1
|
Bottacchiari M, Gallo M, Bussoletti M, Casciola CM. The local variation of the Gaussian modulus enables different pathways for fluid lipid vesicle fusion. Sci Rep 2024; 14:23. [PMID: 38168475 PMCID: PMC10762093 DOI: 10.1038/s41598-023-50922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Viral infections, fertilization, neurotransmission, and many other fundamental biological processes rely on membrane fusion. Straightforward calculations based on the celebrated Canham-Helfrich elastic model predict a large topological energy barrier that prevents the fusion process from being thermally activated. While such high energy is in accordance with the physical barrier function of lipid membranes, it is difficult to reconcile with the biological mechanisms involved in fusion processes. In this work, we use a Ginzburg-Landau type of free energy that recovers the Canham-Helfrich model in the limit of small width-to-vesicle-extension ratio, with the additional ability to handle topological transitions. We show that a local modification of the Gaussian modulus in the merging region both dramatically lowers the elastic energy barrier and substantially changes the minimal energy pathway for fusion, in accordance with experimental evidence. Therefore, we discuss biological examples in which such a modification might play a crucial role.
Collapse
Affiliation(s)
- Matteo Bottacchiari
- Department of Mechanical and Aerospace Engineering, Sapienza Università di Roma, Rome, Italy
| | - Mirko Gallo
- Department of Mechanical and Aerospace Engineering, Sapienza Università di Roma, Rome, Italy
| | - Marco Bussoletti
- Department of Mechanical and Aerospace Engineering, Sapienza Università di Roma, Rome, Italy
| | - Carlo Massimo Casciola
- Department of Mechanical and Aerospace Engineering, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
2
|
Alimohamadi H, de Anda J, Lee MW, Schmidt NW, Mandal T, Wong GCL. How Cell-Penetrating Peptides Behave Differently from Pore-Forming Peptides: Structure and Stability of Induced Transmembrane Pores. J Am Chem Soc 2023; 145:26095-26105. [PMID: 37989570 DOI: 10.1021/jacs.3c08014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Peptide-induced transmembrane pore formation is commonplace in biology. Examples of transmembrane pores include pores formed by antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) in bacterial membranes and eukaryotic membranes, respectively. In general, however, transmembrane pore formation depends on peptide sequences, lipid compositions, and intensive thermodynamic variables and is difficult to observe directly under realistic solution conditions, with structures that are challenging to measure directly. In contrast, the structure and phase behavior of peptide-lipid systems are relatively straightforward to map out experimentally for a broad range of conditions. Cubic phases are often observed in systems involving pore-forming peptides; however, it is not clear how the structural tendency to induce negative Gaussian curvature (NGC) in such phases is quantitatively related to the geometry of biological pores. Here, we leverage the theory of anisotropic inclusions and devise a facile method to estimate transmembrane pore sizes from geometric parameters of cubic phases measured from small-angle X-ray scattering (SAXS) and show that such estimates compare well with known pore sizes. Moreover, our model suggests that although AMPs can induce stable transmembrane pores for membranes with a broad range of conditions, pores formed by CPPs are highly labile, consistent with atomistic simulations.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jaime de Anda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
| | - Nathan W Schmidt
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
| | - Taraknath Mandal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Alimohamadi H, de Anda J, Lee MW, Schmidt NW, Mandal T, Wong GCL. How cell penetrating peptides behave differently from pore forming peptides: structure and stability of induced transmembrane pores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550729. [PMID: 37546874 PMCID: PMC10402029 DOI: 10.1101/2023.07.26.550729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Peptide induced trans-membrane pore formation is commonplace in biology. Examples of transmembrane pores include pores formed by antimicrobial peptides (AMPs) and cell penetrating peptides (CPPs) in bacterial membranes and eukaryotic membranes, respectively. In general, however, transmembrane pore formation depends on peptide sequences, lipid compositions and intensive thermodynamic variables and is difficult to observe directly under realistic solution conditions, with structures that are challenging to measure directly. In contrast, the structure and phase behavior of peptide-lipid systems are relatively straightforward to map out experimentally for a broad range of conditions. Cubic phases are often observed in systems involving pore forming peptides; however, it is not clear how the structural tendency to induce negative Gaussian curvature (NGC) in such phases is quantitatively related to the geometry of biological pores. Here, we leverage the theory of anisotropic inclusions and devise a facile method to estimate transmembrane pore sizes from geometric parameters of cubic phases measured from small angle X-ray scattering (SAXS) and show that such estimates compare well with known pore sizes. Moreover, our model suggests that whereas AMPs can induce stable transmembrane pores for membranes with a broad range of conditions, pores formed by CPPs are highly labile, consistent with atomistic simulations.
Collapse
|
4
|
Jiménez-Munguía I, Beaven AH, Blank PS, Sodt AJ, Zimmerberg J. Interferon-induced transmembrane protein 3 (IFITM3) and its antiviral activity. Curr Opin Struct Biol 2022; 77:102467. [PMID: 36306674 DOI: 10.1016/j.sbi.2022.102467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 01/30/2023]
Abstract
Infections caused by enveloped viruses require fusion with cellular membranes for viral genome entry. Viral entry occurs following an interaction of viral and cellular membranes allowing the formation of fusion pores, by which the virus accesses the cytoplasm. Here, we focus on interferon-induced transmembrane protein 3 (IFITM3) and its antiviral activity. IFITM3 is predicted to block or stall viral fusion at an intermediate state, causing viral propagation to fail. After introducing IFITM3, we describe the generalized lipid membrane fusion pathway and how it can be stalled, particularly with respect to IFITM3, and current questions regarding IFITM3's topology, with specific emphasis on IFITM3's amphipathic α-helix (AAH) 59V-68M, which is necessary for the antiviral activity. We report new hydrophobicity and hydrophobic moment calculations for this peptide and a variety of active site peptides from known membrane-remodeling proteins. Finally, we discuss the effects of posttranslational modifications and localization, how IFITM3's AAH may block viral fusion, and possible ramifications of membrane composition.
Collapse
Affiliation(s)
- I Jiménez-Munguía
- Section on Integrative Biophysics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), MD, USA
| | - A H Beaven
- Unit on Membrane Chemical Physics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH) MD, USA; Postdoctoral Research Associate Program, National Institute of General Medical Sciences National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - P S Blank
- Section on Integrative Biophysics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), MD, USA
| | - A J Sodt
- Unit on Membrane Chemical Physics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH) MD, USA.
| | - J Zimmerberg
- Section on Integrative Biophysics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), MD, USA.
| |
Collapse
|