1
|
Sun J, Matsubara T, Koide T, Lampi KJ, David LL, Takata T. Characterization of different-sized human αA-crystallin homomers and implications to Asp151 isomerization. PLoS One 2024; 19:e0306856. [PMID: 38991013 PMCID: PMC11238991 DOI: 10.1371/journal.pone.0306856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Site-specific modifications of aspartate residues spontaneously occur in crystallin, the major protein in the lens. One of the primary modification sites is Asp151 in αA-crystallin. Isomerization and racemization alter the crystallin backbone structure, reducing its stability by inducing abnormal crystallin-crystallin interactions and ultimately leading to the insolubilization of crystallin complexes. These changes are considered significant factors in the formation of senile cataracts. However, the mechanisms driving spontaneous isomerization and racemization have not been experimentally demonstrated. In this study, we generated αA-crystallins with different homo-oligomeric sizes and/or containing an asparagine residue at position 151, which is more prone to isomerization and racemization. We characterized their structure, hydrophobicity, chaperone-like function, and heat stability, and examined their propensity for isomerization and racemization. The results show that the two differently sized αA-crystallin variants possessed similar secondary structures but exhibited different chaperone-like functions depending on their oligomeric sizes. The rate of isomerization and racemization of Asp151, as assessed by the deamidation of Asn151, was also found to depend on the oligomeric sizes of αA-crystallin. The predominant isomerization product via deamidation of Asn151 in the different-sized αA-crystallin variants was L-β-Asp in vitro, while various modifications occurred around Asp151 in vivo. The disparity between the findings of this in vitro study and in vivo studies suggests that the isomerization of Asp151 in vivo may be more complex than what occurs in vitro.
Collapse
Affiliation(s)
- Jiayue Sun
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | - Tamaki Koide
- Rexxam Corporation, Chuo-ku, Osaka-shi, Osaka, Japan
| | - Kirsten J. Lampi
- Oregon Health and Science University, Integrative Biosciences, Portland, Oregon, United States of America
| | - Larry L. David
- Oregon Health and Science University, Integrative Biosciences, Portland, Oregon, United States of America
| | - Takumi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, Japan
| |
Collapse
|
2
|
Takata T, Nakamura-Hirota T, Inoue R, Morishima K, Sato N, Sugiyama M, Fujii N. Asp 58 modulates lens αA-crystallin oligomer formation and chaperone function. FEBS J 2018; 285:2263-2277. [PMID: 29676852 DOI: 10.1111/febs.14475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/02/2018] [Accepted: 04/13/2018] [Indexed: 11/28/2022]
Abstract
Senile cataract onset is caused by insolubilization of lens proteins. The lens crystallin protein family correctly orders the formation of homo- or hetero-oligomers in lens fiber cells. Because lens fiber cells do not divide, covalent post-translational modifications, such as isomerization of aspartate residues, accumulate with aging. Although many isomerization sites of αA-crystallin have been reported, their structural and functional contributions have never been identified. In this study, αA-crystallin was extracted from aged human lens and separated into each oligomeric state by size exclusion chromatography and electrophoresis. The novel combination methodology of in-solution/gel tryptic digestion with liquid chromatography equipped with mass spectrometry (LC-MS/MS) was used to evaluate the isomerization of Asp 58. The contributions of isomerization to assembly, solubility, and chaperone functions of αA-crystallin were estimated using a series of mutations of Asp 58 in αA-crystallin. The results indicated that the isomerization of Asp 58 depended on the oligomer size and age of the lens. The substitution of Asp 58 for hydrophobic residues increased αA-crystallin oligomer size and decreased solubility. All substitutions decreased the chaperone function of αA-crystallin for aggregates of bovine βL-crystallin and alcohol dehydrogenase. The data indicated that Asp 58 in αA-crystallin was critical for intermolecular interactions in the lens. Our results also suggested that LC-MS/MS-based isomerization analyses of in-gel-digested products could be useful for investigating the isomerization of Asp residues in oligomeric states. This method could also be used to analyze d/l ratios of amino acid residues in soluble protein aggregates.
Collapse
Affiliation(s)
- Takumi Takata
- Research Reactor Institute, Kyoto University, Osaka, Japan
| | | | - Rintaro Inoue
- Research Reactor Institute, Kyoto University, Osaka, Japan
| | - Ken Morishima
- Research Reactor Institute, Kyoto University, Osaka, Japan
| | - Nobuhiro Sato
- Research Reactor Institute, Kyoto University, Osaka, Japan
| | | | - Noriko Fujii
- Research Reactor Institute, Kyoto University, Osaka, Japan
| |
Collapse
|
3
|
Preis W, Bestehorn A, Buchner J, Haslbeck M. An alternative splice variant of human αA-crystallin modulates the oligomer ensemble and the chaperone activity of α-crystallins. Cell Stress Chaperones 2017; 22:541-552. [PMID: 28214988 PMCID: PMC5465031 DOI: 10.1007/s12192-017-0772-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 01/26/2023] Open
Abstract
In humans, ten genes encode small heat shock proteins with lens αA-crystallin and αB-crystallin representing two of the most prominent members. The canonical isoforms of αA-crystallin and αB-crystallin collaborate in the eye lens to prevent irreversible protein aggregation and preserve visual acuity. α-Crystallins form large polydisperse homo-oligomers and hetero-oligomers and as part of the proteostasis system bind substrate proteins in non-native conformations, thereby stabilizing them. Here, we analyzed a previously uncharacterized, alternative splice variant (isoform 2) of human αA-crystallin with an exchanged N-terminal sequence. This variant shows the characteristic α-crystallin secondary structure, exists on its own predominantly in a monomer-dimer equilibrium, and displays only low chaperone activity. However, the variant is able to integrate into higher order oligomers of canonical αA-crystallin and αB-crystallin as well as their hetero-oligomer. The presence of the variant leads to the formation of new types of higher order hetero-oligomers with an overall decreased number of subunits and enhanced chaperone activity. Thus, alternative mRNA splicing of human αA-crystallin leads to an additional, formerly not characterized αA-crystallin species which is able to modulate the properties of the canonical ensemble of α-crystallin oligomers.
Collapse
Affiliation(s)
- Waldemar Preis
- Department Chemie, Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Annika Bestehorn
- Department Chemie, Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Johannes Buchner
- Department Chemie, Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Martin Haslbeck
- Department Chemie, Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
4
|
Singh MK, Tiwari PK. Cloning & sequence identification of Hsp27 gene and expression analysis of the protein on thermal stress in Lucilia cuprina. INSECT SCIENCE 2016; 23:555-568. [PMID: 25755181 DOI: 10.1111/1744-7917.12216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2015] [Indexed: 06/04/2023]
Abstract
Hsp27, a highly conserved small molecular weight heat shock protein, is widely known to be developmentally regulated and heat inducible. Its role in thermotolerance is also implicated. This study is a sequel of our earlier studies to understand the molecular organization of heat shock genes/proteins and their role in development and thermal adaptation in a sheep pest, Lucilia cuprina (blowfly), which exhibits unusually high adaptability to a variety of environmental stresses, including heat and chemicals. In this report our aim was to understand the evolutionary relationship of Lucilia hsp27 gene/protein with those of other species and its role in thermal adaptation. We sequence characterized the Lchsp27 gene (coding region) and analyzed its expression in various larval and adult tissues under normal as well as heat shock conditions. The nucleotide sequence analysis of 678 bps long-coding region of Lchsp27 exhibited closest evolutionary proximity with Drosophila (90.09%), which belongs to the same order, Diptera. Heat shock caused significant enhancement in the expression of Lchsp27 gene in all the larval and adult tissues examined, however, in a tissue specific manner. Significantly, in Malpighian tubules, while the heat-induced level of hsp27 transcript (mRNA) appeared increased as compared to control, the protein level remained unaltered and nuclear localized. We infer that Lchsp27 may have significant role in the maintenance of cellular homeostasis, particularly, during summer months, when the fly remains exposed to high heat in its natural habitat.
Collapse
Affiliation(s)
- Manish K Singh
- Center for Genomics, Molecular & Human Genetics, Jiwaji University, Gwalior, 474011, India
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Pramod K Tiwari
- Center for Genomics, Molecular & Human Genetics, Jiwaji University, Gwalior, 474011, India
| |
Collapse
|
5
|
Liu L, Chen JY, Yang B, Wang FH, Wang YH, Yun CH. Active-State Structures of a Small Heat-Shock Protein Revealed a Molecular Switch for Chaperone Function. Structure 2015; 23:2066-75. [PMID: 26439766 DOI: 10.1016/j.str.2015.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/27/2015] [Accepted: 08/29/2015] [Indexed: 01/09/2023]
Abstract
Small heat-shock proteins (sHsps) maintain cellular homeostasis by binding to denatured client proteins to prevent aggregation. Numerous studies indicate that the N-terminal domain (NTD) of sHsps is responsible for binding to client proteins, but the binding mechanism and chaperone activity regulation remain elusive. Here, we report the crystal structures of the wild-type and mutants of an sHsp from Sulfolobus solfataricus representing the inactive and active state of this protein, respectively. All three structures reveal well-defined NTD, but their conformations are remarkably different. The mutant NTDs show disrupted helices presenting a reformed hydrophobic surface compatible with recognizing client proteins. Our functional data show that mutating key hydrophobic residues in this region drastically altered the chaperone activity of this sHsp. These data suggest a new model in which a molecular switch located in NTD facilitates conformational changes for client protein binding.
Collapse
Affiliation(s)
- Liang Liu
- Institute of Systems Biomedicine, Department of Biophysics, Beijing Key Laboratory of Tumor Systems Biology and Center for Molecular and Translational Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P.R. China; Co-first author
| | - Ji-Yun Chen
- Institute of Systems Biomedicine, Department of Biophysics, Beijing Key Laboratory of Tumor Systems Biology and Center for Molecular and Translational Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China; Co-first author
| | - Bo Yang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Fang-Hua Wang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, P.R. China
| | - Yong-Hua Wang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, P.R. China.
| | - Cai-Hong Yun
- Institute of Systems Biomedicine, Department of Biophysics, Beijing Key Laboratory of Tumor Systems Biology and Center for Molecular and Translational Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China.
| |
Collapse
|
6
|
Haslbeck M, Peschek J, Buchner J, Weinkauf S. Structure and function of α-crystallins: Traversing from in vitro to in vivo. Biochim Biophys Acta Gen Subj 2015; 1860:149-66. [PMID: 26116912 DOI: 10.1016/j.bbagen.2015.06.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The two α-crystallins (αA- and αB-crystallin) are major components of our eye lenses. Their key function there is to preserve lens transparency which is a challenging task as the protein turnover in the lens is low necessitating the stability and longevity of the constituent proteins. α-Crystallins are members of the small heat shock protein family. αB-crystallin is also expressed in other cell types. SCOPE OF THE REVIEW The review summarizes the current concepts on the polydisperse structure of the α-crystallin oligomer and its chaperone function with a focus on the inherent complexity and highlighting gaps between in vitro and in vivo studies. MAJOR CONCLUSIONS Both α-crystallins protect proteins from irreversible aggregation in a promiscuous manner. In maintaining eye lens transparency, they reduce the formation of light scattering particles and balance the interactions between lens crystallins. Important for these functions is their structural dynamics and heterogeneity as well as the regulation of these processes which we are beginning to understand. However, currently, it still remains elusive to which extent the in vitro observed properties of α-crystallins reflect the highly crowded situation in the lens. GENERAL SIGNIFICANCE Since α-crystallins play an important role in preventing cataract in the eye lens and in the development of diverse diseases, understanding their mechanism and substrate spectra is of importance. To bridge the gap between the concepts established in vitro and the in vivo function of α-crystallins, the joining of forces between different scientific disciplines and the combination of diverse techniques in hybrid approaches are necessary. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Martin Haslbeck
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Jirka Peschek
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| | - Sevil Weinkauf
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| |
Collapse
|
7
|
Posner M, Kiss AJ, Skiba J, Drossman A, Dolinska MB, Hejtmancik JF, Sergeev YV. Functional validation of hydrophobic adaptation to physiological temperature in the small heat shock protein αA-crystallin. PLoS One 2012; 7:e34438. [PMID: 22479631 PMCID: PMC3315530 DOI: 10.1371/journal.pone.0034438] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 03/02/2012] [Indexed: 02/02/2023] Open
Abstract
Small heat shock proteins (sHsps) maintain cellular homeostasis by preventing stress and disease-induced protein aggregation. While it is known that hydrophobicity impacts the ability of sHsps to bind aggregation-prone denaturing proteins, the complex quaternary structure of globular sHsps has made understanding the significance of specific changes in hydrophobicity difficult. Here we used recombinant protein of the lenticular sHsp α A-crystallin from six teleost fishes environmentally adapted to temperatures ranging from -2°C to 40°C to identify correlations between physiological temperature, protein stability and chaperone-like activity. Using sequence and structural modeling analysis we identified specific amino acid differences between the warm adapted zebrafish and cold adapted Antarctic toothfish that could contribute to these correlations and validated the functional consequences of three specific hydrophobicity-altering amino acid substitutions in αA-crystallin. Site directed mutagenesis of three residues in the zebrafish (V62T, C143S, T147V) confirmed that each impacts either protein stability or chaperone-like activity or both, with the V62T substitution having the greatest impact. Our results indicate a role for changing hydrophobicity in the thermal adaptation of α A-crystallin and suggest ways to produce sHsp variants with altered chaperone-like activity. These data also demonstrate that a comparative approach can provide new information about sHsp function and evolution.
Collapse
Affiliation(s)
- Mason Posner
- Department of Biology, Ashland University, Ashland, Ohio, United States of America.
| | | | | | | | | | | | | |
Collapse
|
8
|
The Gln32Lys polymorphism in HSP22 of Zhikong scallop Chlamys farreri is associated with heat tolerance. PLoS One 2011; 6:e28564. [PMID: 22162777 PMCID: PMC3230588 DOI: 10.1371/journal.pone.0028564] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/10/2011] [Indexed: 11/29/2022] Open
Abstract
Background Heat shock protein 22 is a member of small heat shock proteins with molecular chaperone activity. Though their multiple functions have been well characterized, there is no report about the association between the polymorphisms of HSP22 and heat tolerance. Methodology Three single nucleotide polymorphisms were identified in HSP22 from scallop Chlamys farreri (CfHSP22), and the +94 C-A locus was found to be nonsynonymous. Three genotypes at locus +94, A/A, A/C and C/C, were revealed by using Bi-PASA PCR analysis, and their frequencies were 19.5%, 27.6% and 52.9% in the heat resistant stock, while 9.3%, 17.4% and 73.3% in the heat susceptible stock, respectively. The frequency differences of the three genotypes were significant (P<0.05) between the two stocks. After incubating at 30°C for 84 h, the cumulative mortality of scallops with +94 C/C genotype and +94 A/C genotypes was 95% and 90%, respectively, which was significantly higher (P<0.01) than that of scallops with +94 A/A genotype (70%). The molecular chaperone activity of two His-tagged fusion proteins, rCfHSP22Q with +94 C/C genotype and rCfHSP22K with +94 A/A genotype were analyzed by testing the ability of protecting citrate synthase (CS) against thermal inactivation in vitro. After incubated with rCfHSP22Q or rCfHSP22K at 38°C for 1 h, the activity of CS lost 50% and 45%, and then recovered to 89% and 95% of the original activity following 1 h restoration at 22°C, respectively, indicating that the mutation from Gln to Lys at this site might have an impact on molecular chaperone activities of CfHSP22. Conclusions These results implied that the polymorphism at locus +94 of CfHSP22 was associated with heat tolerance of scallop, and the +94 A/A genotype could be a potential marker available in future selection of Zhikong scallop with heat tolerance.
Collapse
|
9
|
Chen Q, Yan M, Xiang F, Zhou X, Liu Y, Zheng F. Characterization of a mutant R11H αB-crystallin associated with human inherited cataract. Biol Chem 2010; 391:1391-400. [DOI: 10.1515/bc.2010.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
αB-Crystallin plays an important part in cataract development. A novel mutation (R11H) was previously detected by our group. In the present study, we set out to investigate the possible molecular mechanism by which the R11H mutation causes cataract. We found that the mutant αB-crystallin exhibits folding defects, decreased surface hydrophobicity and enhanced chaperone-like activity compared with the wild-type αB-crystallin. The mutant protein shows nearly the same molecular mass and thermal stability as the wild-type form. Transfection studies revealed that the R11H mutant was remarkably similar to the wild-type protein in its subcellular distribution, but has an abnormal ability to induce cell apoptosis. These results suggest that the changes in hydrophobic exposure and the abnormal ability to induce programmed cell death of the mutant protein are likely to be responsible for the onset of cataract.
Collapse
|
10
|
Acosta-Sampson L, King J. Partially folded aggregation intermediates of human gammaD-, gammaC-, and gammaS-crystallin are recognized and bound by human alphaB-crystallin chaperone. J Mol Biol 2010; 401:134-52. [PMID: 20621668 DOI: 10.1016/j.jmb.2010.05.067] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 05/20/2010] [Accepted: 05/26/2010] [Indexed: 11/16/2022]
Abstract
Human gamma-crystallins are long-lived, unusually stable proteins of the eye lens exhibiting duplicated, double Greek key domains. The lens also contains high concentrations of the small heat shock chaperone alpha-crystallin, which suppresses aggregation of model substrates in vitro. Mature-onset cataract is believed to represent an aggregated state of partially unfolded and covalently damaged crystallins. Nonetheless, the lack of cell or tissue culture for anucleate lens fibers and the insoluble state of cataract proteins have made it difficult to identify the conformation of the human gamma-crystallin substrate species recognized by human alpha-crystallin. The three major human lens monomeric gamma-crystallins, gammaD, gammaC, and gammaS, all refold in vitro in the absence of chaperones, on dilution from denaturant into buffer. However, off-pathway aggregation of the partially folded intermediates competes with productive refolding. Incubation with human alphaB-crystallin chaperone during refolding suppressed the aggregation pathways of the three human gamma-crystallin proteins. The chaperone did not dissociate or refold the aggregated chains under these conditions. The alphaB-crystallin oligomers formed long-lived stable complexes with their gammaD-crystallin substrates. Using alpha-crystallin chaperone variants lacking tryptophans, we obtained fluorescence spectra of the chaperone-substrate complex. Binding of substrate gamma-crystallins with two or three of the four buried tryptophans replaced by phenylalanines showed that the bound substrate remained in a partially folded state with neither domain native-like. These in vitro results provide support for protein unfolding/protein aggregation models for cataract, with alpha-crystallin suppressing aggregation of damaged or unfolded proteins through early adulthood but becoming saturated with advancing age.
Collapse
Affiliation(s)
- Ligia Acosta-Sampson
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 68-330, Cambridge, MA 02139, USA
| | | |
Collapse
|
11
|
Santhoshkumar P, Murugesan R, Sharma KK. Deletion of (54)FLRAPSWF(61) residues decreases the oligomeric size and enhances the chaperone function of alphaB-crystallin. Biochemistry 2009; 48:5066-73. [PMID: 19388699 DOI: 10.1021/bi900085v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AlphaB-crystallin is a member of the small heat shock protein family and is known to have chaperone activity. Using a peptide scan approach, we previously determined that regions 42-57, 60-71, and 88-123 in alphaB-crystallin interact with alphaA-crystallin during heterooligomer formation. To further characterize the significance of the N-terminal domain of alphaB-crystallin, we prepared a deletion mutant that lacks residues (54)FLRAPSWF(61) (alphaBDelta54-61) and found that the absence of residues 54-61 in alphaB-crystallin significantly decreased the homooligomeric mass of alphaB-crystallin. The average oligomeric mass of wild-type alphaB-crystallin and of alphaBDelta54-61, calculated using multiangle light scattering, was 624 and 382 kDa, respectively. The mutant subunits aggregate to form smaller, less-compact oligomers with a 4-fold increase in subunit exchange rate. Deletion of the 54-61 region resulted in a 50% decrease in intrinsic tryptophan fluorescence. The alphaBDelta54-61 mutant showed a 2-fold increase in 1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid (bis-ANS) binding as compared to the wild-type protein, suggesting increased hydrophobicity of the mutant protein. Accompanying the evidence of increased hydrophobicity in the deletion mutant was a 10-fold increase in antiaggregation activity. Homooligomers of 6HalphaA (750 kDa) readily exchanged subunits with alphaBDelta54-61 homooligomers at 37 degrees C, forming heterooligomers with an intermediate mass of 625 kDa. Our data suggest that residues (54)FLRAPSWF(61) contribute to the higher order assembly of alphaB-crystallin oligomers. Residues (54)FLRAPSWF(61) in alphaB-crystallin are not essential for target protein binding during chaperone action, but this region apparently has a role in the chaperone activity of native alphaB-crystallin.
Collapse
Affiliation(s)
- Puttur Santhoshkumar
- Department of Ophthalmology, University of Missouri, Columbia, Missouri 65212, USA
| | | | | |
Collapse
|
12
|
Park KS, Han BG, Lee KH, Kim DS, Kim JM, Jeon H, Kim HS, Suh SW, Lee EH, Kim SY, Lee BI. Depletion of nucleophosmin via transglutaminase 2 cross-linking increases drug resistance in cancer cells. Cancer Lett 2008; 274:201-7. [PMID: 18851895 DOI: 10.1016/j.canlet.2008.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 07/19/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
Abstract
It has been suggested that nucleophosmin has an anti-apoptotic function via Bax binding. We found that nucleophosmin is a substrate of transglutaminase 2 (TGase 2) in cancer cells. Increased expression of TGase 2 expression is highly associated with drug resistance, and polymerization of nucleophosmin by TGase 2 also can be correlated with the drug resistance of cancer cells. In the present study, an accumulation of nucleophosmin in cytosol was detected when doxorubicin was treated to cancer cells, and it was found, moreover, that an increase of cytosolic nucleophosmin can result in drug-induced apoptosis. Nucleophosmin was polymerized by TGase 2, and the polymerization was inhibited with the TGase 2 inhibitor, cystamine, in vitro. The nucleophosmin level in the cytosolic cell fraction was reduced when TGase 2 was expressed, and the reduced nucleophosmin level was rescued by cystamine treatment. Moreover, nucleophosmin cross-linked by TGase 2 was eradicated in MCF7 cells via the ubiquitin-proteasomal pathway. In parallel with this nucleophosmin-level restoration, the pro-apoptotic Bax protein level was increased. Therefore, depletion of cytosolic nucleophosmin by TGase 2 can decrease Bax protein stability and lead to anti-apoptosis. Drug-resistant cancer cells became sensitive to doxorubicin treatment when nucleophosmin was expressed in cytosol. Taking these results together, it can be concluded that TGase 2 inhibits accumulation of cytosolic nucleophosmin through polymerization, which results in drug resistance in cancer cells.
Collapse
Affiliation(s)
- Kang-Seo Park
- Molecular Oncology Branch, Division of Basic and Applied Sciences, Research Institute, National Cancer Center, Gyeonggi 411-769, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cataract mutation P20S of αB-crystallin impairs chaperone activity of αA-crystallin and induces apoptosis of human lens epithelial cells. Biochim Biophys Acta Mol Basis Dis 2008; 1782:303-9. [DOI: 10.1016/j.bbadis.2008.01.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/26/2008] [Accepted: 01/29/2008] [Indexed: 11/18/2022]
|
14
|
Kasakov AS, Bukach OV, Seit-Nebi AS, Marston SB, Gusev NB. Effect of mutations in the β5-β7 loop on the structure and properties of human small heat shock protein HSP22 (HspB8, H11). FEBS J 2007; 274:5628-42. [DOI: 10.1111/j.1742-4658.2007.06086.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
|
16
|
Sun Y, MacRae TH. Characterization of novel sequence motifs within N- and C-terminal extensions of p26, a small heat shock protein from Artemia franciscana. FEBS J 2005; 272:5230-43. [PMID: 16218954 DOI: 10.1111/j.1742-4658.2005.04920.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The small heat shock proteins function as molecular chaperones, an activity often requiring reversible oligomerization and which protects against irreversible protein denaturation. An abundantly produced small heat shock protein termed p26 is thought to contribute to the remarkable stress resistance exhibited by encysted embryos of the crustacean, Artemia franciscana. Three novel sequence motifs termed G, R and TS were individually deleted from p26 by site-directed mutagenesis. G encompasses residues G8-G29, a glycine-enriched region, and R includes residues R36-R45, an arginine-enhanced sequence, both in the amino terminus. TS, composed of residues T169-T186, resides in the carboxy-extension and is augmented in threonine and serine. Deletion of R had more influence than removal of G on p26 oligomerization and chaperoning, the latter determined by thermotolerance induction in Escherichia coli, protection of insulin and citrate synthase from dithiothreitol- and heat-induced aggregation, respectively, and preservation of citrate synthase activity upon heating. Oligomerization of the TS and R variants was similar, but the TS deletion was slightly more effective than R as a chaperone. The extent of p26 structural perturbation introduced by internal deletions, including modification of intrinsic fluorescence, 1-anilino-8-naphthalene-sulphonate binding and secondary structure, paralleled reductions in oligomerization and chaperoning. Three-dimensional modeling of p26 based on wheat Hsp16.9 crystal structure indicated many similarities between the two proteins, including peptide loops associated with secondary structure elements. Loop 1 of p26 was deleted in the G variant with minimal effect on oligomerization and chaperoning, whereas loop 3, containing beta-strand 6 was smaller than the corresponding loop in Hsp16.9, which may influence p26 function.
Collapse
Affiliation(s)
- Yu Sun
- Department of Biology, Dalhousie University, Halifax, Canada
| | | |
Collapse
|