1
|
Zou W, Fan Y, Liu J, Cheng H, Hong H, Al-Sheikh U, Li S, Zhu L, Li R, He L, Tang YQ, Zhao G, Zhang Y, Wang F, Zhan R, Zheng X, Kang L. Anoctamin-1 is a core component of a mechanosensory anion channel complex in C. elegans. Nat Commun 2025; 16:1680. [PMID: 39956854 PMCID: PMC11830769 DOI: 10.1038/s41467-025-56938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
Mechanotransduction channels are widely expressed in both vertebrates and invertebrates, mediating various physiological processes such as touch, hearing and blood-pressure sensing. While previously known mechanotransduction channels in metazoans are primarily cation-selective, we identified Anoctamin-1 (ANOH-1), the C. elegans homolog of mammalian calcium-activated chloride channel ANO1/TMEM16A, as an essential component of a mechanosensory channel complex that contributes to the nose touch mechanosensation in C. elegans. Ectopic expression of either C. elegans or human Anoctamin-1 confers mechanosensitivity to touch-insensitive neurons, suggesting a cell-autonomous role of ANOH-1/ANO1 in mechanotransduction. Additionally, we demonstrated that the mechanosensory function of ANOH-1/ANO1 relies on CIB (calcium- and integrin- binding) proteins. Thus, our results reveal an evolutionarily conserved chloride channel involved in mechanosensory transduction in metazoans, highlighting the importance of anion channels in mechanosensory processes.
Collapse
Affiliation(s)
- Wenjuan Zou
- Department of Neurosurgery of the First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Zhejiang, China.
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China.
| | - Yuedan Fan
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia Liu
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hankui Cheng
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huitao Hong
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Umar Al-Sheikh
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shitian Li
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Linhui Zhu
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rong Li
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Longyuan He
- Department of Neurosurgery of the First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Zhejiang, China
| | - Yi-Quan Tang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Fudan University, Shanghai, China
| | - Guohua Zhao
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongming Zhang
- Department of Ophthalmology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Wang
- Department of Neurosurgery of the First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Zhejiang, China
| | - Renya Zhan
- Department of Neurosurgery of the First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiujue Zheng
- Department of Neurosurgery of the First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Zhejiang, China
| | - Lijun Kang
- Department of Neurosurgery of the First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Zhejiang, China.
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Zhang Y, Zheng Q, Warshel A, Bai C. Key Interaction Changes Determine the Activation Process of Human Parathyroid Hormone Type 1 Receptor. J Am Chem Soc 2025; 147:3539-3552. [PMID: 39804793 DOI: 10.1021/jacs.4c15025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The parathyroid hormone type 1 receptor (PTH1R) plays a crucial role in modulating various physiological functions and is considered an effective therapeutic target for osteoporosis. However, a lack of detailed molecular and energetic information about PTH1R limits our comprehensive understanding of its activation process. In this study, we performed computational simulations to explore key events in the activation process, such as conformational changes in PTH1R, Gs protein coupling, and the release of guanosine diphosphate (GDP). Our analysis identified kinetic information, including the rate-determining step, transition state, and energy barriers. Free-energy and structural analyses revealed that GDP could be released from the Gs protein when the binding cavity is partially open. Additionally, we predicted important residues, including potential pathogenic mutations, and verified their significance through site-directed mutations. These findings enhance our understanding of class B GPCR activation mechanisms. Furthermore, the methodology employed in this study can be applied to other biophysical systems.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130012, China
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Qingchuan Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- Chenzhu (MoMeD) Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
3
|
Guo X, Geng R, Li C, Ma Z, Chen Y, Liu Y, Li S, Kang X, Guo S. Structural and theoretical basis for drug development targeting TMEM16A: Inhibition mechanism of tracheloside analogs. Int J Biol Macromol 2024; 277:134057. [PMID: 39038568 DOI: 10.1016/j.ijbiomac.2024.134057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Ion channels play a crucial role in the electrophysiological activities of organisms. The calcium-activated chloride channel TMEM16A is involved in various physiological processes. Therefore, inhibitors of TMEM16A are used to treat diseases caused by TMEM16A dysfunction. However, the unclear inhibition mechanism hinders the progress of drug development. Based on our previous study, we found that the molecular structures of TMEM16A inhibitors tracheloside, matairesinoside and arctigenin are similar. In this study, we conducted a structure-based virtual screening of tracheloside analogs from the PubChem database. The six tracheloside analogs with the highest affinity to TMEM16A were selected, and their inhibitory effects were detected by fluorescence and electrophysiological experiments. Subsequently, the interaction between the tracheloside analogs and TMEM16A was investigated through molecular docking and site-directed mutagenesis. Based on the above results, the mechanism of inhibition of TMEM16A gated conformation by tracheloside analogs was proposed. These findings provide a structural and theoretical basis for drug development targeting TMEM16A.
Collapse
Affiliation(s)
- Xiaomeng Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Ruili Geng
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Chao Li
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Zhouye Ma
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Yue Chen
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Yinuo Liu
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Shaochun Li
- School of Basic Medical Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Collaborative Innovation Center for Baiyangdian Basin Ecological Protection and Beijing-Tianjin-Hebei Sustainable Development, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, Hebei, China.
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Collaborative Innovation Center for Baiyangdian Basin Ecological Protection and Beijing-Tianjin-Hebei Sustainable Development, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|
4
|
Zhang Y, Wu K, Li Y, Wu S, Warshel A, Bai C. Predicting Mutational Effects on Ca 2+-Activated Chloride Conduction of TMEM16A Based on a Simulation Study. J Am Chem Soc 2024; 146:4665-4679. [PMID: 38319142 DOI: 10.1021/jacs.3c11940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The dysfunction and defects of ion channels are associated with many human diseases, especially for loss-of-function mutations in ion channels such as cystic fibrosis transmembrane conductance regulator mutations in cystic fibrosis. Understanding ion channels is of great current importance for both medical and fundamental purposes. Such an understanding should include the ability to predict mutational effects and describe functional and mechanistic effects. In this work, we introduce an approach to predict mutational effects based on kinetic information (including reaction barriers and transition state locations) obtained by studying the working mechanism of target proteins. Specifically, we take the Ca2+-activated chloride channel TMEM16A as an example and utilize the computational biology model to predict the mutational effects of key residues. Encouragingly, we verified our predictions through electrophysiological experiments, demonstrating a 94% prediction accuracy regarding mutational directions. The mutational strength assessed by Pearson's correlation coefficient is -0.80 between our calculations and the experimental results. These findings suggest that the proposed methodology is reliable and can provide valuable guidance for revealing functional mechanisms and identifying key residues of the TMEM16A channel. The proposed approach can be extended to a broad scope of biophysical systems.
Collapse
Affiliation(s)
- Yue Zhang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Kang Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Yuqing Li
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Song Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- Chenzhu Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
5
|
Shi S, Ma B, Ji Q, Guo S, An H, Ye S. Identification of a druggable pocket of the calcium-activated chloride channel TMEM16A in its open state. J Biol Chem 2023:104780. [PMID: 37142220 DOI: 10.1016/j.jbc.2023.104780] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
The calcium-activated chloride channel TMEM16A is a potential drug target to treat hypertension, secretory diarrhea, and several cancers. However, all reported TMEM16A structures are either closed or desensitized, and direct inhibition of the open state by drug molecules lacks a reliable structural basis. Therefore, revealing the druggable pocket of TMEM16A exposed in the open state is important for understanding protein-ligand interactions and facilitating rational drug design. Here, we reconstructed the calcium-activated open conformation of TMEM16A using an enhanced sampling algorithm and segmental modeling. Furthermore, we identified an open state druggable pocket and screened a potent TMEM16A inhibitor, etoposide, which is a derivative of a traditional herbal monomer. Molecular simulations and site-directed mutagenesis showed that etoposide binds to the open state of TMEM16A, thereby blocking the ion conductance pore of the channel. Finally, we demonstrated that etoposide can target TMEM16A to inhibit the proliferation of prostate cancer PC-3 cells. Together, these findings provide a deep understanding of the TMEM16A open state at an atomic level and identify pockets for the design of novel inhibitors with broad applications in chloride channel biology, biophysics, and medicinal chemistry.
Collapse
Affiliation(s)
- Sai Shi
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Biao Ma
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China
| | - Qiushuang Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China.
| | - Hailong An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China.
| | - Sheng Ye
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
6
|
Sowlati-Hashjin S, Gandhi A, Garton M. Dawn of a New Era for Membrane Protein Design. BIODESIGN RESEARCH 2022; 2022:9791435. [PMID: 37850134 PMCID: PMC10521746 DOI: 10.34133/2022/9791435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/20/2022] [Indexed: 10/19/2023] Open
Abstract
A major advancement has recently occurred in the ability to predict protein secondary structure from sequence using artificial neural networks. This new accessibility to high-quality predicted structures provides a big opportunity for the protein design community. It is particularly welcome for membrane protein design, where the scarcity of solved structures has been a major limitation of the field for decades. Here, we review the work done to date on the membrane protein design and set out established and emerging tools that can be used to most effectively exploit this new access to structures.
Collapse
Affiliation(s)
- Shahin Sowlati-Hashjin
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada, M5S 3E2
| | - Aanshi Gandhi
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada, M5S 3E2
| | - Michael Garton
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada, M5S 3E2
| |
Collapse
|
7
|
Hou P, Du X, An H. Editorial: Ion Channels: Therapeutic Targets for Neurological Disease. Front Mol Neurosci 2021; 14:797327. [PMID: 34867195 PMCID: PMC8636780 DOI: 10.3389/fnmol.2021.797327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Taipa, Macao SAR, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Xiaona Du
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics of Hebei, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, China
| |
Collapse
|
8
|
Le SC, Liang P, Lowry AJ, Yang H. Gating and Regulatory Mechanisms of TMEM16 Ion Channels and Scramblases. Front Physiol 2021; 12:787773. [PMID: 34867487 PMCID: PMC8640346 DOI: 10.3389/fphys.2021.787773] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
The transmembrane protein 16 (TMEM16) family consists of Ca2+-activated ion channels and Ca2+-activated phospholipid scramblases (CaPLSases) that passively flip-flop phospholipids between the two leaflets of the membrane bilayer. Owing to their diverse functions, TMEM16 proteins have been implicated in various human diseases, including asthma, cancer, bleeding disorders, muscular dystrophy, arthritis, epilepsy, dystonia, ataxia, and viral infection. To understand TMEM16 proteins in health and disease, it is critical to decipher their molecular mechanisms of activation gating and regulation. Structural, biophysical, and computational characterizations over the past decade have greatly advanced the molecular understanding of TMEM16 proteins. In this review, we summarize major structural features of the TMEM16 proteins with a focus on regulatory mechanisms and gating.
Collapse
Affiliation(s)
- Son C. Le
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Pengfei Liang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Augustus J. Lowry
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|