1
|
Li J, Deng X, Li Y, Hu J, Miao W, Lin C, Jiang J, Shi S. Terahertz Science and Technology in Astronomy, Telecommunications, and Biophysics. RESEARCH (WASHINGTON, D.C.) 2025; 8:0586. [PMID: 39845706 PMCID: PMC11751206 DOI: 10.34133/research.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
This paper reviews recent developments and key advances in terahertz (THz) science, technology, and applications, focusing on 3 core areas: astronomy, telecommunications, and biophysics. In THz astronomy, it highlights major discoveries and ongoing projects, emphasizing the role of advanced superconducting technologies, including superconductor-insulator-superconductor (SIS) mixers, hot electron boundedness spectroscopy (HEB), transition-edge sensors (TESs), and kinetic inductance detectors (KIDs), while exploring prospects in the field. For THz telecommunication, it discusses progress in solid-state sources, new communication technologies operating within the THz band, and diverse modulation methods that enhance transmission capabilities. In THz biophysics, the focus shifts to the physical modulation of THz waves and their impact across biological systems, from whole organisms to cellular and molecular levels, emphasizing nonthermal effects and fundamental mechanisms. This review concludes with an analysis of the challenges and perspectives shaping the future of THz technology.
Collapse
Affiliation(s)
- Jing Li
- Purple Mountain Observatory,
Chinese Academy of Sciences, Nanjing 210023, China
| | - Xianjin Deng
- Microsystem and Terahertz Research Center,
China Academy of Engineering Physics, Chengdu, Sichuan 610200, China
- Institute of Electronic Engineering,
China Academy of Engineering Physics, Mianyang, Sichuan 621999, China
| | - Yangmei Li
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Jie Hu
- Purple Mountain Observatory,
Chinese Academy of Sciences, Nanjing 210023, China
| | - Wei Miao
- Purple Mountain Observatory,
Chinese Academy of Sciences, Nanjing 210023, China
| | - Changxing Lin
- Microsystem and Terahertz Research Center,
China Academy of Engineering Physics, Chengdu, Sichuan 610200, China
- Institute of Electronic Engineering,
China Academy of Engineering Physics, Mianyang, Sichuan 621999, China
| | - Jun Jiang
- Microsystem and Terahertz Research Center,
China Academy of Engineering Physics, Chengdu, Sichuan 610200, China
- Institute of Electronic Engineering,
China Academy of Engineering Physics, Mianyang, Sichuan 621999, China
| | - Shengcai Shi
- Purple Mountain Observatory,
Chinese Academy of Sciences, Nanjing 210023, China
| |
Collapse
|
2
|
Guo F, Xiang J, Zhuo Y, Pei K. Molecular Dynamics Study of Protein-Mediated Electroporation of Kv Channels Induced by nsPEFs: Advantages of Bipolar Pulses. Biomacromolecules 2025. [PMID: 39808923 DOI: 10.1021/acs.biomac.4c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Nanosecond pulsed electric fields (nsPEFs) can induce protein-mediated electroporation (PMEP) in voltage-gated ion channels. However, their effects on the tetrameric structure of voltage-gated potassium (Kv) channels remain unexplored. Our study pioneered the molecular dynamics (MD) investigation of the open-state (O) Kv channel to understand the effects of PMEP under unipolar and bipolar pulses (UP and BP). Our findings revealed that BP induces pore formation more effectively than UP. Additionally, the frequency of pore formation shows a more consistent decline with increased pulse interval under BP. We further examined three other distinct functional states─intermediate (C*), inactivated (I), and resting closed (C)─of Kv channels under BP. SF pores formed exclusively in the O state, while complex pores formed only in the O and C states. In conclusion, our study highlights BP's role in enhancing pore formation and specificity, offering insights into Kv channel PMEP and its therapeutic potential.
Collapse
Affiliation(s)
- Fei Guo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Jun Xiang
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yue Zhuo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Kai Pei
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
3
|
de Caro A, Talmont F, Rols MP, Golzio M, Kolosnjaj-Tabi J. Therapeutic perspectives of high pulse repetition rate electroporation. Bioelectrochemistry 2024; 156:108629. [PMID: 38159429 DOI: 10.1016/j.bioelechem.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Electroporation, a technique that uses electrical pulses to temporarily or permanently destabilize cell membranes, is increasingly used in cancer treatment, gene therapy, and cardiac tissue ablation. Although the technique is efficient, patients report discomfort and pain. Current strategies that aim to minimize pain and muscle contraction rely on the use of pharmacological agents. Nevertheless, technical improvements might be a valuable tool to minimize adverse events, which occur during the application of standard electroporation protocols. One recent technological strategy involves the use of high pulse repetition rate. The emerging technique, also referred as "high frequency" electroporation, employs short (micro to nanosecond) mono or bipolar pulses at repetition rate ranging from a few kHz to a few MHz. This review provides an overview of the historical background of electric field use and its development in therapies over time. With the aim to understand the rationale for novel electroporation protocols development, we briefly describe the physiological background of neuromuscular stimulation and pain caused by exposure to pulsed electric fields. Then, we summarize the current knowledge on electroporation protocols based on high pulse repetition rates. The advantages and limitations of these protocols are described from the perspective of their therapeutic application.
Collapse
Affiliation(s)
- Alexia de Caro
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
4
|
Rembiałkowska N, Szlasa W, Radzevičiūtė-Valčiukė E, Kulbacka J, Novickij V. Negative effects of cancellation during nanosecond range High-Frequency calcium based electrochemotherapy in vitro. Int J Pharm 2023; 648:123611. [PMID: 37977287 DOI: 10.1016/j.ijpharm.2023.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Drug delivery using nanosecond pulsed electric fields is a new branch of electroporation-based treatments, which potentially can substitute European standard operating procedures for electrochemotherapy. In this work, for the first time, we characterize the effects of ultra-fast repetition frequency (1-2.5 MHz) nanosecond pulses (5-9 kV/cm, 200 and 400 ns) in the context of nano-electrochemotherapy with calcium. Additionally, we investigate the feasibility of bipolar symmetric (↑200 ns + ↓200 ns) and asymmetric (↑200 ns + ↓400 ns) nanosecond protocols for calcium delivery. The effects of bipolar cancellation and the influence of interphase delay (200 ns) are overviewed. Human lung cancer cell lines A549 and H69AR were used as a model. It was shown that unipolar pulses delivered at high frequency are effective for electrochemotherapy with a significant improvement in efficiency when the delay between separate pulses is reduced. Bipolar symmetric pulses trigger the cancellation phenomenon limiting applications for drug delivery and can be compensated by the asymmetry of the pulse (↑200 ns + ↓400 ns or ↑400 ns + ↓200 ns). The results of this study can be successfully used to derive a new generation of nsPEF protocols for successful electrochemotherapy treatments.
Collapse
Affiliation(s)
- Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Szlasa
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Eivina Radzevičiūtė-Valčiukė
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania.
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania.
| |
Collapse
|
5
|
Guo F, Wang J, Zhou J, Qian K, Qu H, Liu P, Zhai S. All-atom molecular dynamics simulations of the combined effects of different phospholipids and cholesterol content on electroporation. RSC Adv 2022; 12:24491-24500. [PMID: 36128384 PMCID: PMC9425445 DOI: 10.1039/d2ra03895a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
The electroporation mechanism could be related to the composition of the plasma membrane, and the combined effect of different phospholipid molecules and cholesterol content on electroporation has rarely been studied nor conclusions drawn. In this paper, we applied all-atom molecular dynamics (MD) simulations to study the effects of phospholipids and cholesterol content on bilayer membrane electroporation. The palmitoyloleoylphosphatidylcholine (POPC) model, palmitoyloleoylphosphatidylethanolamine (POPE) model, and a 1 : 1 mixed model of POPC and POPE called PEPC, were the three basic models used. An electric field of 0.45 V nm-1 was applied to nine models, which were the three basic models, each with three different cholesterol content values of 0%, 24%, and 40%. The interfacial water molecules moved under the electric field and, once the first water bridge formed, the rest of the water molecules would dramatically flood into the membrane. The simulation showed that a rapid rise in the Z-component of the average dipole moment of the interfacial water molecules (Z-DM) indicated the occurrence of electroporation, and the same increment of Z-DM represented a similar change in the size of the water bridge. With the same cholesterol content, the formation of the first water bridge was the most rapid in the POPC model, regarding the average electroporation time (t ep), and the average t ep of the PEPC model was close to that of the POPE model. We speculate that the differences in membrane thickness and initial number of hydrogen bonds of the interfacial water molecules affect the average t ep for different membrane compositions. Our results reveal the influence of membrane composition on the electroporation mechanism at the molecular level.
Collapse
Affiliation(s)
- Fei Guo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications Chongqing 400065 China
| | - Ji Wang
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications Chongqing 400065 China
| | - Jiong Zhou
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications Chongqing 400065 China
| | - Kun Qian
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications Chongqing 400065 China
| | - Hongchun Qu
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications Chongqing 400065 China
| | - Ping Liu
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications Chongqing 400065 China
| | - Shidong Zhai
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications Chongqing 400065 China
| |
Collapse
|