1
|
Dynarowicz-Latka P, Chachaj-Brekiesz A, Wnętrzak A, Kobierski J, Półtorak A, Lupa D, Lipiec EW. Interactions of sphingomyelin with biologically crucial side chain-hydroxylated cholesterol derivatives. J Steroid Biochem Mol Biol 2025; 245:106635. [PMID: 39547287 DOI: 10.1016/j.jsbmb.2024.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Oxysterols are interesting molecules due to their dual nature, reflecting beneficial and harmful effects on the body. An issue that still needs to be solved is how slight modification of their structure owing to the location of the additional polar group in the molecules affects their biological activity. With this in mind, we selected three side chain-hydroxylated oxysterols namely: 20(S)-hydroxycholesterol (20(S)-OH), 24(S)-hydroxycholesterol (24(S)-OH), and 27-hydroxycholesterol (27-OH), and examined their behavior in mixtures with the bioactive sphingolipid - sphingomyelin (SM). Our research was based on the Langmuir monolayer technique supplemented with molecular dynamics (MD) and microscopic observation of the films texture (Brewster angle microscopy, BAM, and atomic force microscopy, AFM). Additionally, since 20(S)-hydroxycholesterol has not been studied so far, we thoroughly characterized this oxysterol in one-component monolayers. Our studies showed differences in the interactions of the studied oxysterols and sphingomyelin. Namely, it was found that 20(S)-OH binds to SM, unlike 24(S)-OH and 27-OH, which both weakly interact with SM. This distinct behavior was interpreted within the molecular dynamics as being due to weak intermolecular interactions between 20(S)-OH molecules, which allowed easy incorporation of SM into the 20(S)-OH monolayer. In contrast, the strong oxysterol-oxysterol interactions occurring in monolayers with 24(S)-OH or 27-OH make this process more difficult. This may be important in the process of bone formation/resorption. Other aspects derived from our study are: (i) the tendency of oxysterols to incorporate into lipid rafts (leading to their modification in structure and function), as well as (ii) the formation of multilayer structures, in which oxysterols are arranged in the characteristic forms of "strings of beads", which may facilitate their transport across the membrane.
Collapse
Affiliation(s)
| | - Anna Chachaj-Brekiesz
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, Kraków 30-387, Poland
| | - Anita Wnętrzak
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, Kraków 30-387, Poland
| | - Jan Kobierski
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biophysics, Medyczna 9, Kraków 30-688, Poland
| | - Andżelika Półtorak
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, Kraków 30-387, Poland
| | - Dawid Lupa
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, Kraków 30-348, Poland
| | - Ewelina W Lipiec
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, Kraków 30-348, Poland
| |
Collapse
|
2
|
Wnętrzak A, Szymczuk D, Chachaj-Brekiesz A, Dynarowicz-Latka P, Lupa D, Lipiec EW, Laszuk P, Petelska AD, Markiewicz KH, Wilczewska AZ. Lithocholic acid-based oligomers as drug delivery candidates targeting model of lipid raft. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184294. [PMID: 38316379 DOI: 10.1016/j.bbamem.2024.184294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
This study presents a new approach to designing a lithocholic acid functionalized oligomer (OLithocholicAA-X) that can be used as a drug carrier with additional, beneficial activity. Namely, this novel oligomer can incorporate an anti-cancer drug due to the application of an effective backbone as its component (lithocholic acid) alone is known to have anticancer activity. The oligomer was synthesized and characterized in detail by nuclear magnetic resonance, attenuated total reflectance Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, thermal analysis, and mass spectrometry analysis. We selected lipid rafts as potential drug carrier-membrane binding sites. In this respect, we investigated the effects of OLithocholicAA-X on model lipid raft of normal and altered composition, containing an increased amount of cholesterol (Chol) or sphingomyelin (SM), using Langmuir monolayers and liposomes. The surface topography of the studied monolayers was additionally investigated by atomic force microscopy (AFM). The obtained results showed that the investigated oligomer has affinity for a system that mimics a normal lipid raft (SM:Chol 2:1). On the other hand, for systems with an excess of SM or Chol, thermodynamically unfavorable fluidization of the films occurs. Moreover, AFM topographies showed that the amount of SM determines the bioavailability of the oligomer, causing fragmentation of its lattice.
Collapse
Affiliation(s)
- Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Dawid Szymczuk
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Dawid Lupa
- Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Ewelina W Lipiec
- Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Paulina Laszuk
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Aneta D Petelska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Karolina H Markiewicz
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Agnieszka Z Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| |
Collapse
|
3
|
Ksila M, Ghzaiel I, Sassi K, Zarrouk A, Leoni V, Poli G, Rezig L, Pires V, Meziane S, Atanasov AG, Hammami S, Hammami M, Masmoudi-Kouki O, Hamdi O, Jouanny P, Samadi M, Vejux A, Ghrairi T, Lizard G. Therapeutic Applications of Oxysterols and Derivatives in Age-Related Diseases, Infectious and Inflammatory Diseases, and Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:379-400. [PMID: 38036890 DOI: 10.1007/978-3-031-43883-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols, resulting from the oxidation of cholesterol, are formed either by autoxidation, enzymatically, or by both processes. These molecules, which are provided in more or less important quantities depending on the type of diet, are also formed in the body and their presence is associated with a normal physiological activity. Their increase and decrease at the cellular level and in biological fluids can have significant consequences on health due or not to the interaction of some of these molecules with different types of receptors but also because oxysterols are involved in the regulation of RedOx balance, cytokinic and non-cytokinic inflammation, lipid metabolism, and induction of cell death. Currently, various pathologies such as age-related diseases, inflammatory and infectious diseases, and several cancers are associated with abnormal levels of oxysterols. Due to the important biological activities of oxysterols, their interaction with several receptors and their very likely implications in several diseases, this review focuses on these molecules and on oxysterol derivatives, which are often more efficient, in a therapeutic context. Currently, several oxysterol derivatives are developed and are attracting a lot of interest.
Collapse
Affiliation(s)
- Mohamed Ksila
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Imen Ghzaiel
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Khouloud Sassi
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Amira Zarrouk
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
- Faculty of Medicine, University of Sousse, Laboratory of Biochemistry, Sousse, Tunisia
| | - Valerio Leoni
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale Brianza ASST-Brianza, Desio Hospital, Desio, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES26, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis, Tunisia
- University of Carthage, High Institute of Food Industries, El Khadra City, Tunis, Tunisia
| | - Vivien Pires
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Smail Meziane
- Institut Européen des Antioxydants (IEA), Neuves-Maisons, France
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
| | - Sonia Hammami
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
- University Hospital Fattouma Bourguiba, Monastir, Tunisia
| | - Mohamed Hammami
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Olfa Masmoudi-Kouki
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Oumaima Hamdi
- University Hospital Fattouma Bourguiba, Monastir, Tunisia
- Pôle Personnes Agées, CHU de Dijon, Centre de Champmaillot, Dijon Cedex, France
| | - Pierre Jouanny
- Pôle Personnes Agées, CHU de Dijon, Centre de Champmaillot, Dijon Cedex, France
| | - Mohammad Samadi
- Laboratory of Chemistry and Physics Multi-Scale Approach to Complex Environments, Department of Chemistry, University Lorraine, Metz, France
| | - Anne Vejux
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France.
| |
Collapse
|
4
|
Wnętrzak A, Chachaj-Brekiesz A, Kobierski J, Dynarowicz-Latka P. The Structure of Oxysterols Determines Their Behavior at Phase Boundaries: Implications for Model Membranes and Structure-Activity Relationships. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:3-29. [PMID: 38036872 DOI: 10.1007/978-3-031-43883-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The presence of an additional polar group in the cholesterol backbone increases the hydrophilicity of resulting compounds (oxysterols), determines their arrangement at the phase boundary, and interactions with other lipids and proteins. As a result, physicochemical properties of biomembranes (i.e., elasticity, permeability, and ability to bind proteins) are modified, which in turn may affect their functioning. The observed effect depends on the type of oxysterol and its concentration and can be both positive (e.g., antiviral activity) or negative (disturbance of cholesterol homeostasis, signal transduction, and protein segregation). The membrane activity of oxysterols has been successfully studied using membrane models (vesicles, monolayers, and solid supported films). Membrane models, in contrast to the natural systems, provide the possibility to selectively examine the specific aspect of biomolecule-membrane interactions. Moreover, the gradual increase in the complexity of the used model allows to understand the molecular phenomena occurring at the membrane level. The interest in research on artificial membranes has increased significantly in recent years, mainly due to the development of modern and sophisticated physicochemical methods (static and dynamic) in both the micro- and nanoscale, which are applied with the assistance of powerful theoretical calculations. This review provides an overview of the most important findings on this topic in the current literature.
Collapse
Affiliation(s)
- Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland.
| | | | - Jan Kobierski
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | | |
Collapse
|
5
|
Chachaj-Brekiesz A, Wnętrzak A, Kobierski J, Petelska AD, Dynarowicz-Latka P. Site of the Hydroxyl Group Determines the Surface Behavior of Bipolar Chain-Oxidized Cholesterol Derivatives─Langmuir Monolayer Studies Supplemented with Theoretical Calculations. J Phys Chem B 2023; 127:2011-2021. [PMID: 36821098 PMCID: PMC10009745 DOI: 10.1021/acs.jpcb.2c08629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Cholesterol oxidation products (called oxysterols) are involved in many biological processes, showing both negative (e.g., neurodegenerative) and positive (e.g., antiviral and antimicrobial) effects. The physiological activity of oxysterols is undoubtedly closely related to their structure (i.e., the type and location of the additional polar group in the cholesterol skeleton). In this paper, we focus on determining how a seemingly minor structural change (introduction of a hydroxyl moiety at C(24), C(25), or C(27) in the isooctyl chain of cholesterol) affects the organization of the resulting molecules at the phase boundary. In our research, we supplemented the classic Langmuir monolayer technique, based on the surface pressure and electric surface potential isotherms, with microscopic (BAM) and spectroscopic (PM-IRRAS) techniques, as well as theoretical calculations (DFT and MD). This allowed us to show that 24-OH behaves more like cholesterol and forms stable, rigid monolayers. On the other hand, 27-OH, similar to 25-OH, undergoes the phase transition from monolayer to bilayer structures. Theoretical calculations enabled us to conclude that the formation of bilayers from 27-OH or 25-OH is possible due to the hydrogen bonding between adjacent oxysterol molecules. This observation may help to understand the factors responsible for the unique biological activity (including antiviral and antimicrobial) of 27-OH and 25-OH compared to other oxysterols.
Collapse
Affiliation(s)
- Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Jan Kobierski
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Aneta D Petelska
- Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-425 Bialystok, Poland
| | | |
Collapse
|
6
|
Lechner BD, Smith P, McGill B, Marshall S, Trick JL, Chumakov AP, Winlove CP, Konovalov OV, Lorenz CD, Petrov PG. The Effects of Cholesterol Oxidation on Erythrocyte Plasma Membranes: A Monolayer Study. MEMBRANES 2022; 12:828. [PMID: 36135847 PMCID: PMC9506283 DOI: 10.3390/membranes12090828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Cholesterol plays a key role in the molecular and mesoscopic organisation of lipid membranes and it is expected that changes in its molecular structure (e.g., through environmental factors such as oxidative stress) may affect adversely membrane properties and function. In this study, we present evidence that oxidation of cholesterol has significant effects on the mechanical properties, molecular and mesoscopic organisation and lipid-sterol interactions in condensed monolayers composed of the main species found in the inner leaflet of the erythrocyte membrane. Using a combination of experimental methods (static area compressibility, surface dilatational rheology, fluorescence microscopy, and surface sensitive X-ray techniques) and atomistic molecular dynamics simulations, we show that oxidation of cholesterol to 7-ketocholesterol leads to stiffening of the monolayer (under both static and dynamic conditions), significant changes in the monolayer microdomain organisation, disruption in the van der Waals, electrostatic and hydrophobic interactions between the sterol and the other lipid species, and the lipid membrane hydration. Surface sensitive X-ray techniques reveal that, whilst the molecular packing mode is not significantly affected by cholesterol oxidation in these condensed phases, there are subtle changes in membrane thickness and a significant decrease in the coherence length in monolayers containing 7-ketocholesterol.
Collapse
Affiliation(s)
- Bob-Dan Lechner
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Paul Smith
- Department of Physics, King’s College London, The Strand, London WC2R 2LS, UK
| | - Beth McGill
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Skye Marshall
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Jemma L. Trick
- Department of Physics, King’s College London, The Strand, London WC2R 2LS, UK
| | - Andrei P. Chumakov
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Charles Peter Winlove
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Oleg V. Konovalov
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Christian D. Lorenz
- Department of Physics, King’s College London, The Strand, London WC2R 2LS, UK
| | - Peter G. Petrov
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| |
Collapse
|