Collapse
|
3
|
González-Reyes M, Aragón J, Sánchez-Trujillo A, Rodríguez-Martínez G, Duarte K, Eleftheriou E, Barnier JV, Naquin D, Thermes C, Romo-Yáñez J, Roger JE, Rendon A, Vaillend C, Montanez C. Expression of Dystrophin Dp71 Splice Variants Is Temporally Regulated During Rodent Brain Development. Mol Neurobiol 2024:10.1007/s12035-024-04232-2. [PMID: 38802640 DOI: 10.1007/s12035-024-04232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Dystrophin Dp71 is the major product of the Duchenne muscular dystrophy (DMD) gene in the brain, and its loss in DMD patients and mouse models leads to cognitive impairments. Dp71 is expressed as a range of proteins generated by alternative splicing of exons 71 to 74 and 78, classified in the main Dp71d and Dp71f groups that contain specific C-terminal ends. However, it is unknown whether each isoform has a specific role in distinct cell types, brain regions, and/or stages of brain development. In the present study, we characterized the expression of Dp71 isoforms during fetal (E10.5, E15.5) and postnatal (P1, P7, P14, P21 and P60) mouse and rat brain development. We finely quantified the expression of several Dp71 transcripts by RT-PCR and cloning assays in samples from whole-brain and distinct brain structures. The following Dp71 transcripts were detected: Dp71d, Dp71d∆71, Dp71d∆74, Dp71d∆71,74, Dp71d∆71-74, Dp71f, Dp71f∆71, Dp71f∆74, Dp71f∆71,74, and Dp71fΔ71-74. We found that the Dp71f isoform is the main transcript expressed at E10.5 (> 80%), while its expression is then progressively reduced and replaced by the expression of isoforms of the Dp71d group from E15.5 to postnatal and adult ages. This major finding was confirmed by third-generation nanopore sequencing. In addition, we found that the level of expression of specific Dp71 isoforms varies as a function of postnatal stages and brain structure. Our results suggest that Dp71 isoforms have different and complementary roles during embryonic and postnatal brain development, likely taking part in a variety of maturation processes in distinct cell types.
Collapse
Affiliation(s)
- Mayram González-Reyes
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, Saclay, 91400, France
| | - Jorge Aragón
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
- Institut de la Vision, Sorbonne Université-INSERM-CNRS, 17 rue Moreau, Paris, 75012, France
| | - Alejandra Sánchez-Trujillo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - Griselda Rodríguez-Martínez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Kevin Duarte
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, Saclay, 91400, France
| | - Evangelia Eleftheriou
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, Saclay, 91400, France
| | - Delphine Naquin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198, France
| | - Claude Thermes
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198, France
| | - José Romo-Yáñez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
- Institut de la Vision, Sorbonne Université-INSERM-CNRS, 17 rue Moreau, Paris, 75012, France
- Coordinación de Endocrinología Ginecológica y Perinatal, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Jérome E Roger
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, Saclay, 91400, France
- CERTO-Retina France, Saclay, 91400, France
| | - Alvaro Rendon
- Institut de la Vision, Sorbonne Université-INSERM-CNRS, 17 rue Moreau, Paris, 75012, France
| | - Cyrille Vaillend
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, Saclay, 91400, France.
| | - Cecilia Montanez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico.
| |
Collapse
|
4
|
Das N, Dhamija R, Sarkar S. The role of astrocytes in the glymphatic network: a narrative review. Metab Brain Dis 2024; 39:453-465. [PMID: 38008886 DOI: 10.1007/s11011-023-01327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
To date, treatment of Central Nervous System (CNS) pathology has largely focused on neuronal structure and function. Yet, revived attention towards fluid circulation within the CNS has exposed the need to further explore the role of glial cells in maintaining homeostasis within neural networks. In the past decade, discovery of the neural glymphatic network has revolutionized traditional understanding of fluid dynamics within the CNS. Advancements in neuroimaging have revealed alternative pathways of cerebrospinal fluid (CSF) generation and efflux. Here, we discuss emerging perspectives on the role of astrocytes in CSF hydrodynamics, with particular focus on the contribution of aquaporin-4 channels to the glymphatic network. Astrocytic structural features and expression patterns are detailed in relation to their function in maintaining integrity of the Blood Brain Barrier (BBB) as part of the neurovascular unit (NVU). This narrative also highlights the potential role of glial dysfunction in pathogenesis of neurodegenerative disease, hydrocephalus, intracranial hemorrhage, ischemic stroke, and traumatic brain injury. The purpose of this literature summary is to provide an update on the changing landscape of scientific theory surrounding production, flow, and absorption of cerebrospinal fluid. The overarching aim of this narrative review is to advance the conception of basic, translational, and clinical research endeavors investigating glia as therapeutic targets for neurological disease.
Collapse
Affiliation(s)
- Nikita Das
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ravi Dhamija
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, HFT-132, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
5
|
Zahl S, Skauli N, Stahl K, Prydz A, Frey MM, Dissen E, Ottersen OP, Amiry-Moghaddam M. Aquaporin-9 in the Brain Inflammatory Response: Evidence from Mice Injected with the Parkinsonogenic Toxin MPP . Biomolecules 2023; 13:biom13040588. [PMID: 37189335 DOI: 10.3390/biom13040588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
More than 20 years have passed since the first demonstration of Aquaporin-9 (AQP9) in the brain. Yet its precise localization and function in brain tissue remain unresolved. In peripheral tissues, AQP9 is expressed in leukocytes where it is involved in systemic inflammation processes. In this study, we hypothesized that AQP9 plays a proinflammatory role in the brain, analogous to its role in the periphery. We also explored whether Aqp9 is expressed in microglial cells, which would be supportive of this hypothesis. Our results show that targeted deletion of Aqp9 significantly suppressed the inflammatory response to the parkinsonian toxin 1-methyl-4-phenylpyridinium (MPP+). This toxin induces a strong inflammatory response in brain. After intrastriatal injections of MPP+, the increase in transcript levels of proinflammatory genes was less pronounced in AQP9-/- mice compared with wild-type controls. Further, in isolated cell subsets, validated by flow cytometry we demonstrated that Aqp9 transcripts are expressed in microglial cells, albeit at lower concentrations than in astrocytes. The present analysis provides novel insight into the role of AQP9 in the brain and opens new avenues for research in the field of neuroinflammation and chronic neurodegenerative disease.
Collapse
Affiliation(s)
- Soulmaz Zahl
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, 0317 Oslo, Norway
| | - Nadia Skauli
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, 0317 Oslo, Norway
| | - Katja Stahl
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, 0317 Oslo, Norway
| | - Agnete Prydz
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, 0317 Oslo, Norway
| | - Mina Martine Frey
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, 0317 Oslo, Norway
| | - Erik Dissen
- Immunobiological Laboratory, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, 0317 Oslo, Norway
| | - Ole Petter Ottersen
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, 0317 Oslo, Norway
- Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mahmood Amiry-Moghaddam
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, 0317 Oslo, Norway
| |
Collapse
|
6
|
Aquaporin-1 and Aquaporin-4 Expression in Ependyma, Choroid Plexus and Surrounding Transition Zones in the Human Brain. Biomolecules 2023; 13:biom13020212. [PMID: 36830582 PMCID: PMC9953559 DOI: 10.3390/biom13020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
The choroid plexus (CP) is a structure in the brain ventricles that produces the main part of the cerebrospinal fluid (CSF). It is covered with specialized cells which show epithelial characteristics and are the site of the blood-CSF barrier. These cells form a contiguous cell sheet with ventricle-lining ependymal cells which are known to express aquaporin-4 (AQP4). In contrast, CP epithelial cells express aquaporin-1 (AQP1) apically. We investigated the expression patterns of aquaporins in the CP-ependyma transition from human body donors using immunofluorescence and electron microscopy. Ependymal cells and subependymal astrocytes at the base of the CP showed a particularly high AQP4 immunoreactivity. Astrocytic processes formed a dense meshwork or glial plate around the blood vessels entering the CP. Interestingly, some of these astrocytic processes were in direct contact with the CP stroma, which contains fenestrated blood vessels, separated only by a basal lamina. Electron microscopy confirmed the continuity of the subastrocytic basal lamina with the CP epithelium. We also probed for components of the AQP4 anchoring dystrophin-dystroglycan complex. Immunolabeling for dystrophin and AQP4 showed an overlapping staining pattern in the glial plate but not in previously reported AQP4-positive CP epithelial cells. In contrast, dystroglycan expression was associated with laminin staining in the glial plate and the CP epithelium. This suggests different mechanisms for AQP4 anchoring in the cell membrane. The high AQP4 density in the connecting glial plate might facilitate the transport of water in and out of the CP stroma and could possibly serve as a drainage and clearing pathway for metabolites.
Collapse
|
7
|
Gotoh M, Miyamoto Y, Ikeshima-Kataoka H. Astrocytic Neuroimmunological Roles Interacting with Microglial Cells in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24021599. [PMID: 36675113 PMCID: PMC9865248 DOI: 10.3390/ijms24021599] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Both astrocytic and microglial functions have been extensively investigated in healthy subjects and neurodegenerative diseases. For astrocytes, not only various sub-types were identified but phagocytic activity was also clarified recently and is making dramatic progress. In this review paper, we mostly focus on the functional role of astrocytes in the extracellular matrix and on interactions between reactive astrocytes and reactive microglia in normal states and in neurodegenerative diseases, because the authors feel it is necessary to elucidate the mechanisms among activated glial cells in the pathology of neurological diseases in order to pave the way for drug discovery. Finally, we will review cyclic phosphatidic acid (cPA), a naturally occurring phospholipid mediator that induces a variety of biological activities in the brain both in vivo and in vitro. We propose that cPA may serve as a novel therapeutic molecule for the treatment of brain injury and neuroinflammation.
Collapse
Affiliation(s)
- Mari Gotoh
- Department of Clinical Laboratory Medicine, Faculty of Medical Technology, Teikyo University, 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan
- Institute for Human Life Science, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Yasunori Miyamoto
- Institute for Human Life Science, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Hiroko Ikeshima-Kataoka
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Correspondence:
| |
Collapse
|
8
|
Åbjørsbråten KS, Skaaraas GHES, Cunen C, Bjørnstad DM, Binder KMG, Bojarskaite L, Jensen V, Nilsson LNG, Rao SB, Tang W, Hermansen GH, Nagelhus EA, Ottersen OP, Torp R, Enger R. Impaired astrocytic Ca 2+ signaling in awake-behaving Alzheimer's disease transgenic mice. eLife 2022; 11:e75055. [PMID: 35833623 PMCID: PMC9352348 DOI: 10.7554/elife.75055] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Increased astrocytic Ca2+ signaling has been shown in Alzheimer's disease mouse models, but to date no reports have characterized behaviorally induced astrocytic Ca2+ signaling in such mice. Here, we employ an event-based algorithm to assess astrocytic Ca2+ signals in the neocortex of awake-behaving tg-ArcSwe mice and non-transgenic wildtype littermates while monitoring pupil responses and behavior. We demonstrate an attenuated astrocytic Ca2+ response to locomotion and an uncoupling of pupil responses and astrocytic Ca2+ signaling in 15-month-old plaque-bearing mice. Using the genetically encoded fluorescent norepinephrine sensor GRABNE, we demonstrate a reduced norepinephrine signaling during spontaneous running and startle responses in the transgenic mice, providing a possible mechanistic underpinning of the observed reduced astrocytic Ca2+ responses. Our data points to a dysfunction in the norepinephrine-astrocyte Ca2+ activity axis, which may account for some of the cognitive deficits observed in Alzheimer's disease.
Collapse
Affiliation(s)
- Knut Sindre Åbjørsbråten
- GliaLab at the Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
| | - Gry HE Syverstad Skaaraas
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
| | - Céline Cunen
- Statistics and Data Science group, Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of OsloOsloNorway
- Norwegian Computing CenterOsloNorway
| | - Daniel M Bjørnstad
- GliaLab at the Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
| | - Kristin M Gullestad Binder
- GliaLab at the Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
| | - Laura Bojarskaite
- GliaLab at the Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
- Department of Neurology, Oslo University HospitalOsloNorway
| | - Vidar Jensen
- GliaLab at the Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
| | - Lars NG Nilsson
- Department of Pharmacology, University of Oslo and Oslo University HospitalOsloNorway
| | - Shreyas B Rao
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
| | - Wannan Tang
- GliaLab at the Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
| | - Gudmund Horn Hermansen
- Statistics and Data Science group, Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of OsloOsloNorway
| | - Erlend A Nagelhus
- GliaLab at the Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
| | | | - Reidun Torp
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
| | - Rune Enger
- GliaLab at the Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
| |
Collapse
|
9
|
Salman MM, Kitchen P, Halsey A, Wang MX, Törnroth-Horsefield S, Conner AC, Badaut J, Iliff JJ, Bill RM. Emerging roles for dynamic aquaporin-4 subcellular relocalization in CNS water homeostasis. Brain 2022; 145:64-75. [PMID: 34499128 PMCID: PMC9088512 DOI: 10.1093/brain/awab311] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/28/2021] [Accepted: 07/31/2021] [Indexed: 11/25/2022] Open
Abstract
Aquaporin channels facilitate bidirectional water flow in all cells and tissues. AQP4 is highly expressed in astrocytes. In the CNS, it is enriched in astrocyte endfeet, at synapses, and at the glia limitans, where it mediates water exchange across the blood-spinal cord and blood-brain barriers (BSCB/BBB), and controls cell volume, extracellular space volume, and astrocyte migration. Perivascular enrichment of AQP4 at the BSCB/BBB suggests a role in glymphatic function. Recently, we have demonstrated that AQP4 localization is also dynamically regulated at the subcellular level, affecting membrane water permeability. Ageing, cerebrovascular disease, traumatic CNS injury, and sleep disruption are established and emerging risk factors in developing neurodegeneration, and in animal models of each, impairment of glymphatic function is associated with changes in perivascular AQP4 localization. CNS oedema is caused by passive water influx through AQP4 in response to osmotic imbalances. We have demonstrated that reducing dynamic relocalization of AQP4 to the BSCB/BBB reduces CNS oedema and accelerates functional recovery in rodent models. Given the difficulties in developing pore-blocking AQP4 inhibitors, targeting AQP4 subcellular localization opens up new treatment avenues for CNS oedema, neurovascular and neurodegenerative diseases, and provides a framework to address fundamental questions about water homeostasis in health and disease.
Collapse
Affiliation(s)
- Mootaz M Salman
- Department of Physiology, Anatomy and Genetics,
University of Oxford, Oxford OX1 3PT, UK
| | - Philip Kitchen
- School of Biosciences, College of Health and Life
Sciences, Aston University, Aston Triangle,
Birmingham B4 7ET, UK
| | - Andrea Halsey
- Institute of Clinical Sciences, College of Medical
and Dental Sciences, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK
| | - Marie Xun Wang
- Department of Psychiatry and Behavioral Sciences,
University of Washington School of Medicine, Seattle, WA, USA
| | | | - Alex C Conner
- Institute of Clinical Sciences, College of Medical
and Dental Sciences, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK
| | - Jerome Badaut
- CNRS-UMR 5536-Centre de Résonance
Magnétique des systèmes Biologiques, Université de
Bordeaux, 33076 Bordeaux, France
| | - Jeffrey J Iliff
- Department of Psychiatry and Behavioral Sciences,
University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, University of Washington
School of Medicine, Seattle, WA, USA
- VISN 20 Mental Illness Research, Education and
Clinical Center, VA Puget Sound Health Care System, Seattle, WA,
USA
| | - Roslyn M Bill
- School of Biosciences, College of Health and Life
Sciences, Aston University, Aston Triangle,
Birmingham B4 7ET, UK
| |
Collapse
|
10
|
Cibelli A, Stout R, Timmermann A, de Menezes L, Guo P, Maass K, Seifert G, Steinhäuser C, Spray DC, Scemes E. Cx43 carboxyl terminal domain determines AQP4 and Cx30 endfoot organization and blood brain barrier permeability. Sci Rep 2021; 11:24334. [PMID: 34934080 PMCID: PMC8692511 DOI: 10.1038/s41598-021-03694-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/06/2021] [Indexed: 11/08/2022] Open
Abstract
The neurovascular unit (NVU) consists of cells intrinsic to the vessel wall, the endothelial cells and pericytes, and astrocyte endfeet that surround the vessel but are separated from it by basement membrane. Endothelial cells are primarily responsible for creating and maintaining blood-brain-barrier (BBB) tightness, but astrocytes contribute to the barrier through paracrine signaling to the endothelial cells and by forming the glia limitans. Gap junctions (GJs) between astrocyte endfeet are composed of connexin 43 (Cx43) and Cx30, which form plaques between cells. GJ plaques formed of Cx43 do not diffuse laterally in the plasma membrane and thus potentially provide stable organizational features to the endfoot domain, whereas GJ plaques formed of other connexins and of Cx43 lacking a large portion of its cytoplasmic carboxyl terminus are quite mobile. In order to examine the organizational features that immobile GJs impose on the endfoot, we have used super-resolution confocal microscopy to map number and sizes of GJ plaques and aquaporin (AQP)-4 channel clusters in the perivascular endfeet of mice in which astrocyte GJs (Cx30, Cx43) were deleted or the carboxyl terminus of Cx43 was truncated. To determine if BBB integrity was compromised in these transgenic mice, we conducted perfusion studies under elevated hydrostatic pressure using horseradish peroxide as a molecular probe enabling detection of micro-hemorrhages in brain sections. These studies revealed that microhemorrhages were more numerous in mice lacking Cx43 or its carboxyl terminus. In perivascular domains of cerebral vessels, we found that density of Cx43 GJs was higher in the truncation mutant, while GJ size was smaller. Density of perivascular particles formed by AQP4 and its extended isoform AQP4ex was inversely related to the presence of full length Cx43, whereas the ratio of sizes of the particles of the AQP4ex isoform to total AQP4 was directly related to the presence of full length Cx43. Confocal analysis showed that Cx43 and Cx30 were substantially colocalized in astrocyte domains near vasculature of truncation mutant mice. These results showing altered distribution of some astrocyte nexus components (AQP4 and Cx30) in Cx43 null mice and in a truncation mutant, together with leakier cerebral vasculature, support the hypothesis that localization and mobility of gap junction proteins and their binding partners influences organization of astrocyte endfeet which in turn impacts BBB integrity of the NVU.
Collapse
Affiliation(s)
- Antonio Cibelli
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Randy Stout
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Aline Timmermann
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Laura de Menezes
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Insitute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Peng Guo
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cellular Imaging Core Facility, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Karen Maass
- Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Eliana Scemes
- Department of Anatomy and Cell Biology, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
11
|
Skaaraas GHES, Melbye C, Puchades MA, Leung DSY, Jacobsen Ø, Rao SB, Ottersen OP, Leergaard TB, Torp R. Cerebral Amyloid Angiopathy in a Mouse Model of Alzheimer's Disease Associates with Upregulated Angiopoietin and Downregulated Hypoxia-Inducible Factor. J Alzheimers Dis 2021; 83:1651-1663. [PMID: 34459401 PMCID: PMC8609707 DOI: 10.3233/jad-210571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: Vascular pathology is a common feature in patients with advanced Alzheimer’s disease, with cerebral amyloid angiopathy (CAA) and microvascular changes commonly observed at autopsies and in genetic mouse models. However, despite a plethora of studies addressing the possible impact of CAA on brain vasculature, results have remained contradictory, showing reduced, unchanged, or even increased capillary densities in human and rodent brains overexpressing amyloid-β in Alzheimer’s disease and Down’s syndrome. Objective: We asked if CAA is associated with changes in angiogenetic factors or receptors and if so, whether this would translate into morphological alterations in pericyte coverage and vessel density. Methods: We utilized the transgenic mice carrying the Arctic (E693G) and Swedish (KM670/6701NL) amyloid precursor protein which develop severe CAA in addition to parenchymal plaques. Results: The main finding of the present study was that CAA in Tg-ArcSwe mice is associated with upregulated angiopoietin and downregulated hypoxia-inducible factor. In the same mice, we combined immunohistochemistry and electron microscopy to quantify the extent of CAA and investigate to which degree vessels associated with amyloid plaques were pathologically affected. We found that despite a severe amount of CAA and alterations in several angiogenetic factors in Tg-ArcSwe mice, this was not translated into significant morphological alterations like changes in pericyte coverage or vessel density. Conclusion: Our data suggest that CAA does not impact vascular density but might affect capillary turnover by causing changes in the expression levels of angiogenetic factors.
Collapse
Affiliation(s)
| | - Christoffer Melbye
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Doreen Siu Yi Leung
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Shreyas B Rao
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ole Petter Ottersen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Reidun Torp
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|