1
|
Han H, Yang J, Chen W, Li Q, Yang Y, Li Q. A comprehensive review on histone-mediated transfection for gene therapy. Biotechnol Adv 2018; 37:132-144. [PMID: 30472306 DOI: 10.1016/j.biotechadv.2018.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/02/2018] [Accepted: 11/20/2018] [Indexed: 01/18/2023]
Abstract
Histone has been considered to be an effective carrier in non-viral gene delivery due to its unique properties such as efficient DNA binding ability, direct translocation to cytoplasm and favorable nuclear localization ability. Meanwhile, the rapid development of genetic engineering techniques could facilitate the construction of multifunctional fusion proteins based on histone molecules to further improve the transfection efficiency. Remarkably, histone has been demonstrated to achieve gene transfection in a synergistic manner with cationic polymers, affording to a significant improvement of transfection efficiency. In the review, we highlighted the recent developments and future trends in gene delivery mediated by histones or histone-based fusion proteins/peptides. This review also discussed the mechanism of histone-mediated gene transfection and provided an outlook for future therapeutic opportunities in the viewpoint of transfection efficacy and biosafety.
Collapse
Affiliation(s)
- Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenqi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Qing Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Deng X, Zhang G, Zhang L, Feng Y, Li Z, Wu G, Yue Y, Li G, Cao Y, Zhu P. Developing a Novel Gene-Delivery Vector System Using the Recombinant Fusion Protein of Pseudomonas Exotoxin A and Hyperthermophilic Archaeal Histone HPhA. PLoS One 2015; 10:e0142558. [PMID: 26556098 PMCID: PMC4640596 DOI: 10.1371/journal.pone.0142558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/25/2015] [Indexed: 02/06/2023] Open
Abstract
Non-viral gene delivery system with many advantages has a great potential for the future of gene therapy. One inherent obstacle of such approach is the uptake by endocytosis into vesicular compartments. Receptor-mediated gene delivery method holds promise to overcome this obstacle. In this study, we developed a receptor-mediated gene delivery system based on a combination of the Pseudomonas exotoxin A (PE), which has a receptor binding and membrane translocation domain, and the hyperthermophilic archaeal histone (HPhA), which has the DNA binding ability. First, we constructed and expressed the rPE-HPhA fusion protein. We then examined the cytotoxicity and the DNA binding ability of rPE-HPhA. We further assessed the efficiency of transfection of the pEGF-C1 plasmid DNA to CHO cells by the rPE-HPhA system, in comparison to the cationic liposome method. The results showed that the transfection efficiency of rPE-HPhA was higher than that of cationic liposomes. In addition, the rPE-HPhA gene delivery system is non-specific to DNA sequence, topology or targeted cell type. Thus, the rPE-HPhA system can be used for delivering genes of interest into mammalian cells and has great potential to be applied for gene therapy.
Collapse
Affiliation(s)
- Xin Deng
- Experimental Center of the Functional Subjects, Basic Medical Scientific Research College, China Medical University, Shenyang, Liaoning, P.R.China
| | - Guoli Zhang
- Institute of Veterinary Medicine, The Academy of Military Medical Sciences of PLA, Changchun, Jilin, P.R. China
| | - Ling Zhang
- Institute of Veterinary Medicine, The Academy of Military Medical Sciences of PLA, Changchun, Jilin, P.R. China
| | - Yan Feng
- Key Laboratory for Molecular Enzymology, Jilin University, Changchun, Jilin, P.R.China
| | - Zehong Li
- Department Biology and Technology of the Agriculture University of Jilin, Changchun, Jilin, P.R.China
| | - GuangMou Wu
- Institute of Veterinary Medicine, The Academy of Military Medical Sciences of PLA, Changchun, Jilin, P.R. China
| | - Yuhuan Yue
- Institute of Veterinary Medicine, The Academy of Military Medical Sciences of PLA, Changchun, Jilin, P.R. China
| | - Gensong Li
- Experimental Center of the Functional Subjects, Basic Medical Scientific Research College, China Medical University, Shenyang, Liaoning, P.R.China
- Department of Physiology, China Medical University, Shenyang, Liaoning, P.R.China
| | - Yu Cao
- Department of Physiology, China Medical University, Shenyang, Liaoning, P.R.China
| | - Ping Zhu
- Institute of Veterinary Medicine, The Academy of Military Medical Sciences of PLA, Changchun, Jilin, P.R. China
| |
Collapse
|
3
|
Shi H, Han H, Xing Z, Chen J, Wang Y, Zhang A, Shi W, Li Q. A protein–polymer hybrid gene carrier based on thermophilic histone and polyethylenimine. NEW J CHEM 2015. [DOI: 10.1039/c5nj01272d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein–polymer hybrid gene carrier with high transfection efficiency and low cytotoxicity.
Collapse
Affiliation(s)
- Hui Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Zhen Xing
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Jiawen Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Yudi Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Aijun Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Wei Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
4
|
An archaeal histone is required for transformation of Thermococcus kodakarensis. J Bacteriol 2012; 194:6864-74. [PMID: 23065975 DOI: 10.1128/jb.01523-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Archaeal histones wrap DNA into complexes, designated archaeal nucleosomes, that resemble the tetrasome core of a eukaryotic nucleosome. Therefore, all DNA interactions in vivo in Thermococcus kodakarensis, the most genetically versatile model species for archaeal research, must occur in the context of a histone-bound genome. Here we report the construction and properties of T. kodakarensis strains that have TK1413 or TK2289 deleted, the genes that encode HTkA and HTkB, respectively, the two archaeal histones present in this archaeon. All attempts to generate a strain with both TK1413 and TK2289 deleted were unsuccessful, arguing that a histone-mediated event(s) in T. kodakarensis is essential. The HTkA and HTkB amino acid sequences are 84% identical (56 of 67 residues) and 94% similar (63 of 67 residues), but despite this homology and their apparent redundancy in terms of supporting viability, the absence of HTkA and HTkB resulted in differences in growth and in quantitative and qualitative differences in genome transcription. A most surprising result was that the deletion of TK1413 (ΔhtkA) resulted in a T. kodakarensis strain that was no longer amenable to transformation, whereas the deletion of TK2289 (ΔhtkB) had no detrimental effects on transformation. Potential roles for the archaeal histones in regulating gene expression and for HTkA in DNA uptake and recombination are discussed.
Collapse
|
5
|
Han JS, Kim K, Lee M. A high mobility group B-1 box A peptide combined with an artery wall binding peptide targets delivery of nucleic acids to smooth muscle cells. J Cell Biochem 2009; 107:163-70. [PMID: 19288517 DOI: 10.1002/jcb.22112] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The TAT-high mobility group box-1 A box peptide (TAT-HMGB1A) has been reported previously to be able to deliver DNA into cells without cytotoxicity. In this study, an artery wall smooth muscle cell-targeting carrier was developed using TAT-HMGB1A combined with an artery wall binding peptide (ABP). For the production of ABP linked TAT-HMGB1A (TAT-HMGB1A-ABP), pET15b-TAT-HMGB1A-ABP was constructed by inserting the ABP cDNA into pET15b-TAT-HMGB1A. TAT-HMGB1A-ABP was expressed in E. coli and purified by Nickel chelate chromatography. Gel retardation assays showed that TAT-HMGB1A-ABP formed a complex with the plasmid at or above a 5:1 weight ratio (peptide:plasmid). At a 20:1 weight ratio, the zeta-potential was approximately 25 mV and the particle size was approximately 120 nm. TAT-HMGB1A-ABP had the highest transfection efficiency in A7R5 smooth muscle cells at a weight ratio of 20:1. TAT-HMGB1A-ABP exhibited higher transfection efficiency in A7R5 cells than PLL or TAT-HMGB1A, while TAT-HMGB1A-ABP had lower transfection efficiencies in Hep3B hepatoma, 293 kidney, NIH3T3 fibroblast, and Raw264.7 macrophage cells compared with PLL. Together, these results suggest that the ABP moiety of the peptide increased transfection efficiency specifically in smooth muscle cells. In a competition assay, the transfection efficiency of TAT-HMGB1A-ABP in A7R5 cells was reduced by the addition of free ABP. MTT assays showed that TAT-HMGB1A-ABP did not produce any cytotoxicity in A7R5 cells. Therefore, TAT-HMGB1A-ABP may be useful for a targeting gene delivery to smooth muscle cells.
Collapse
Affiliation(s)
- Jee Seung Han
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | | | | |
Collapse
|
6
|
Li YY, Wang R, Zhang GL, Zheng YJ, Zhu P, Zhang ZM, Fang XX, Feng Y. An archaeal histone-like protein mediates efficient p53 gene transfer and facilitates its anti-cancer effect in vitro and in vivo. Cancer Gene Ther 2007; 14:968-75. [PMID: 17853924 DOI: 10.1038/sj.cgt.7701086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The improvement of the transfection efficiency of the non-viral-based gene delivery systems is a key issue for the application in gene therapy. We have previously described an archaeal histone-like protein-based (HPhA) gene delivery system and showed that HPhA formed stable non-covalent complexes with nucleic acids and improved their delivery by using beta-galactosidase as a reporter gene. In this study, the wild-type p53 gene was transfected into the cancer cells using the HPhA as a vector, and the expression level and the activity of p53 gene were evaluated both in vitro and in vivo. Gene expression was determined by real-time reverse transcriptase-PCR and western blotting analysis. The cellular growth inhibition and apoptosis of HPhA-mediated p53 transfection were assessed by XTT (sodium 3'-[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene sulfonic acid hydrate) assay and annexin V-FITC (fluorescein isothiocyanate) staining, respectively. Further more, transfection of HPhA/p53 into CNE (nasopharyngeal carcinoma cell line)-xenografted nude mice was performed and tumor growth was measured. The present study demonstrates that HPhA enhances the efficiency of p53 gene transfer and antitumor activity compared with the widely used Lipofectamine. These results demonstrate that HPhA enhances the in vitro and in vivo efficiency of p53 gene transfer and suggest that it may be served as a promising tool for gene delivery and gene therapy.
Collapse
Affiliation(s)
- Y Y Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wagstaff KM, Jans DA. Nucleocytoplasmic transport of DNA: enhancing non-viral gene transfer. Biochem J 2007; 406:185-202. [PMID: 17680778 DOI: 10.1042/bj20070505] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gene therapy, the correction of dysfunctional or deleted genes by supplying the lacking component, has long been awaited as a means to permanently treat or reverse many genetic disorders. To achieve this, therapeutic DNA must be delivered to the nucleus of cells using a safe and efficient delivery vector. Although viral-based vectors have been utilized extensively due to their innate ability to deliver DNA to intact cells, safety considerations, such as pathogenicity, oncogenicity and the stimulation of an immunological response in the host, remain problematical. There has, however, been much progress in the development of safe non-viral gene-delivery vectors, although they remain less efficient than the viral counterparts. The major limitations of non-viral gene transfer reside in the fact that it must be tailored to overcome the intracellular barriers to DNA delivery that viruses already master, including the cellular and nuclear membranes. In particular, nuclear transport of the therapeutic DNA is known to be the rate-limiting step in the gene-delivery process. Despite this, much progress had been made in recent years in developing novel means to overcome these barriers and efficiently deliver DNA to the nuclei of intact cells. This review focuses on the nucleocytoplasmic delivery of DNA and mechanisms to enhance to non-viral-mediated gene transfer.
Collapse
Affiliation(s)
- Kylie M Wagstaff
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | |
Collapse
|
8
|
Liu H, Söderhäll I. Histone H2A as a transfection agent in crayfish hematopoietic tissue cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:340-6. [PMID: 16999999 DOI: 10.1016/j.dci.2006.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 07/17/2006] [Accepted: 07/19/2006] [Indexed: 05/12/2023]
Abstract
We report a novel and highly efficient dsRNA transfection system based on one of the nuclear proteins, namely, histone H2A. RT-PCR semi-quantitative analysis of silencing target gene shows that the transfection efficiency of histone H2A is higher than Effectene or liposome-based transfection systems. Importantly, the high efficiency of histone H2A was associated with very low toxicity to the transfected crayfish hematopoietic tissue (Hpt) cells. The non-toxicity, effectiveness and specificity of histone H2A as a transfection agent provides a cheap, simple, highly efficient and reproducible gene delivery system, particularly for the sensitive cell cultures of crustacean animals such as crayfish and shrimp.
Collapse
Affiliation(s)
- Haipeng Liu
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, Uppsala 752 36, Sweden
| | | |
Collapse
|
9
|
Kaouass M, Beaulieu R, Balicki D. Histonefection: Novel and potent non-viral gene delivery. J Control Release 2006; 113:245-54. [PMID: 16806557 DOI: 10.1016/j.jconrel.2006.04.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 04/26/2006] [Indexed: 11/21/2022]
Abstract
Protein/peptide-mediated gene delivery has recently emerged as a powerful approach in non-viral gene transfer. In previous studies, we and other groups found that histones efficiently mediate gene transfer (histonefection). Histonefection has been demonstrated to be effective with various members of the histone family. The DNA binding domains and natural nuclear localisation signal sequences make histones excellent candidates for effective gene transfer. In addition, their positive charge promotes binding to anionic molecules and helps them to overcome the negative charge of cells that is an important barrier to cellular penetration. Histonefection appears to have particular promise in cancer gene transfer and therapy.
Collapse
Affiliation(s)
- Mohammadi Kaouass
- Research Centre and Department of Medicine, Centre hospitalier de l'Université de Montréal, Canada
| | | | | |
Collapse
|