1
|
Sun C, Huang Y, Wang L, Deng J, Qing R, Ge X, Han X, Zha G, Pu W, Wang B, Hao S. Engineered keratin/bFGF hydrogel to promote diabetic wound healing in rats. Int J Biol Macromol 2024; 261:129725. [PMID: 38272410 DOI: 10.1016/j.ijbiomac.2024.129725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Keratin materials are promising in wound healing acceleration, however, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as diabetic foot ulcers. Here, we report a keratin/bFGF hydrogel for skin repair of chronic wounds in diabetic rats based on their characteristics of extracellular matrix and growth factor degradation in diabetic ulcer. Recombinant keratin 31 (K31), the most abundant keratin in human hair, exhibited the highly efficient performances in cell adhesion, proliferation and migration. More importantly, the introduction of bFGF into K31 hydrogel significantly enhances the properties of cell proliferation, wound closure acceleration, angiogenesis and skin appendages regeneration. Furthermore, the combination of K31 and bFGF can promote epithelial-mesenchymal transition by inhibiting the expression of E-cadherin and promoting the expression of vimentin and fibronectin. These findings demonstrate the engineered K31/bFGF hydrogel as a promising therapeutic agent for diabetic wound healing.
Collapse
Affiliation(s)
- Changfa Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yuqian Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Lili Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Ge
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Xue Han
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Guodong Zha
- HEMOS (Chongqing) Bioscience Co., Ltd, Chongqing 402760, China
| | - Wei Pu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
2
|
Sun C, Liu W, Wang L, Meng R, Deng J, Qing R, Wang B, Hao S. Photopolymerized keratin-PGLa hydrogels for antibiotic resistance reversal and enhancement of infectious wound healing. Mater Today Bio 2023; 23:100807. [PMID: 37810750 PMCID: PMC10558788 DOI: 10.1016/j.mtbio.2023.100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/04/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
Infectious wounds have become serious challenges for both treatment and management in clinical practice, so development of new antibiotics has been considered an increasingly difficult task. Here, we report the design and synthesis of keratin 31 (K31)-peptide glycine-leucine-amide (PGLa) photopolymerized hydrogels to rescue the antibiotic activity of antibiotics for infectious wound healing promotion. K31-PGLa displayed an outstanding synergistic effect with commercial antibiotics against drug-resistant bacteria by down-regulating the synthesis genes of efflux pump. Furthermore, the photopolymerized K31-PGLa/PEGDA hydrogels effectively suppressed drug-resistant bacteria growth and enhanced skin wound closure in murine. This study provided a promising alternative strategy for infectious wound treatment.
Collapse
Affiliation(s)
- Changfa Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Wenjie Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Lili Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
3
|
Tazawa K, Yamazaki M. Effect of monolayer spontaneous curvature on constant tension-induced pore formation in lipid bilayers. J Chem Phys 2023; 158:081101. [PMID: 36859073 DOI: 10.1063/5.0135561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The methodology of constant tension-induced rupture of giant unilamellar vesicles (GUVs) has provided information on tension-induced pore formation. This method was used to investigate the effect of spontaneous curvature (H0) for a lipid monolayer on the rate constant (kr) for constant tension (σ)-induced rupture, which originates from pore formation in lipid bilayers. Lipids were incorporated with different H0 values into GUV membranes to change the overall H0 value for the GUV monolayer. The dioleoylphosphatidylglycerol (DOPG)/dioleoylphosphatidylethanolamine (DOPE) (4/6, molar ratio, here and elsewhere) monolayer has a negative H0, whereas the DOPG/dioleoylphosphatidylcholine (DOPC) (4/6) monolayer has an essentially zero H0. A higher tension was required to induce the rupture of DOPG/DOPE (4/6)-GUVs compared with DOPG/DOPC (4/6)-GUVs. The line tension (Γ) for a pre-pore in DOPG/DOPE (4/6)-GUVs, determined by the analysis of the tension dependence of kr, was 1.5 times larger than that in DOPG/DOPC (4/6)-GUVs. The kr values for GUVs comprising DOPG/DOPC/18:1 lysophosphatidylcholine (LPC) (40/55/10), which has a positive H0, were larger than those for DOPG/DOPC (4/6)-GUVs under the same tension. The Γ value for DOPG/DOPC/LPC (40/55/10)-GUVs was almost half that for DOPG/DOPC (4/6)-GUVs. These results indicate that Γ decreases with increasing H0, which results in an increase in kr. Based on these results, the effect of H0 on kr and Γ is discussed.
Collapse
Affiliation(s)
- Kanta Tazawa
- Physics Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Masahito Yamazaki
- Physics Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
4
|
Németh LJ, Martinek TA, Jójárt B. Tilted State Population of Antimicrobial Peptide PGLa Is Coupled to the Transmembrane Potential. J Chem Inf Model 2022; 62:4963-4969. [PMID: 36190907 DOI: 10.1021/acs.jcim.2c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cationic antimicrobial peptide PGLa gets into close contact with the anionic bacterial cell membrane, facilitating cross-membrane transport phenomena and membrane disruption depending on the concentration. The mechanisms of action are closely associated with the tilted insertion geometry of PGLa. Therefore, we aimed to understand the interaction between the transmembrane potential (TMP) and the orientation of the membrane-bound PGLa helix. Molecular dynamics simulations were performed with TMP, and we found that the PGLa tilt angle relative to the membrane is coupled with the TMP. Elevated TMP increases the population of the tilted state. We observed positive feedback between the tilt angle and the TMP, which occurs due to the electrostatic interaction between the peptidic helix and the Na+ cations at the membrane-water interface. These TMP coupled phenomena can contribute to understanding the direct antimicrobial and adjuvant effects of PGLa in combination with regular antibiotics.
Collapse
Affiliation(s)
- Lukács J Németh
- Institute of Food Engineering, University of Szeged, Mars tér 7, Szeged HU-6724, Hungary
| | - Tamás A Martinek
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged HU-6720, Hungary.,ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network, Szeged H6720, Hungary
| | - Balázs Jójárt
- Institute of Food Engineering, University of Szeged, Mars tér 7, Szeged HU-6724, Hungary
| |
Collapse
|