1
|
Chen J, Tan W, Wang W, Hou S, Chen G, Xia L, Lu Y. Identification of common antigens of three pathogenic Nocardia species and development of DNA vaccine against fish nocardiosis. FISH & SHELLFISH IMMUNOLOGY 2019; 95:357-367. [PMID: 31678532 DOI: 10.1016/j.fsi.2019.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Fish nocardiosis is a chronic granulomatous bacterial disease and three pathogens have been reported so far, including Nocardia asteroids, N. seriolae and N. salmonicida. However, the absence of antigen markers is a bottleneck for developing effective vaccines against fish nocardiosis. In this study, the antigenicity of whole-cell protein of these three pathogenic Nocardia species were profiled by immunoproteomic analysis and 7 common immunogenic proteins were identified as follows: molecular chaperone DnaK (DnaK), molecular chaperone GroEL (GroEL), 30 S ribosomal protein S1 (RpsA), TerD family protein (TerD), FHA domain-containing protein (FHA), 50 S ribosomal protein L7/L12 (RplL) and PspA/IM30 family protein (PspA). Furthermore, the DNA vaccine encoding FHA gene against fish nocardiosis was developed and its efficacy was investigated in hybrid snakehead. The results suggested that it needed at least 7 d to transport pcDNA-FHA DNA vaccine from injected muscle to head kidney, spleen and liver and stimulate host's immune system for later protection. In addition, non-specific immunity paraments (serum lysozyme (LYZ), peroxidase (POD), acid phosphatase (ACP), alkaline phosphatase (AKP) and superoxide dismutase (SOD) activities), specific antibody (IgM) titers production and immune-related genes (MHCIα, MHCIIα, CD4, CD8α, IL-1β and TNFα) were used to evaluate the immune response induced in pcDNA-FHA vaccinated hybrid snakehead, it proved that all these mentioned immune activities were significantly enhanced after immunization. The results also showed hybrid snakehead vaccinated with pcDNA-FHA had higher survival rate (79.33%) compared with the controls after challenge with N. seriolae, indicating that the pcDNA-FHA DNA vaccine can supply immune protection against N. seriolae infection. Taken together, this study may warrant further development of these common immunogenic proteins as the antigens for vaccine or diagnosis and facilitate the prevention and treatment of fish nocardiosis.
Collapse
Affiliation(s)
- Jianlin Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Wanchun Tan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China
| | - Wenji Wang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Suying Hou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Guoquan Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, Guangdong, China.
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
García-Berrocoso T, Llombart V, Colàs-Campàs L, Hainard A, Licker V, Penalba A, Ramiro L, Simats A, Bustamante A, Martínez-Saez E, Canals F, Sanchez JC, Montaner J. Single Cell Immuno-Laser Microdissection Coupled to Label-Free Proteomics to Reveal the Proteotypes of Human Brain Cells After Ischemia. Mol Cell Proteomics 2017; 17:175-189. [PMID: 29133510 DOI: 10.1074/mcp.ra117.000419] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Indexed: 12/13/2022] Open
Abstract
Cerebral ischemia entails rapid tissue damage in the affected brain area causing devastating neurological dysfunction. How each component of the neurovascular unit contributes or responds to the ischemic insult in the context of the human brain has not been solved yet. Thus, the analysis of the proteome is a straightforward approach to unraveling these cell proteotypes. In this study, post-mortem brain slices from ischemic stroke patients were obtained corresponding to infarcted (IC) and contralateral (CL) areas. By means of laser microdissection, neurons and blood brain barrier structures (BBB) were isolated and analyzed using label-free quantification. MS data are available via ProteomeXchange with identifier PXD003519. Ninety proteins were identified only in neurons, 260 proteins only in the BBB and 261 proteins in both cell types. Bioinformatics analyses revealed that repair processes, mainly related to synaptic plasticity, are outlined in microdissected neurons, with nonexclusive important functions found in the BBB. A total of 30 proteins showing p < 0.05 and fold-change> 2 between IC and CL areas were considered meaningful in this study: 13 in neurons, 14 in the BBB and 3 in both cell types. Twelve of these proteins were selected as candidates and analyzed by immunohistofluorescence in independent brains. The MS findings were completely verified for neuronal SAHH2 and SRSF1 whereas the presence in both cell types of GABT and EAA2 was only validated in neurons. In addition, SAHH2 showed its potential as a prognostic biomarker of neurological improvement when analyzed early in the plasma of ischemic stroke patients. Therefore, the quantitative proteomes of neurons and the BBB (or proteotypes) after human brain ischemia presented here contribute to increasing the knowledge regarding the molecular mechanisms of ischemic stroke pathology and highlight new proteins that might represent putative biomarkers of brain ischemia or therapeutic targets.
Collapse
Affiliation(s)
- Teresa García-Berrocoso
- From the ‡Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Víctor Llombart
- From the ‡Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Colàs-Campàs
- From the ‡Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alexandre Hainard
- §Proteomics Core Facility, Faculty of medicine, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Virginie Licker
- ¶Neuroproteomics Group, Human protein sciences department, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Anna Penalba
- From the ‡Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Ramiro
- From the ‡Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Simats
- From the ‡Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Bustamante
- From the ‡Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Martínez-Saez
- ‖Neuropathology, Pathology department, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Canals
- **Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jean-Charles Sanchez
- ‡‡Translational biomarker group, Human protein sciences department, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Joan Montaner
- From the ‡Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain;
| |
Collapse
|
3
|
Calderón-Santiago M, Priego-Capote F, Luque de Castro MD. Enhanced Detection and Identification in Metabolomics by Use of LC–MS/MS Untargeted Analysis in Combination with Gas-Phase Fractionation. Anal Chem 2014; 86:7558-65. [DOI: 10.1021/ac501353n] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mónica Calderón-Santiago
- Department
of Analytical Chemistry, University of Córdoba, Annex
Marie Curie Building, Campus of Rabanales, E-14071 Córdoba, Spain
- Maimónides
Institute of Biomedical Research (IMIBIC), Reina Sofía University
Hospital, University of Córdoba, E-14071 Córdoba, Spain
| | - Feliciano Priego-Capote
- Department
of Analytical Chemistry, University of Córdoba, Annex
Marie Curie Building, Campus of Rabanales, E-14071 Córdoba, Spain
- Maimónides
Institute of Biomedical Research (IMIBIC), Reina Sofía University
Hospital, University of Córdoba, E-14071 Córdoba, Spain
| | - María D. Luque de Castro
- Department
of Analytical Chemistry, University of Córdoba, Annex
Marie Curie Building, Campus of Rabanales, E-14071 Córdoba, Spain
- Maimónides
Institute of Biomedical Research (IMIBIC), Reina Sofía University
Hospital, University of Córdoba, E-14071 Córdoba, Spain
| |
Collapse
|
4
|
Rey M, Yang M, Burns KM, Yu Y, Lees-Miller SP, Schriemer DC. Nepenthesin from monkey cups for hydrogen/deuterium exchange mass spectrometry. Mol Cell Proteomics 2012. [PMID: 23197791 DOI: 10.1074/mcp.m112.025221] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies of protein dynamics, structure and interactions using hydrogen/deuterium exchange mass spectrometry (HDX-MS) have sharply increased over the past 5-10 years. The predominant technology requires fast digestion at pH 2-3 to retain deuterium label. Pepsin is used almost exclusively, but it provides relatively low efficiency under the constraints of the experiment, and a selectivity profile that renders poor coverage of intrinsically disordered regions. In this study we present nepenthesin-containing secretions of the pitcher plant Nepenthes, commonly called monkey cups, for use in HDX-MS. We show that nepenthesin is at least 1400-fold more efficient than pepsin under HDX-competent conditions, with a selectivity profile that mimics pepsin in part, but also includes efficient cleavage C-terminal to "forbidden" residues K, R, H, and P. High efficiency permits a solution-based analysis with no detectable autolysis, avoiding the complication of immobilized enzyme reactors. Relaxed selectivity promotes high coverage of disordered regions and the ability to "tune" the mass map for regions of interest. Nepenthesin-enriched secretions were applied to an analysis of protein complexes in the nonhomologous end-joining DNA repair pathway. The analysis of XRCC4 binding to the BRCT domains of Ligase IV points to secondary interactions between the disordered C-terminal tail of XRCC4 and remote regions of the BRCT domains, which could only be identified with a nepenthesin-based workflow. HDX data suggest that stalk-binding to XRCC4 primes a BRCT conformation in these remote regions to support tail interaction, an event which may be phosphoregulated. We conclude that nepenthesin is an effective alternative to pepsin for all HDX-MS applications, and especially for the analysis of structural transitions among intrinsically disordered proteins and their binding partners.
Collapse
Affiliation(s)
- Martial Rey
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
5
|
Nutriproteomics: technologies and applications for identification and quantification of biomarkers and ingredients. Proc Nutr Soc 2011; 70:351-64. [DOI: 10.1017/s0029665111000528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nutrition refers to the process by which a living organism ingests and digests food and uses the nutrients therein for growth, tissue maintenance and all other functions essential to life. Food components interact with our body at molecular, cellular, organ and system level. Nutrients come in complex mixtures, in which the presence and concentration of single compounds as well as their interactions with other compounds and the food matrix influence their bioavailability and bioefficacy. Traditionally, nutrition research mainly concentrated on supplying nutrients of quality to nourish populations and on preventing specific nutrient deficiencies. More recently, it investigates health-related aspects of individual ingredients or of complete diets, in view of health promotion, performance optimisation, disease prevention and risk assessment. This review focuses on proteins and peptides, their role as nutrients and biomarkers and on the technologies developed for their analysis. In the first part of this review, we provide insights into the way proteins are currently characterised and analysed using classical and emerging proteomic approaches. The scope of the second part is to review major applications of proteomics to nutrition, from characterisation of food proteins and peptides, via investigation of health-related food benefits to understanding disease-related mechanisms.
Collapse
|
6
|
Percy AJ, Slysz GW, Schriemer DC. Surrogate H/D Detection Strategy for Protein Conformational Analysis Using MS/MS Data. Anal Chem 2009; 81:7900-7. [DOI: 10.1021/ac901148u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Andrew J. Percy
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Gordon W. Slysz
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - David C. Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
7
|
Tian Y, Gurley K, Meany DL, Kemp CJ, Zhang H. N-linked glycoproteomic analysis of formalin-fixed and paraffin-embedded tissues. J Proteome Res 2009; 8:1657-62. [PMID: 19714870 PMCID: PMC2975740 DOI: 10.1021/pr800952h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formalin-fixed, paraffin-embedded (FFPE) tissues have been used to discover disease-associated protein changes using mass spectrometry. Protein post-translational modifications such as glycosylation are known to associate with disease development. In this study, we investigated whether FFPE tissues preserve such modifications and therefore can be used as specimen of choice to identify the disease-associated modifications. We isolated the glycopeptides from the tryptic digest of frozen and FFPE lung tissues using solid-phase extraction of glycopeptides and analyzed them using mass spectrometry. The glycopeptides identified from FFPE lung tissue were compared to the ones from frozen lung tissue regarding their relative abundance, unique glycosylation sites, and subcellular locations. The results from our study confirmed that glycosylation in FFPE tissues are preserved and FFPE tissues can be used for discovery of new disease associated changes in protein modifications. Furthermore, we demonstrated the feasibility of applying the strategy of glycopeptide isolation from tryptic peptides of FFPE tissue to other tissues such as liver and heart.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Kay Gurley
- Divisions of Human Biology and Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Danni L. Meany
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Christopher J. Kemp
- Divisions of Human Biology and Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| |
Collapse
|
8
|
Ghosh D, Beavis RC, Wilkins JA. The Identification and Characterization of Membranome Components. J Proteome Res 2008; 7:1572-83. [DOI: 10.1021/pr070509u] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dhimankrishna Ghosh
- Manitoba Centre for Proteomics and Systems Biology, Departments of Internal Medicine, Biochemistry and Medical Genetics, and Immunology, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Ron C. Beavis
- Manitoba Centre for Proteomics and Systems Biology, Departments of Internal Medicine, Biochemistry and Medical Genetics, and Immunology, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - John A. Wilkins
- Manitoba Centre for Proteomics and Systems Biology, Departments of Internal Medicine, Biochemistry and Medical Genetics, and Immunology, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| |
Collapse
|
9
|
Blonder J, Chan KC, Issaq HJ, Veenstra TD. Identification of membrane proteins from mammalian cell/tissue using methanol-facilitated solubilization and tryptic digestion coupled with 2D-LC-MS/MS. Nat Protoc 2007; 1:2784-90. [PMID: 17406535 DOI: 10.1038/nprot.2006.359] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The core prerequisites for an efficient proteome-scale analysis of mammalian membrane proteins are effective isolation, solubilization, digestion and multidimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). This protocol is for analysis of the mammalian membrane proteome that relies on solubilization and tryptic digestion of membrane proteins in a buffer containing 60% (vol/vol) methanol. Tryptic digestion is followed by strong cation exchange (SCX) chromatography and reversed phase (RP) chromatography coupled online with MS/MS for protein identification. The use of a methanol-based buffer eliminates the need for reagents that interfere with chromatographic resolution and ionization of the peptides (e.g., detergents, chaotropes, inorganic salts). Sample losses are minimized because solubilization and digestion are carried out in a single tube avoiding any sample transfer or buffer exchange between these steps. This protocol is compatible with stable isotope labeling at the protein and peptide level, enabling identification and quantitation of integral membrane proteins. The entire procedure--beginning with isolated membrane fraction and finishing with MS data acquisition--takes 4-5 d.
Collapse
Affiliation(s)
- Josip Blonder
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., National Cancer Institute at Frederick, P.O. Box B, Frederick, Maryland 21702, USA.
| | | | | | | |
Collapse
|
10
|
Eliuk SM, Renfrow MB, Shonsey EM, Barnes S, Kim H. active site modifications of the brain isoform of creatine kinase by 4-hydroxy-2-nonenal correlate with reduced enzyme activity: mapping of modified sites by Fourier transform-ion cyclotron resonance mass spectrometry. Chem Res Toxicol 2007; 20:1260-8. [PMID: 17696488 DOI: 10.1021/tx7000948] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Creatine kinase reversibly catalyzes the transfer of the high-energy phosphoryl group from phosphocreatine to MgADP for rapid regeneration of ATP. It is hypothesized that factors which perturb creatine kinase activity, such as reactive oxygen species resulting from oxidative stress, could have a major role in the pathogenesis of diseases, particularly in the brain, where the level of ATP utilization is high. The reactive aldehyde 4-hydroxy-2-nonenal is a major secondary product of lipid peroxidation caused by oxidative stress; the levels of both free and protein-bound 4-hydroxy-2-nonenal are increased in Alzheimer's disease brain. Preliminary reports indicated that creatine kinase had lower activity in Alzheimer's disease brain. In this study, we investigated the structural and functional consequences of reacting the cytosolic brain isoform of creatine kinase with 4-hydroxy-2-nonenal at pathophysiologically relevant concentrations of 4-hydroxy-2-nonenal (10-300 microM). Dose-dependent reduction of enzyme activity was observed and, for the first time, correlated with 4-hydroxy-2-nonenal adduct formation on specific amino acid residues, including the active site residues His66, His191, Cys283, and His296 as determined by Fourier transform-ion cyclotron resonance mass spectrometry.
Collapse
Affiliation(s)
- Shannon M Eliuk
- Department of Pharmacology-Toxicology, UAB Biomedical FT-ICR MS Laboratory, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, LA 35294, USA
| | | | | | | | | |
Collapse
|
11
|
Dumont D, Noben JP, Verhaert P, Stinissen P, Robben J. Gel-free analysis of the human brain proteome: application of liquid chromatography and mass spectrometry on biopsy and autopsy samples. Proteomics 2006; 6:4967-77. [PMID: 16912970 DOI: 10.1002/pmic.200600080] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper reports on the findings of the Biomedical Research Institute, as one of the participants in the pilot study of the HUPO Brain Proteome Project. A biopsy and autopsy study sample derived from human brain was distributed among the participants for proteomic analysis. In our laboratory, attention was focused on protein identification using the bottom-up shotgun approach. Protein extracts derived from both samples were trypsinized and analyzed separately by 2-D LC and MS. In a complementary approach, the tryptic digests were analyzed directly by LC-ESI-MS/MS and gas-phase fractionation in the mass spectrometer. Taken together, both proteomic approaches in combination with a stringent evaluation process, resulted in the confident identification of 209 proteins in the human brain samples under investigation.
Collapse
Affiliation(s)
- Debora Dumont
- Hasselt University, Biomedical Research Institute and transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | | | | | | | | |
Collapse
|
12
|
Zahedi RP, Begonja AJ, Gambaryan S, Sickmann A. Phosphoproteomics of human platelets: A quest for novel activation pathways. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1963-76. [PMID: 17049321 DOI: 10.1016/j.bbapap.2006.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 07/28/2006] [Accepted: 08/21/2006] [Indexed: 01/05/2023]
Abstract
Besides their role in hemostasis, platelets are also highly involved in the pathogenesis and progression of cardiovascular diseases. Since important and initial steps of platelet activation and aggregation are regulated by phosphorylation events, a comprehensive study aimed at the characterization of phosphorylation-driven signaling cascades might lead to the identification of new target proteins for clinical research. However, it becomes increasingly evident that only a comprehensive phosphoproteomic approach may help to characterize functional protein networks and their dynamic alteration during physiological and pathophysiological processes in platelets. In this review, we discuss current methodologies in phosphoproteome research including their potentials as well as limitations, from sample preparation to classical approaches like radiolabeling and state-of-the-art mass spectrometry techniques.
Collapse
Affiliation(s)
- René P Zahedi
- Protein Mass Spectrometry and Functional Proteomics Group, Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, Versbacher Str. 9, 97078 Wuerzburg, Germany
| | | | | | | |
Collapse
|
13
|
Browman DT, Resek ME, Zajchowski LD, Robbins SM. Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER. J Cell Sci 2006; 119:3149-60. [PMID: 16835267 DOI: 10.1242/jcs.03060] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Our laboratory was interested in characterizing the molecular composition of non-caveolar lipid rafts. Thus, we generated monoclonal antibodies to lipid raft proteins of human myelomonocytic cells. Two of these proteins, KE04p and C8orf2, were found to be highly enriched in the detergent-insoluble, buoyant fraction of sucrose gradients in a cholesterol-dependent manner. They contain an evolutionarily conserved domain placing them in the prohibitin family of proteins. In contrast to other family members, these two proteins localized to the ER. Furthermore, the extreme N-termini of KE04p and C8orf2 were found to be sufficient for heterologous targeting of GFP to the ER in the absence of classical ER retrieval motifs. We also demonstrate that all prohibitin family members rely on sequences in their extreme N-termini for their distinctive subcellular distributions including the mitochondria, plasma membrane and Golgi vesicles. Owing to their subcellular localization and their presence in lipid rafts, we have named KE04p and C8orf2, ER lipid raft protein (erlin)-1 and erlin-2, respectively. Interestingly, the ER contains relatively low levels of cholesterol and sphingolipids compared with other organelles. Thus, our data support the existence of lipid-raft-like domains within the membranes of the ER.
Collapse
Affiliation(s)
- Duncan T Browman
- Southern Alberta Cancer Research Institute, Departments of Oncology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | | | | | | |
Collapse
|
14
|
Kim BJ, Hood BL, Aragon RA, Hardwick JP, Conrads TP, Veenstra TD, Song BJ. Increased oxidation and degradation of cytosolic proteins in alcohol-exposed mouse liver and hepatoma cells. Proteomics 2006; 6:1250-60. [PMID: 16408314 PMCID: PMC1368983 DOI: 10.1002/pmic.200500447] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We recently developed a sensitive method using biotin-N-maleimide (biotin-NM) as a probe to positively identify oxidized mitochondrial proteins. In this study, biotin-NM was used to identify oxidized cytosolic proteins in alcohol-fed mouse livers. Alcohol treatment for 6 wk elevated the levels of CYP2E1 and nitrotyrosine, a marker of oxidative stress. Markedly increased levels of oxidized proteins were detected in alcohol-fed mouse livers compared to pair-fed controls. The biotin-NM-labeled oxidized proteins from alcohol-exposed mouse livers were subsequently purified with streptavidin-agarose and resolved on 2-DE. More than 90 silver-stained protein spots that displayed differential intensities on 2-D gels were identified by MS. Peptide sequence analysis revealed that many enzymes or proteins involved in stress response, chaperone activity, intermediary metabolism, and antioxidant defense systems such as peroxiredoxin were oxidized after alcohol treatment. Smaller fragments of many proteins were repeatedly detected only in alcohol-fed mice, indicating that many oxidized proteins after alcohol exposure were degraded. Immunoblot results showed that the level of oxidized peroxiredoxin (inactivated) was markedly increased in the alcohol-exposed mouse livers and ethanol-sensitive hepatoma cells compared to the corresponding controls. Our results may explain the underlying mechanism for cellular dysfunction and increased susceptibility to other toxic agents following alcohol-mediated oxidative stress.
Collapse
Affiliation(s)
- Bong-Jo Kim
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Brian L. Hood
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick, MD, USA and
| | - Richard A. Aragon
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - James P. Hardwick
- Department of Biochemistry, Northeastern Ohio University College of Medicine, Rootstown, OH, USA
| | - Thomas P. Conrads
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick, MD, USA and
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick, MD, USA and
| | - Byoung J. Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
- To whom correspondence should be addressed: Dr. B. J. Song, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892-9410, USA. (e-mail); (Fax) 1-301-594-3113
| |
Collapse
|
15
|
Moebius J, Zahedi RP, Lewandrowski U, Berger C, Walter U, Sickmann A. The human platelet membrane proteome reveals several new potential membrane proteins. Mol Cell Proteomics 2005; 4:1754-61. [PMID: 16081409 DOI: 10.1074/mcp.m500209-mcp200] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We present the first focused proteome study on human platelet membranes. Due to the removal of highly abundant cytoskeletal proteins a wide spectrum of known platelet membrane proteins and several new and hypothetical proteins were accessible. In contrast to other proteome studies we focused on prefractionation and purification of membranes from human platelets according to published protocols to reduce sample complexity and enrich interesting membrane proteins. Subsequently protein separation by common one-dimensional SDS-PAGE as well as the combined benzyldimethyl-n-hexadecylammonium chloride/SDS separation technique was performed prior to mass spectrometry analysis by nano-LC-ESI-MS/MS. We demonstrate that the application of both separation systems in parallel is required for maximization of protein tagging out of a complex sample. Furthermore the identification of several potential membrane proteins in human platelets yields new potential targets in functional platelet research.
Collapse
Affiliation(s)
- Jan Moebius
- Protein Mass Spectrometry and Functional Proteomics Group, Rudolf Virchow Center for Experimental Biomedicine, Julius Maximilians University of Wuerzburg, Versbacher Strasse 9, 97078 Wuerzburg, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Breci L, Hattrup E, Keeler M, Letarte J, Johnson R, Haynes PA. Comprehensive proteomics in yeast using chromatographic fractionation, gas phase fractionation, protein gel electrophoresis, and isoelectric focusing. Proteomics 2005; 5:2018-28. [PMID: 15852344 DOI: 10.1002/pmic.200401103] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have investigated the use of a variety of different techniques to identify as many proteins as possible in a yeast lysate, with the aim of investigating the overlap and complementarity of data from different approaches. A standard lysate was prepared from log phase yeast (Saccharomyces cerevisiae). This was then subjected to analysis via five different approaches aimed at identifying as many proteins as possible using an ion trap mass spectrometer. The total number of non-redundant protein identifications from each experiment was: 524 proteins by 2-D (SCX/C18) nanoflow liquid chromatography-liquid chromatography tandem mass spectrometry (nanoLC-LC MS/MS (MudPIT)); 381 proteins by nanoLC-MS/MS with gas phase fractionation by mass range selection; 390 proteins by nanoLC-MS/MS with gas phase fractionation by ion abundance selection; 898 proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation of proteins, in-gel digestion, and nanoLC-MS/MS of gel slices; and 422 proteins by isoelectric focusing of proteins, in-gel digestion and nanoLC-MS/MS of gel slices. The total number of non-redundant protein identifications in the five experiments was 1204. Combining only the two best experiments, the SDS-PAGE gel slices and the Mudpit, produces 1024 proteins identified, more than 85% of the total. Clearly, combining a Mudpit analysis with an SDS-PAGE gel slice experiment gives the greatest amount of protein identification information from a limited amount of sample.
Collapse
Affiliation(s)
- Linda Breci
- Department of Chemistry, The University of Arizona, Tucson, 85721, USA
| | | | | | | | | | | |
Collapse
|
17
|
Suh SK, Hood BL, Kim BJ, Conrads TP, Veenstra TD, Song BJ. Identification of oxidized mitochondrial proteins in alcohol-exposed human hepatoma cells and mouse liver. Proteomics 2005; 4:3401-12. [PMID: 15449375 DOI: 10.1002/pmic.200400971] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Heavy alcohol consumption can damage various cells and organs partly through production of reactive oxygen species (ROS) and mitochondrial dysfunction. Treatment with antioxidants can significantly reduce the degree of damage. Despite well established roles of ROS in alcohol-induced cell injury, the proteins that are selectively oxidized by ROS are poorly characterized. We hypothesized that certain cysteinyl residues of target proteins are oxidized by ROS upon alcohol exposure, and these modified proteins may play roles in mitochondrial dysfunction. A targeted proteomics approach utilizing biotin-N-maleimide (biotin-NM) as a specific probe to label oxidized cysteinyl residues was employed to investigate which mitochondrial proteins are modified during and after alcohol exposure. Human hepatoma HepG2 cells with transduced CYP2E1 (E47 cells) were used as a model to generate ROS through CYP2E1-mediated ethanol metabolism. Following exposure to 100 mM ethanol for 4 and 8 h, the biotin-NM-labeled oxidized proteins were purified with agarose coupled to either streptavidin or monoclonal antibody against biotin. The purified proteins were resolved by two-dimensional gel electrophoresis and protein spots that displayed differential abundances were excised from the gel, in-gel digested with trypsin and analyzed for identity utilizing either matrix-assisted laser desorption-time of flight mass spectrometry or microcapillary reversed-phase liquid chromatography-tandem mass spectrometry. The results demonstrate that heat shock protein 60, protein disulfide isomerase, mitochondrial aldehyde dehydrogenases, prohibitin, and other proteins were oxidized after alcohol exposure. The identity of some of the proteins purified with streptavidin-agarose was also confirmed by immunoblot analyses using the specific antibody to each target protein. This method was also used to identify oxidized mitochondrial proteins in the alcohol-fed mouse liver. These results suggest that exposure to ethanol causes oxidation of various mitochondrial proteins that may negatively affect their function and contribute to alcohol-induced mitochondrial dysfunction and cellular injury.
Collapse
Affiliation(s)
- Soo-Kyung Suh
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | | | | | | | | | | |
Collapse
|
18
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2004. [PMCID: PMC2447433 DOI: 10.1002/cfg.356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|