1
|
Gotte G. Effects of Pathogenic Mutants of the Neuroprotective RNase 5-Angiogenin in Amyotrophic Lateral Sclerosis (ALS). Genes (Basel) 2024; 15:738. [PMID: 38927674 PMCID: PMC11202570 DOI: 10.3390/genes15060738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that affects the motoneurons. More than 40 genes are related with ALS, and amyloidogenic proteins like SOD1 and/or TDP-43 mutants are directly involved in the onset of ALS through the formation of polymorphic fibrillogenic aggregates. However, efficacious therapeutic approaches are still lacking. Notably, heterozygous missense mutations affecting the gene coding for RNase 5, an enzyme also called angiogenin (ANG), were found to favor ALS onset. This is also true for the less-studied but angiogenic RNase 4. This review reports the substrate targets and illustrates the neuroprotective role of native ANG in the neo-vascularization of motoneurons. Then, it discusses the molecular determinants of many pathogenic ANG mutants, which almost always cause loss of function related to ALS, resulting in failures in angiogenesis and motoneuron protection. In addition, ANG mutations are sometimes combined with variants of other factors, thereby potentiating ALS effects. However, the activity of the native ANG enzyme should be finely balanced, and not excessive, to avoid possible harmful effects. Considering the interplay of these angiogenic RNases in many cellular processes, this review aims to stimulate further investigations to better elucidate the consequences of mutations in ANG and/or RNase 4 genes, in order to achieve early diagnosis and, possibly, successful therapies against ALS.
Collapse
Affiliation(s)
- Giovanni Gotte
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| |
Collapse
|
2
|
Noro I, Bettin I, Fasoli S, Smania M, Lunardi L, Giannini M, Andreoni L, Montioli R, Gotte G. Human RNase 1 can extensively oligomerize through 3D domain swapping thanks to the crucial contribution of its C-terminus. Int J Biol Macromol 2023; 249:126110. [PMID: 37536419 DOI: 10.1016/j.ijbiomac.2023.126110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Human ribonuclease (RNase) 1 and bovine RNase A are the proto-types of the secretory "pancreatic-type" (pt)-RNase super-family. RNase A can oligomerize through the 3D domain swapping (DS) mechanism upon acetic acid (HAc) lyophilisation, producing enzymatically active oligomeric conformers by swapping both N- and C-termini. Also some RNase 1 mutants were found to self-associate through 3D-DS, however forming only N-swapped dimers. Notably, enzymatically active dimers and larger oligomers of wt-RNase 1 were collected here, in higher amount than RNase A, from HAc lyophilisation. In particular, RNase 1 self-associates through the 3D-DS of its N-terminus and, at a higher extent, of the C-terminus. Since RNase 1 is four-residues longer than RNase A, we further analyzed its oligomerization tendency in a mutant lacking the last four residues. The C-terminus role has been investigated also in amphibian onconase (ONC®), a pt-RNase that can form only a N-swapped dimer, since its C-terminus, that is three-residues longer than RNase A, is locked by a disulfide bond. While ONC mutants designed to unlock or cut this constraint were almost unable to dimerize, the RNase 1 mutant self-associated at a higher extent than the wt, suggesting a specific role of the C-terminus in the oligomerization of different RNases. Overall, RNase 1 reaches here the highest ability, among pt-RNases, to extensively self-associate through 3D-DS, paving the way for new investigations on the structural and biological properties of its oligomers.
Collapse
Affiliation(s)
- Irene Noro
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Ilaria Bettin
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Sabrina Fasoli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Marcello Smania
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Luca Lunardi
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Michele Giannini
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Leonardo Andreoni
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Riccardo Montioli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
3
|
Slow Evolution toward “Super-Aggregation” of the Oligomers Formed through the Swapping of RNase A N-Termini: A Wish for Amyloidosis? Int J Mol Sci 2022; 23:ijms231911192. [PMID: 36232496 PMCID: PMC9569824 DOI: 10.3390/ijms231911192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Natively monomeric RNase A can oligomerize upon lyophilization from 40% acetic acid solutions or when it is heated at high concentrations in various solvents. In this way, it produces many dimeric or oligomeric conformers through the three-dimensional domain swapping (3D-DS) mechanism involving both RNase A N- or/and C-termini. Here, we found many of these oligomers evolving toward not negligible amounts of large derivatives after being stored for up to 15 months at 4 °C in phosphate buffer. We call these species super-aggregates (SAs). Notably, SAs do not originate from native RNase A monomer or from oligomers characterized by the exclusive presence of the C-terminus swapping of the enzyme subunits as well. Instead, the swapping of at least two subunits’ N-termini is mandatory to produce them. Through immunoblotting, SAs are confirmed to derive from RNase A even if they retain only low ribonucleolytic activity. Then, their interaction registered with Thioflavin-T (ThT), in addition to TEM analyses, indicate SAs are large and circular but not “amyloid-like” derivatives. This confirms that RNase A acts as an “auto-chaperone”, although it displays many amyloid-prone short segments, including the 16–22 loop included in its N-terminus. Therefore, we hypothesize the opening of RNase A N-terminus, and hence its oligomerization through 3D-DS, may represent a preliminary step favoring massive RNase A aggregation. Interestingly, this process is slow and requires low temperatures to limit the concomitant oligomers’ dissociation to the native monomer. These data and the hypothesis proposed are discussed in the light of protein aggregation in general, and of possible future applications to contrast amyloidosis.
Collapse
|
4
|
Gotte G, Campagnari R, Loreto D, Bettin I, Calzetti F, Menegazzi M, Merlino A. The crystal structure of the domain-swapped dimer of onconase highlights some catalytic and antitumor activity features of the enzyme. Int J Biol Macromol 2021; 191:560-571. [PMID: 34563576 DOI: 10.1016/j.ijbiomac.2021.09.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Onconase (ONC) is a monomeric amphibian "pancreatic-type" RNase endowed with remarkable anticancer activity. ONC spontaneously forms traces of a dimer (ONC-D) in solution, while larger amounts can be formed when ONC is lyophilized from mildly acidic solutions. Here, we report the crystal structure of ONC-D and analyze its catalytic and antitumor activities in comparison to ONC. ONC-D forms via the three-dimensional swapping of the N-terminal α-helix between two monomers, but it displays a significantly different quaternary structure from that previously modeled [Fagagnini A et al., 2017, Biochem J 474, 3767-81], and based on the crystal structure of the RNase A N-terminal swapped dimer. ONC-D presents a variable quaternary assembly deriving from a variable open interface, while it retains a catalytic activity that is similar to that of ONC. Notably, ONC-D displays antitumor activity against two human melanoma cell lines, although it exerts a slightly lower cytostatic effect than the monomer. The inhibition of melanoma cell proliferation by ONC or ONC-D is associated with the reduction of the expression of the anti-apoptotic B cell lymphoma 2 (Bcl2), as well as of the total expression and phosphorylation of the Signal Transducer and Activator of Transcription (STAT)-3. Phosphorylation is inhibited in both STAT3 Tyr705 and Ser727 key-residues, as well as in its upstream tyrosine-kinase Src. Consequently, both ONC species should exert their anti-cancer action by inhibiting the pro-tumor pleiotropic STAT3 effects deriving either by its phospho-tyrosine activation or by its non-canonical signaling pathways. Both ONC species, indeed, increase the portion of A375 cells undergoing apoptotic cell death. This study expands the variety of RNase domain-swapped dimeric structures, underlining the unpredictability of the open interface arrangement upon domain swapping. Structural data also offer valuable insights to analyze the differences in the measured ONC or ONC-D biological activities.
Collapse
Affiliation(s)
- Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Domenico Loreto
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - Ilaria Bettin
- Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Federica Calzetti
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy.
| |
Collapse
|
5
|
Dimerization of Human Angiogenin and of Variants Involved in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms221810068. [PMID: 34576228 PMCID: PMC8468037 DOI: 10.3390/ijms221810068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022] Open
Abstract
Human Angiogenin (hANG, or ANG, 14.1 kDa) promotes vessel formation and is also called RNase 5 because it is included in the pancreatic-type ribonuclease (pt-RNase) super-family. Although low, its ribonucleolytic activity is crucial for angiogenesis in tumor tissues but also in the physiological development of the Central Nervous System (CNS) neuronal progenitors. Nevertheless, some ANG variants are involved in both neurodegenerative Parkinson disease (PD) and Amyotrophic Lateral Sclerosis (ALS). Notably, some pt-RNases acquire new biological functions upon oligomerization. Considering neurodegenerative diseases correlation with massive protein aggregation, we analyzed the aggregation propensity of ANG and of three of its pathogenic variants, namely H13A, S28N, and R121C. We found no massive aggregation, but wt-ANG, as well as S28N and R121C variants, can form an enzymatically active dimer, which is called ANG-D. By contrast, the enzymatically inactive H13A-ANG does not dimerize. Corroborated by a specific cross-linking analysis and by the behavior of H13A-ANG that in turn lacks one of the two His active site residues necessary for pt-RNases to self-associate through the three-dimensional domain swapping (3D-DS), we demonstrate that ANG actually dimerizes through 3D-DS. Then, we deduce by size exclusion chromatography (SEC) and modeling that ANG-D forms through the swapping of ANG N-termini. In light of these novelties, we can expect future investigations to unveil other ANG determinants possibly related with the onset and/or development of neurodegenerative pathologies.
Collapse
|
6
|
Montioli R, Campagnari R, Fasoli S, Fagagnini A, Caloiu A, Smania M, Menegazzi M, Gotte G. RNase A Domain-Swapped Dimers Produced Through Different Methods: Structure-Catalytic Properties and Antitumor Activity. Life (Basel) 2021; 11:life11020168. [PMID: 33669993 PMCID: PMC7926746 DOI: 10.3390/life11020168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Upon oligomerization, RNase A can acquire important properties, such as cytotoxicity against leukemic cells. When lyophilized from 40% acetic acid solutions, the enzyme self-associates through the so-called three-dimensional domain swapping (3D-DS) mechanism involving both N- and/or C-terminals. The same species are formed if the enzyme is subjected to thermal incubation in various solvents, especially in 40% ethanol. We evaluated here if significant structural modifications might occur in RNase A N- or C-swapped dimers and/or in the residual monomer(s), as a function of the oligomerization protocol applied. We detected that the monomer activity vs. ss-RNA was partly affected by both protocols, although the protein does not suffer spectroscopic alterations. Instead, the two N-swapped dimers showed differences in the fluorescence emission spectra but almost identical enzymatic activities, while the C-swapped dimers displayed slightly different activities vs. both ss- or ds-RNA substrates together with not negligible fluorescence emission alterations within each other. Besides these results, we also discuss the reasons justifying the different relative enzymatic activities displayed by the N-dimers and C-dimers. Last, similarly with data previously registered in a mouse model, we found that both dimeric species significantly decrease human melanoma A375 cell viability, while only N-dimers reduce human melanoma MeWo cell growth.
Collapse
Affiliation(s)
- Riccardo Montioli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Sabrina Fasoli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Andrea Fagagnini
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Andra Caloiu
- Department of Microbiology and Virology, Wexham Park Hospital, Wexham Road, Slough SL24HL, Berkshire, UK;
| | - Marcello Smania
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
- Correspondence: (M.M.); (G.G.); Tel.: +39-045-8027168 (M.M.); +39-045-8027694 (G.G.)
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
- Correspondence: (M.M.); (G.G.); Tel.: +39-045-8027168 (M.M.); +39-045-8027694 (G.G.)
| |
Collapse
|
7
|
Fagagnini A, Garavís M, Gómez-Pinto I, Fasoli S, Gotte G, Laurents DV. NMR Characterization of Angiogenin Variants and tRNA Ala Products Impacting Aberrant Protein Oligomerization. Int J Mol Sci 2021; 22:1439. [PMID: 33535464 PMCID: PMC7867098 DOI: 10.3390/ijms22031439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/25/2022] Open
Abstract
Protein oligomerization is key to countless physiological processes, but also to abnormal amyloid conformations implicated in over 25 mortal human diseases. Human Angiogenin (h-ANG), a ribonuclease A family member, produces RNA fragments that regulate ribosome formation, the creation of new blood vessels and stress granule function. Too little h-ANG activity leads to abnormal protein oligomerization, resulting in Amyotrophic Lateral Sclerosis (ALS) or Parkinson's disease. While a score of disease linked h-ANG mutants has been studied by X-ray diffraction, some elude crystallization. There is also a debate regarding the structure that RNA fragments adopt after cleavage by h-ANG. Here, to better understand the beginning of the process that leads to aberrant protein oligomerization, the solution secondary structure and residue-level dynamics of WT h-ANG and two mutants i.e., H13A and R121C, are characterized by multidimensional heteronuclear NMR spectroscopy under near-physiological conditions. All three variants are found to adopt well folded and highly rigid structures in the solution, although the elements of secondary structure are somewhat shorter than those observed in crystallography studies. R121C alters the environment of nearby residues only. By contrast, the mutation H13A affects local residues as well as nearby active site residues K40 and H114. The conformation characterization by CD and 1D 1H NMR spectroscopies of tRNAAla before and after h-ANG cleavage reveals a retention of the duplex structure and little or no G-quadruplex formation.
Collapse
Affiliation(s)
- Andrea Fagagnini
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Sezione di Chimica Biologica, Università di Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (A.F.); (S.F.)
| | - Miguel Garavís
- Instituto de Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, c/Serrano 119, E-28006 Madrid, Spain; (M.G.); (I.G.-P.)
| | - Irene Gómez-Pinto
- Instituto de Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, c/Serrano 119, E-28006 Madrid, Spain; (M.G.); (I.G.-P.)
| | - Sabrina Fasoli
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Sezione di Chimica Biologica, Università di Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (A.F.); (S.F.)
| | - Giovanni Gotte
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Sezione di Chimica Biologica, Università di Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (A.F.); (S.F.)
| | - Douglas V. Laurents
- Instituto de Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, c/Serrano 119, E-28006 Madrid, Spain; (M.G.); (I.G.-P.)
| |
Collapse
|
8
|
Dudkina EV, Ulyanova VV, Ilinskaya ON. Supramolecular Organization As a Factor of Ribonuclease Cytotoxicity. Acta Naturae 2020; 12:24-33. [PMID: 33173594 PMCID: PMC7604891 DOI: 10.32607/actanaturae.11000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/29/2020] [Indexed: 11/28/2022] Open
Abstract
One of the approaches used to eliminate tumor cells is directed destruction/modification of their RNA molecules. In this regard, ribonucleases (RNases) possess a therapeutic potential that remains largely unexplored. It is believed that the biological effects of secreted RNases, namely their antitumor and antiviral properties, derive from their catalytic activity. However, a number of recent studies have challenged the notion that the activity of RNases in the manifestation of selective cytotoxicity towards cancer cells is exclusively an enzymatic one. In this review, we have analyzed available data on the cytotoxic effects of secreted RNases, which are not associated with their catalytic activity, and we have provided evidence that the most important factor in the selective apoptosis-inducing action of RNases is the structural organization of these enzymes, which determines how they interact with cell components. The new idea on the preponderant role of non-catalytic interactions between RNases and cancer cells in the manifestation of selective cytotoxicity will contribute to the development of antitumor RNase-based drugs.
Collapse
Affiliation(s)
- E. V. Dudkina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008 Russia
| | - V. V. Ulyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008 Russia
| | - O. N. Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008 Russia
| |
Collapse
|
9
|
Gotte G, Menegazzi M. Biological Activities of Secretory RNases: Focus on Their Oligomerization to Design Antitumor Drugs. Front Immunol 2019; 10:2626. [PMID: 31849926 PMCID: PMC6901985 DOI: 10.3389/fimmu.2019.02626] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Ribonucleases (RNases) are a large number of enzymes gathered into different bacterial or eukaryotic superfamilies. Bovine pancreatic RNase A, bovine seminal BS-RNase, human pancreatic RNase 1, angiogenin (RNase 5), and amphibian onconase belong to the pancreatic type superfamily, while binase and barnase are in the bacterial RNase N1/T1 family. In physiological conditions, most RNases secreted in the extracellular space counteract the undesired effects of extracellular RNAs and become protective against infections. Instead, if they enter the cell, RNases can digest intracellular RNAs, becoming cytotoxic and having advantageous effects against malignant cells. Their biological activities have been investigated either in vitro, toward a number of different cancer cell lines, or in some cases in vivo to test their potential therapeutic use. However, immunogenicity or other undesired effects have sometimes been associated with their action. Nevertheless, the use of RNases in therapy remains an appealing strategy against some still incurable tumors, such as mesothelioma, melanoma, or pancreatic cancer. The RNase inhibitor (RI) present inside almost all cells is the most efficacious sentry to counteract the ribonucleolytic action against intracellular RNAs because it forms a tight, irreversible and enzymatically inactive complex with many monomeric RNases. Therefore, dimerization or multimerization could represent a useful strategy for RNases to exert a remarkable cytotoxic activity by evading the interaction with RI by steric hindrance. Indeed, the majority of the mentioned RNases can hetero-dimerize with antibody derivatives, or even homo-dimerize or multimerize, spontaneously or artificially. This can occur through weak interactions or upon introducing covalent bonds. Immuno-RNases, in particular, are fusion proteins representing promising drugs by combining high target specificity with easy delivery in tumors. The results concerning the biological features of many RNases reported in the literature are described and discussed in this review. Furthermore, the activities displayed by some RNases forming oligomeric complexes, the mechanisms driving toward these supramolecular structures, and the biological rebounds connected are analyzed. These aspects are offered with the perspective to suggest possible efficacious therapeutic applications for RNases oligomeric derivatives that could contemporarily lack, or strongly reduce, immunogenicity and other undesired side-effects.
Collapse
Affiliation(s)
- Giovanni Gotte
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marta Menegazzi
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Oroz J, Laurents DV. RNA binding proteins: Diversity from microsurgeons to cowboys. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194398. [PMID: 31271896 DOI: 10.1016/j.bbagrm.2019.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 01/21/2023]
Abstract
The conformation and mechanism of proteins that degrade and bind RNA, which has provided key insights into post-transcriptional gene regulation, is explored here. During the twentieth century's last decades, the characterization of ribonucleases and RNA binding domains revealed the diversity of their reaction mechanisms and modes of RNA recognition, and the bases of protein folding, substrate specificity and binding affinity. More recent research showed how these domains combine through oligomerization or genetic recombination to create larger proteins with highly specific and readily programmable ribonucleolytic activity. In the last 15 years, the study of the capacity of proteins, usually disordered, to pool RNAs into discrete, non-aqueous microdroplets to facilitate their transport, modification and degradation - analogous to cowboys herding cattle - has advanced our comprehension of gene expression. Finally, the current uses of RNA binding proteins and the future applications of protein/RNA microdroplets are highlighted.
Collapse
Affiliation(s)
- Javier Oroz
- "Rocasolano" Institute of Physical Chemistry, Spanish National Research Council, Serrano 119, Madrid 28006, Spain
| | - Douglas V Laurents
- "Rocasolano" Institute of Physical Chemistry, Spanish National Research Council, Serrano 119, Madrid 28006, Spain.
| |
Collapse
|
11
|
Characterization of an RNase with two catalytic centers. Human RNase6 catalytic and phosphate-binding site arrangement favors the endonuclease cleavage of polymeric substrates. Biochim Biophys Acta Gen Subj 2018; 1863:105-117. [PMID: 30287244 DOI: 10.1016/j.bbagen.2018.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/03/2018] [Accepted: 09/27/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Human RNase6 is a small cationic antimicrobial protein that belongs to the vertebrate RNaseA superfamily. All members share a common catalytic mechanism, which involves a conserved catalytic triad, constituted by two histidines and a lysine (His15/His122/Lys38 in RNase6 corresponding to His12/His119/Lys41 in RNaseA). Recently, our first crystal structure of human RNase6 identified an additional His pair (His36/His39) and suggested the presence of a secondary active site. METHODS In this work we have explored RNase6 and RNaseA subsite architecture by X-ray crystallography, site-directed mutagenesis and kinetic characterization. RESULTS The analysis of two novel crystal structures of RNase6 in complex with phosphate anions at atomic resolution locates a total of nine binding sites and reveals the contribution of Lys87 to phosphate-binding at the secondary active center. Contribution of the second catalytic triad residues to the enzyme activity is confirmed by mutagenesis. RNase6 catalytic site architecture has been compared with an RNaseA engineered variant where a phosphate-binding subsite is converted into a secondary catalytic center (RNaseA-K7H/R10H). CONCLUSIONS We have identified the residues that participate in RNase6 second catalytic triad (His36/His39/Lys87) and secondary phosphate-binding sites. To note, residues His39 and Lys87 are unique within higher primates. The RNaseA/RNase6 side-by-side comparison correlates the presence of a dual active site in RNase6 with a favored endonuclease-type cleavage pattern. GENERAL SIGNIFICANCE An RNase dual catalytic and extended binding site arrangement facilitates the cleavage of polymeric substrates. This is the first report of the presence of two catalytic centers in a single monomer within the RNaseA superfamily.
Collapse
|
12
|
Onconase dimerization through 3D domain swapping: structural investigations and increase in the apoptotic effect in cancer cells. Biochem J 2017; 474:3767-3781. [PMID: 28963346 DOI: 10.1042/bcj20170541] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 11/17/2022]
Abstract
Onconase® (ONC), a protein extracted from the oocytes of the Rana pipiens frog, is a monomeric member of the secretory 'pancreatic-type' RNase superfamily. Interestingly, ONC is the only monomeric ribonuclease endowed with a high cytotoxic activity. In contrast with other monomeric RNases, ONC displays a high cytotoxic activity. In this work, we found that ONC spontaneously forms dimeric traces and that the dimer amount increases about four times after lyophilization from acetic acid solutions. Differently from RNase A (bovine pancreatic ribonuclease) and the bovine seminal ribonuclease, which produce N- and C-terminal domain-swapped conformers, ONC forms only one dimer, here named ONC-D. Cross-linking with divinylsulfone reveals that this dimer forms through the three-dimensional domain swapping of its N-termini, being the C-terminus blocked by a disulfide bond. Also, a homology model is proposed for ONC-D, starting from the well-known structure of RNase A N-swapped dimer and taking into account the results obtained from spectroscopic and stability analyses. Finally, we show that ONC is more cytotoxic and exerts a higher apoptotic effect in its dimeric rather than in its monomeric form, either when administered alone or when accompanied by the chemotherapeutic drug gemcitabine. These results suggest new promising implications in cancer treatment.
Collapse
|
13
|
Fagagnini A, Montioli R, Caloiu A, Ribó M, Laurents DV, Gotte G. Extensive deamidation of RNase A inhibits its oligomerization through 3D domain swapping. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:76-87. [PMID: 27783927 DOI: 10.1016/j.bbapap.2016.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/03/2016] [Accepted: 10/20/2016] [Indexed: 12/27/2022]
Abstract
Bovine pancreatic ribonuclease A (RNase A) is the monomeric prototype of the so-called secretory 'pancreatic-type' RNase super-family. Like the naturally domain-swapped dimeric bovine seminal variant, BS-RNase, and its glycosylated RNase B isoform, RNase A forms N- and C-terminal 3D domain-swapped oligomers after lyophilization from acid solutions, or if subjected to thermal denaturation at high protein concentration. All mentioned RNases can undergo deamidation at Asn67, forming Asp or isoAsp derivatives that modify the protein net charge and consequently its enzymatic activity. In addition, deamidation slightly affects RNase B self-association through the 3D domain swapping (3D-DS) mechanism. We report here the influence of extensive deamidation on RNase A tendency to oligomerize through 3D-DS. In particular, deamidation of Asn67 alone slightly decreases the propensity of the protein to oligomerize, with the Asp derivative being less affected than the isoAsp one. Contrarily, the additional Asp and/or isoAsp conversion of residues other than N67 almost nullifies RNase A oligomerization capability. In addition, Gln deamidation, although less kinetically favorable, may affect RNase A self-association. Using 2D and 3D NMR we identified the Asn/Gln residues most prone to undergo deamidation. Together with CD spectroscopy, NMR also indicates that poly-deamidated RNase A generally maintains its native tertiary structure. Again, we investigated in silico the effect of the residues undergoing deamidation on RNase A dimers structures. Finally, the effect of deamidation on RNase A oligomerization is discussed in comparison with studies on deamidation-prone proteins involved in amyloid formation.
Collapse
Affiliation(s)
- Andrea Fagagnini
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Riccardo Montioli
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Andra Caloiu
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Marc Ribó
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, 17071, y Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Douglas V Laurents
- Instituto de Quimica Fisica "Rocasolano" (C.S.I.C.), Serrano 119, E-28006 Madrid, Spain
| | - Giovanni Gotte
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
14
|
Dinda AK, Chattaraj S, Ghosh S, Tripathy DR, Dasgupta S. DNA melting properties of the dityrosine cross-linked dimer of Ribonuclease A. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:535-543. [PMID: 27475778 DOI: 10.1016/j.jphotobiol.2016.06.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 11/19/2022]
Abstract
Several DNA binding proteins exist in dimeric form when bound with DNA to be able to exhibit various biological processes such as DNA repair, DNA replication and gene expression. Various dimeric forms of Ribonuclease A (RNase A) and other members of the ribonuclease A superfamily are endowed with a multitude of biological activities such as antitumor and antiviral activity. In the present study, we have compared the DNA binding properties between the RNase A monomer and the dityrosine (DT) cross-linked RNase A dimer, and checked the inhibitory effect of DNA on the ribonucleolytic activity of the dimeric protein. An agarose gel based assay shows that like the monomer, the dimer also binds with DNA. The number of nucleotides bound per monomer unit of the dimer is higher than the number of nucleotides that bind with the each monomer. From fluorescence measurements, the association constant (Ka) values for complexation of the monomer and the dimer with ct-DNA are (4.95±0.45)×10(4)M(-1) and (1.29±0.05)×10(6)M(-1) respectively. Binding constant (Kb) values for the binding of the monomer and the dimer with ct-DNA were determined using UV-vis spectroscopy and were found to be (4.96±1.67)×10(4)M(-1) and (4.32±0.31)×10(5)M(-1) respectively. Circular dichroism studies shows that the dimer possesses significant effect on DNA conformation. The melting profile for the ct-DNA-dimer indicated that the melting temperature (Tm) for the ct-DNA-dimer complex is lower compared to the ct-DNA-monomer complex. The ribonucleolytic activity of the dimer, like the monomer, diminishes upon binding with DNA.
Collapse
Affiliation(s)
- Amit Kumar Dinda
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302, India
| | - Saparya Chattaraj
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302, India
| | - Sudeshna Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302, India
| | - Debi Ranjan Tripathy
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302, India.
| |
Collapse
|
15
|
Picone D, Donnarumma F, Ferraro G, Russo Krauss I, Fagagnini A, Gotte G, Merlino A. Platinated oligomers of bovine pancreatic ribonuclease: Structure and stability. J Inorg Biochem 2015; 146:37-43. [PMID: 25756333 DOI: 10.1016/j.jinorgbio.2015.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 12/29/2022]
Abstract
The reaction between cis-diamminedichloroplatinum(II) (CDDP), cisplatin, a common anticancer drug, and bovine pancreatic ribonuclease (RNase A), induces extensive protein aggregation, leading to the formation of one dimer, one trimer and higher oligomers whose yields depend on cisplatin/protein ratio. Structural and functional properties of the purified platinated species, together with their spontaneous dissociation and thermally induced denaturation, have been characterized. Platinated species preserve a significant, although reduced, ribonuclease activity. The high resistance of the dimers against dissociation and the different thermal unfolding profiles suggest a quaternary structure different from those of the well-known swapped dimers of RNase A.
Collapse
Affiliation(s)
- Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy.
| | - Federica Donnarumma
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy; Institute of Biostructures and Bioimages, CNR, Via Mezzocannone 16, I-80134 Naples, Italy
| | - Andrea Fagagnini
- Department of Life and Reproduction Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Giovanni Gotte
- Department of Life and Reproduction Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy; Institute of Biostructures and Bioimages, CNR, Via Mezzocannone 16, I-80134 Naples, Italy.
| |
Collapse
|
16
|
Ruggiero A, Dattelbaum JD, Staiano M, Berisio R, D'Auria S, Vitagliano L. A loose domain swapping organization confers a remarkable stability to the dimeric structure of the arginine binding protein from Thermotoga maritima. PLoS One 2014; 9:e96560. [PMID: 24832102 PMCID: PMC4022495 DOI: 10.1371/journal.pone.0096560] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/09/2014] [Indexed: 01/08/2023] Open
Abstract
The arginine binding protein from Thermatoga maritima (TmArgBP), a substrate binding protein (SBP) involved in the ABC system of solute transport, presents a number of remarkable properties. These include an extraordinary stability to temperature and chemical denaturants and the tendency to form multimeric structures, an uncommon feature among SBPs involved in solute transport. Here we report a biophysical and structural characterization of the TmArgBP dimer. Our data indicate that the dimer of the protein is endowed with a remarkable stability since its full dissociation requires high temperature as well as SDS and urea at high concentrations. In order to elucidate the atomic level structural properties of this intriguing protein, we determined the crystallographic structures of the apo and the arginine-bound forms of TmArgBP using MAD and SAD methods, respectively. The comparison of the liganded and unliganded models demonstrates that TmArgBP tertiary structure undergoes a very large structural re-organization upon arginine binding. This transition follows the Venus Fly-trap mechanism, although the entity of the re-organization observed in TmArgBP is larger than that observed in homologous proteins. Intriguingly, TmArgBP dimerizes through the swapping of the C-terminal helix. This dimer is stabilized exclusively by the interactions established by the swapping helix. Therefore, the TmArgBP dimer combines a high level of stability and conformational freedom. The structure of the TmArgBP dimer represents an uncommon example of large tertiary structure variations amplified at quaternary structure level by domain swapping. Although the biological relevance of the dimer needs further assessments, molecular modelling suggests that the two TmArgBP subunits may simultaneously interact with two distinct ABC transporters. Moreover, the present protein structures provide some clues about the determinants of the extraordinary stability of the biomolecule. The availability of an accurate 3D model represents a powerful tool for the design of new TmArgBP suited for biotechnological applications.
Collapse
Affiliation(s)
| | - Jonathan D Dattelbaum
- Department of Chemistry, University of Richmond, Richmond, Virginia, United States of America
| | - Maria Staiano
- Laboratory for Molecular Sensing, IBP-CNR, Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| | - Sabato D'Auria
- Laboratory for Molecular Sensing, IBP-CNR, Naples, Italy
| | | |
Collapse
|
17
|
Fiorini C, Gotte G, Donnarumma F, Picone D, Donadelli M. Bovine seminal ribonuclease triggers Beclin1-mediated autophagic cell death in pancreatic cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:976-84. [PMID: 24487065 DOI: 10.1016/j.bbamcr.2014.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 01/24/2023]
Abstract
Among the large number of variants belonging to the pancreatic-type secretory ribonuclease (RNase) superfamily, bovine pancreatic ribonuclease (RNase A) is the proto-type and bovine seminal RNase (BS-RNase) represents the unique natively dimeric member. In the present manuscript, we evaluate the anti-tumoral property of these RNases in pancreatic adenocarcinoma cell lines and in nontumorigenic cells as normal control. We demonstrate that BS-RNase stimulates a strong anti-proliferative and pro-apoptotic effect in cancer cells, while RNase A is largely ineffective. Notably, we reveal for the first time that BS-RNase triggers Beclin1-mediated autophagic cancer cell death, providing evidences that high proliferation rate of cancer cells may render them more susceptible to autophagy by BS-RNase treatment. Notably, to improve the autophagic response of cancer cells to BS-RNase we used two different strategies: the more basic (as compared to WT enzyme) G38K mutant of BS-RNase, known to interact more strongly than wt with the acidic membrane of cancer cells, or BS-RNase oligomerization (tetramerization or formation of larger oligomers). Both mutant BS-RNase and BS-RNase oligomers potentiated autophagic cell death as compared to WT native dimer of BS-RNase, while the various RNase A oligomers remained completely ineffective. Altogether, our results shed more light on the mechanisms lying at the basis of BS-RNase antiproliferative effect in cancer cells, and support its potential use to develop new anti-cancer strategies.
Collapse
Affiliation(s)
- Claudia Fiorini
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona, Italy
| | - Giovanni Gotte
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona, Italy.
| | - Federica Donnarumma
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Massimo Donadelli
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona, Italy.
| |
Collapse
|
18
|
Structural and functional relationships of natural and artificial dimeric bovine ribonucleases: new scaffolds for potential antitumor drugs. FEBS Lett 2013; 587:3601-8. [PMID: 24113657 DOI: 10.1016/j.febslet.2013.09.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/23/2013] [Accepted: 09/24/2013] [Indexed: 11/20/2022]
Abstract
Protein aggregation via 3D domain swapping is a complex mechanism which can lead to the acquisition of new biological, benign or also malignant functions, such as amyloid deposits. In this context, RNase A represents a fascinating model system, since by dislocating different polypeptide chain regions, it forms many diverse oligomers. No other protein displays such a large number of different quaternary structures. Here we report a comparative structural analysis between natural and artificial RNase A dimers and bovine seminal ribonuclease, a natively dimeric RNase with antitumor activity, with the aim to design RNase A derivatives with improved pharmacological potential.
Collapse
|
19
|
Different 3D domain-swapped oligomeric cyanovirin-N structures suggest trapped folding intermediates. Proc Natl Acad Sci U S A 2013; 110:7702-7. [PMID: 23610431 DOI: 10.1073/pnas.1300327110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although it has long been established that the amino acid sequence encodes the fold of a protein, how individual proteins arrive at their final conformation is still difficult to predict, especially for oligomeric structures. Here, we present a comprehensive characterization of oligomeric species of cyanovirin-N that all are formed by a polypeptide chain with the identical amino acid sequence. Structures of the oligomers were determined by X-ray crystallography, and each one exhibits 3D domain swapping. One unique 3D domain-swapped structure is observed for the trimer, while for both dimer and tetramer, two different 3D domain-swapped structures were obtained. In addition to the previously identified hinge-loop region of the 3D domain-swapped dimer, which resides between strands β5 and β6 in the middle of the polypeptide sequence, another hinge-loop region is observed between strands β7 and β8 in the structures. Plasticity in these two regions allows for variability in dihedral angles and concomitant differences in chain conformation that results in the differently 3D domain-swapped multimers. Based on all of the different structures, we propose possible folding pathways for this protein. Altogether, our results illuminate the amazing ability of cyanovirin-N to proceed down different folding paths and provide general insights into oligomer formation via 3D domain swapping.
Collapse
|
20
|
Double domain swapping in bovine seminal RNase: formation of distinct N- and C-swapped tetramers and multimers with increasing biological activities. PLoS One 2012; 7:e46804. [PMID: 23071641 PMCID: PMC3469567 DOI: 10.1371/journal.pone.0046804] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 09/10/2012] [Indexed: 12/24/2022] Open
Abstract
Bovine seminal (BS) RNase, the unique natively dimeric member of the RNase super-family, represents a special case not only for its additional biological actions but also for the singular features of 3D domain swapping. The native enzyme is indeed a mixture of two isoforms: M = M, a dimer held together by two inter-subunit disulfide bonds, and MxM, 70% of the total, which, besides the two mentioned disulfides, is additionally stabilized by the swapping of its N-termini. When lyophilized from 40% acetic acid, BS-RNase oligomerizes as the super-family proto-type RNase A does. In this paper, we induced BS-RNase self-association and analyzed the multimers by size-exclusion chromatography, cross-linking, electrophoresis, mutagenesis, dynamic light scattering, molecular modelling. Finally, we evaluated their enzymatic and cytotoxic activities. Several BS-RNase domain-swapped oligomers were detected, including two tetramers, one exchanging only the N-termini, the other being either N- or C-swapped. The C-swapping event, confirmed by results on a BS-K113N mutant, has been firstly seen in BS-RNase here, and probably stabilizes also multimers larger than tetramers. Interestingly, all BS-RNase oligomers are more enzymatically active than the native dimer and, above all, they display a cytotoxic activity that definitely increases with the molecular weight of the multimers. This latter feature, to date unknown for BS-RNase, suggests again that the self-association of RNases strongly modulates their biological and potentially therapeutic properties.
Collapse
|
21
|
Selwood T, Jaffe EK. Dynamic dissociating homo-oligomers and the control of protein function. Arch Biochem Biophys 2012; 519:131-43. [PMID: 22182754 PMCID: PMC3298769 DOI: 10.1016/j.abb.2011.11.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/16/2011] [Accepted: 11/28/2011] [Indexed: 11/20/2022]
Abstract
Homo-oligomeric protein assemblies are known to participate in dynamic association/disassociation equilibria under native conditions, thus creating an equilibrium of assembly states. Such quaternary structure equilibria may be influenced in a physiologically significant manner either by covalent modification or by the non-covalent binding of ligands. This review follows the evolution of ideas about homo-oligomeric equilibria through the 20th and into the 21st centuries and the relationship of these equilibria to allosteric regulation by the non-covalent binding of ligands. A dynamic quaternary structure equilibria is described where the dissociated state can have alternate conformations that cannot reassociate to the original multimer; the alternate conformations dictate assembly to functionally distinct alternate multimers of finite stoichiometry. The functional distinction between different assemblies provides a mechanism for allostery. The requirement for dissociation distinguishes this morpheein model of allosteric regulation from the classical MWC concerted and KNF sequential models. These models are described alongside earlier dissociating allosteric models. The identification of proteins that exist as an equilibrium of diverse native quaternary structure assemblies has the potential to define new targets for allosteric modulation with significant consequences for further understanding and/or controlling protein structure and function. Thus, a rationale for identifying proteins that may use the morpheein model of allostery is presented and a selection of proteins for which published data suggests this mechanism may be operative are listed.
Collapse
Affiliation(s)
- Trevor Selwood
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111
| | - Eileen K. Jaffe
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111
| |
Collapse
|
22
|
Merlino A, Picone D, Ercole C, Balsamo A, Sica F. Chain termini cross-talk in the swapping process of bovine pancreatic ribonuclease. Biochimie 2012; 94:1108-18. [PMID: 22273774 DOI: 10.1016/j.biochi.2012.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
3D domain swapping is the process by which two or more protein molecules exchange part of their structure to form intertwined dimers or higher oligomers. Bovine pancreatic ribonuclease (RNase A) is able to swap the N-terminal α-helix (residues 1-13) and/or the C-terminal β-strand (residues 116-124), thus forming a variety of oligomers, including two different dimers. Cis-trans isomerization of the Asn113-Pro114 peptide group was observed when the protein formed the C-terminal swapped dimer. To study the effect of the substitution of Pro114 on the swapping process of RNase A, we have prepared and characterized the P114A monomeric and dimeric variants of the enzyme. In contrast with previous reports, the crystal structure and NMR data on the monomer reveals a mixed cis-trans conformation for the Asn113-Ala114 peptide group, whereas the X-ray structure of the C-terminal swapped dimer of the variant is very close to that of the corresponding dimer of RNase A. The mutation at the C-terminus affects the capability of the N-terminal α-helix to swap and the stability of both dimeric forms. The present results underscore the importance of the hydration shell in determining the cross-talk between the chain termini in the swapping process of RNase A.
Collapse
Affiliation(s)
- Antonello Merlino
- Department of Chemistry, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy
| | | | | | | | | |
Collapse
|
23
|
Teng PK, Anderson NJ, Goldschmidt L, Sawaya MR, Sambashivan S, Eisenberg D. Ribonuclease A suggests how proteins self-chaperone against amyloid fiber formation. Protein Sci 2011; 21:26-37. [PMID: 22095666 DOI: 10.1002/pro.754] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/17/2011] [Accepted: 10/17/2011] [Indexed: 11/11/2022]
Abstract
Genomic analyses have identified segments with high fiber-forming propensity in many proteins not known to form amyloid. Proteins are often protected from entering the amyloid state by molecular chaperones that permit them to fold in isolation from identical molecules; but, how do proteins self-chaperone their folding in the absence of chaperones? Here, we explore this question with the stable protein ribonuclease A (RNase A). We previously identified fiber-forming segments of amyloid-related proteins and demonstrated that insertion of these segments into the C-terminal hinge loop of nonfiber-forming RNase A can convert RNase A into the amyloid state through three-dimensional domain-swapping, where the inserted fiber-forming segments interact to create a steric zipper spine. In this study, we convert RNase A into amyloid-like fibers by increasing the loop length and hence conformational freedom of an endogenous fiber-forming segment, SSTSAASS, in the N-terminal hinge loop. This is accomplished by sandwiching SSTSAASS between inserted Gly residues. With these inserts, SSTSAASS is now able to form the steric zipper spine, allowing RNase A to form amyloid-like fibers. We show that these fibers contain RNase A molecules retaining their enzymatic activity and therefore native-like structure. Thus, RNase A appears to prevent fiber formation by limiting the conformational freedom of this fiber-forming segment from entering a steric zipper. Our observations suggest that proteins have evolved to self-chaperone by using similar protective mechanisms.
Collapse
Affiliation(s)
- Poh K Teng
- Departments of Chemistry & Biochemistry and Biological Chemistry, Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, University of California-Los Angeles, 611 Charles Young Drive East, CA 90095-1570, USA
| | | | | | | | | | | |
Collapse
|
24
|
Vottariello F, Giacomelli E, Frasson R, Pozzi N, De Filippis V, Gotte G. RNase A oligomerization through 3D domain swapping is favoured by a residue located far from the swapping domains. Biochimie 2011; 93:1846-57. [PMID: 21771635 DOI: 10.1016/j.biochi.2011.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 07/04/2011] [Indexed: 11/27/2022]
Abstract
Bovine pancreatic ribonuclease A forms 3D domain-swapped oligomers by lyophilization from 40% acetic acid solutions or if subjected to various thermally-induced denaturation procedures. Considering that the intrinsic swapping propensity of bovine seminal RNase, the only member of the pancreatic-type RNase super-family that is dimeric in nature, is decreased from 70 to 30% if Arg80 is substituted by Ser (the corresponding residue in native RNase A), we introduced the opposite mutation in position 80 of the pancreatic enzyme. Our aim was to detect if the RNase A tendency to aggregate through domain swapping could increase. Aggregation of the S80R-RNase A mutant was induced either through the 'classic' acetic acid lyophilization, or through a thermally-induced method. The results indicate that the S80R mutant aggregates to a higher extent than the native protein, and that the increase occurs especially through N-terminal swapping. Additional investigations on the dimeric and multimeric species formed indicate that the S80R mutation increases their stability against regression to monomer, and does not significantly change their structural and functional features.
Collapse
Affiliation(s)
- Francesca Vottariello
- Dipartimento di Scienze della Vita e della Riproduzione, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Ercole C, López-Alonso JP, Font J, Ribó M, Vilanova M, Picone D, Laurents DV. Crowding agents and osmolytes provide insight into the formation and dissociation of RNase A oligomers. Arch Biochem Biophys 2011; 506:123-9. [DOI: 10.1016/j.abb.2010.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/15/2010] [Indexed: 11/24/2022]
|
26
|
Rutkoski TJ, Kink JA, Strong LE, Schilling CI, Raines RT. Antitumor activity of ribonuclease multimers created by site-specific covalent tethering. Bioconjug Chem 2010; 21:1691-702. [PMID: 20704261 DOI: 10.1021/bc100292x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-specific cross-linking can generate homogeneous multimeric proteins of defined valency. Pancreatic-type ribonucleases are an especially attractive target, as their natural dimers can enter mammalian cells, evade the cytosolic ribonuclease inhibitor (RI), and exert their toxic ribonucleolytic activity. Here, we report on the use of eight distinct thiol-reactive cross-linking reagents to produce dimeric and trimeric conjugates of four pancreatic-type ribonucleases. Both the site of conjugation and, to a lesser extent, the propinquity of the monomers within the conjugate modulate affinity for RI, and hence cytotoxicity. Still, the cytotoxicity of the multimers is confounded in vitro by their increased hydrodynamic radius, which attenuates cytosolic entry. A monomeric RI-evasive variant of bovine pancreatic ribonuclease (RNase A) inhibits the growth of human prostate and lung tumors in mice. An RI-evasive trimeric conjugate inhibits tumor growth at a lower dose and with less frequent administration than does the monomer. This effect is attributable to an enhanced persistence of the trimers in circulation. On a molecular basis, the trimer is ∼300-fold more efficacious and as well tolerated as erlotinib, which is in clinical use for the treatment of lung cancer. These data encourage the development of mammalian ribonucleases for the treatment of human cancers.
Collapse
Affiliation(s)
- Thomas J Rutkoski
- Departments of Biochemistry and Chemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
27
|
Torrent M, Odorizzi F, Nogués MV, Boix E. Eosinophil cationic protein aggregation: identification of an N-terminus amyloid prone region. Biomacromolecules 2010; 11:1983-90. [PMID: 20690710 DOI: 10.1021/bm100334u] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Eosinophil cationic protein (ECP) is an antimicrobial protein belonging to the superfamily of RNase A. ECP exhibits a broad spectrum of action against bacteria and, at higher concentrations, displays cytotoxic activity to eukaryotic cells. Recently, a powerful aggregation activity for lipid vesicles and for the gram-negative E. coli specie has also been related to the protein toxicity. Here we present the amyloid-like aggregation capacity of ECP. This is the first report of amyloid aggregation in a native nonengineered ribonuclease. The ECP aggregates are able to bind the amyloid-diagnostic dyes Thioflavin T and Congo Red and display a protofibril morphology when observed under electronic microscopy. We have also identified an N-terminus hydrophobic patch (residues 8-16) that is required for the amyloid aggregation process. A single substitution, I13A, breaks the aggregation prone sequence and abolishes the amyloid aggregation ability. Moreover, the corresponding R1N19 peptide is able to reproduce the protein amyloid-like aggregation behavior. The results may provide new clues on the protein antimicrobial mechanism and its toxicity to the host tissues in inflammation processes.
Collapse
Affiliation(s)
- Marc Torrent
- Departament de Bioquimica i Biologia Molecular, Facultat de Biociencies, Universitat Autonoma de Barcelona, 08193-Bellaterra, Spain.
| | | | | | | |
Collapse
|
28
|
Nagarkar RP, Hule RA, Pochan DJ, Schneider JP. Domain swapping in materials design. Biopolymers 2010; 94:141-55. [PMID: 20091872 DOI: 10.1002/bip.21332] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Peptide self-assembly can be used as a bottom-up approach to material fabrication. Although many different types of materials can be prepared from peptides, hydrogels are perhaps one of the most common. Gels typically result from the self-assembly of peptides into fibrillar networks. Controlling the structural morphology of these fibrils and the networks they form allows direct control over a given material's bulk properties. However, exerting this control is extremely difficult as the mechanistic rules that govern peptide self-assembly are far from being established. Conversely, several amyloidogenic proteins have been shown to self-assemble into fibrils using a mechanism known as domain swapping. Here, discrete units of secondary structure or even whole domains are exchanged (swapped) among discrete proteins during self-assembly to form extended networks with precise structural control. This review discusses several common mechanistic variations of domain swapping using naturally occurring proteins as examples. The possibility of using these principles to design peptides capable of controlled assembly and fibril formation leading to materials with targeted properties is explored.
Collapse
Affiliation(s)
- Radhika P Nagarkar
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
29
|
Vottariello F, Costanzo C, Gotte G, Libonati M. “Zero-Length” Dimers of Ribonuclease A: Further Characterization and No Evidence of Cytotoxicity. Bioconjug Chem 2010; 21:635-45. [DOI: 10.1021/bc900407v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesca Vottariello
- Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Chiara Costanzo
- Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Giovanni Gotte
- Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Massimo Libonati
- Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| |
Collapse
|
30
|
López-Alonso JP, Bruix M, Font J, Ribó M, Vilanova M, Jiménez MA, Santoro J, González C, Laurents DV. NMR Spectroscopy Reveals that RNase A is Chiefly Denatured in 40% Acetic Acid: Implications for Oligomer Formation by 3D Domain Swapping. J Am Chem Soc 2010; 132:1621-30. [DOI: 10.1021/ja9081638] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jorge Pedro López-Alonso
- Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
| | - Marta Bruix
- Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
| | - Josep Font
- Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
| | - Marc Ribó
- Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
| | - Maria Vilanova
- Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
| | - María Angeles Jiménez
- Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
| | - Jorge Santoro
- Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
| | - Carlos González
- Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
| | - Douglas V. Laurents
- Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
| |
Collapse
|
31
|
López-Alonso JP, Gotte G, Laurents DV. Kinetic analysis provides insight into the mechanism of ribonuclease A oligomer formation. Arch Biochem Biophys 2009; 489:41-7. [PMID: 19638275 DOI: 10.1016/j.abb.2009.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/17/2009] [Accepted: 07/22/2009] [Indexed: 12/01/2022]
Abstract
Ribonuclease A forms a series of oligomers by 3D domain swapping, a possible mechanism for amyloid formation. Using experimental data, the Ribonuclease oligomerization process is analyzed to obtain estimates of individual equilibrium and microscopic rate constants. The results suggest several novel insights into Ribonuclease oligomer formation: (i) two dimers may combine to yield tetramers, (ii) the lower abundance of the cyclic trimer could be ascribed to the cis conformation of its Asn113-Pro114 peptide bonds, (iii) oligomers become the dominant species at very high protein concentrations or upon applying a modest tenfold increase in the equilibrium constants (iv) the rate constants for trimer and tetramer formation are faster than those of dimer formation and (v) glycosylation affects the relative populations of different trimer and tetramer species. By mass spectrometry, oligomers as large as tetradecamers are detected. These results are consistent with the proposal that 3D domain swapping is a mechanism for amyloid formation.
Collapse
Affiliation(s)
- Jorge P López-Alonso
- Instituto de Química Física "Rocasolano" (C.S.I.C.), Serrano 119, E-28006 Madrid, Spain
| | | | | |
Collapse
|
32
|
López-Alonso JP, Diez-García F, Font J, Ribó M, Vilanova M, Scholtz JM, González C, Vottariello F, Gotte G, Libonati M, Laurents DV. Carbodiimide EDC Induces Cross-Links That Stabilize RNase A C-Dimer against Dissociation: EDC Adducts Can Affect Protein Net Charge, Conformation, and Activity. Bioconjug Chem 2009; 20:1459-73. [DOI: 10.1021/bc9001486] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jorge P. López-Alonso
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Fernando Diez-García
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Josep Font
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Marc Ribó
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Maria Vilanova
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - J. Martin Scholtz
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Carlos González
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Francesca Vottariello
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Giovanni Gotte
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Massimo Libonati
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Douglas V. Laurents
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| |
Collapse
|
33
|
Does domain swapping improve the stability of RNase A? Biochem Biophys Res Commun 2009; 382:114-8. [DOI: 10.1016/j.bbrc.2009.02.142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 02/26/2009] [Indexed: 11/21/2022]
|
34
|
Sinha S, Li Y, Williams TD, Topp EM. Protein conformation in amorphous solids by FTIR and by hydrogen/deuterium exchange with mass spectrometry. Biophys J 2008; 95:5951-61. [PMID: 18835903 PMCID: PMC2599811 DOI: 10.1529/biophysj.108.139899] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 09/15/2008] [Indexed: 02/03/2023] Open
Abstract
Solid-state hydrogen/deuterium exchange (ssHDX) with electrospray ionization mass spectrometry (ESI-MS) and Fourier transform infrared (FTIR) spectroscopy were used to assess protein conformation in amorphous solids. Myoglobin, lysozyme, beta-lactoglobulin, ribonuclease A, E-cadherin 5, and concanavalin A were co-lyophilized with carbohydrates (trehalose, raffinose, and dextran 5000), linear polymers (polyvinyl alcohol and polyvinyl pyrrolidone) or guanidine hydrochloride (negative control). For ssHDX, samples were exposed to D2O vapor at 33% relative humidity and room temperature, and then reconstituted at low temperature (4 degrees C) and pH 2.5 and analyzed by ESI-MS. Peptic digestion of selected proteins was used to provide region-specific information on exchange. FTIR spectra were acquired using attenuated total reflectance. FTIR and ssHDX of intact proteins showed preservation of structure by raffinose and trehalose, as indicated by FTIR band intensity and protection from exchange. ssHDX of peptic digests further indicated that these protective effects were not exerted uniformly along the protein sequence but were observed primarily in alpha-helical regions, a level of structural resolution not afforded by FTIR. The results thus demonstrate the utility of HDX with ESI-MS for analyzing protein conformation in amorphous solid samples.
Collapse
Affiliation(s)
- Sandipan Sinha
- Department of Pharmaceutical Chemistry and Mass Spectrometry Service Laboratory, University of Kansas, Lawrence, Kansas 66046, USA
| | | | | | | |
Collapse
|
35
|
Cozza G, Moro S, Gotte G. Elucidation of the ribonuclease A aggregation process mediated by 3D domain swapping: a computational approach reveals possible new multimeric structures. Biopolymers 2008; 89:26-39. [PMID: 17763469 DOI: 10.1002/bip.20833] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
By lyophilization from 40% acetic acid solutions, bovine pancreatic ribonuclease A forms several three-dimensional (3D) domain-swapped oligomers: dimers, trimers, tetramers, pentamers, hexamers, and traces of high-order oligomers, purifiable by cation-exchange chromatography. Each oligomeric species consists of at least two conformers displaying different basicity density, and/or exposure of positive charges. The structures of the two dimers and one trimer have been solved. Plausible models have been proposed for a second RNase A trimer and four tetramers, but not all the models are certainly assignable to the tetramers purified. Further studies have also been made on the pentameric and hexameric species, again without reaching structurally clear-cut results. This work is focused on the detailed modeling of the tetrameric RNase A species, using four different approaches to possibly clarify unknown structural aspects. The results obtained do not confirm the validity of one tetrameric model previously proposed, but allow the proposal of a novel tetrameric structure displaying new interfaces that are absent in the other known conformers. New details concerning other tetrameric structures are also described. RNase A multimers larger than tetramers, i.e., pentamers, hexamers, octamers, nonamers, up to dodecamers, are also modeled, with the proposal of novel domain-swapped structures, and the confirmation of what had previously been inferred. Finally, the propensity of RNase A to possibly form high-order supramolecular multimers is analyzed starting from the large number of domain-swapped RNase A conformers modeled.
Collapse
Affiliation(s)
- Giorgio Cozza
- Department of Pharmaceutical Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
36
|
Gotte G, Libonati M. Oligomerization of ribonuclease A under reducing conditions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:638-50. [PMID: 18261475 DOI: 10.1016/j.bbapap.2007.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 12/14/2007] [Accepted: 12/24/2007] [Indexed: 11/30/2022]
Abstract
By lyophilization from 40% acetic acid solutions, bovine ribonuclease A forms well characterized, three-dimensional domain-swapped oligomers: dimers, trimers, tetramers, and higher order multimers. Each oligomeric species consists of at least two conformers. Identical oligomers also form by thermally-inducing the oligomerization of highly concentrated RNase A dissolved in fluids endowed with various denaturing power. Now, our question is: which might the influence of a reducing agent be on RNase A oligomerization, i.e., of conditions that decrease the stability of the protein and increase the mobility of its swapping domains? To address this question, we carried out experiments of RNase A oligomerization in the presence of increasing concentrations of dithiothreitol (DTT) under the two experimental conditions mentioned above. Results indicate that RNase A oligomers similar to those previously known form anyhow, but with a change of their relative proportions. The amounts of dimers and trimers decrease by increasing the concentration of DTT, while the yields of two tetramers remarkably increase. Moreover, in the presence of DTT RNase A forms labile and probably unstructured aggregates that can possibly drive the protein towards precipitation when the reducing agent's concentration increases. Taken together, these results point out once again (i) the important role of the 3D domain swapping mechanism in protein oligomerization, and (ii) the importance of the native structure of RNase A (and of proteins in general) in preventing an uncontrolled aggregation and precipitation in a reducing and highly crowded environment like that existing in a living cell.
Collapse
Affiliation(s)
- Giovanni Gotte
- Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| | | |
Collapse
|
37
|
Colombo G, Meli M, De Simone A. Computational studies of the structure, dynamics and native content of amyloid‐like fibrils of ribonuclease A. Proteins 2008; 70:863-72. [PMID: 17803210 DOI: 10.1002/prot.21648] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The characterization at atomic resolution of amyloid-like protein aggregates is one of the fundamental problems of modern biology. In particular, the question whether native-like domains are retained or completely refolded in the amyloid state and the identification of possible mechanisms for macromolecular ordered aggregation represent major unresolved puzzles. To address these issues, in this article we examine the stability, dynamics, and conservation of native-like properties of several models of a previously designed amyloid-like fibril of RNase A (Sambashivan et al., Nature 2005; 437:266-269). Through the use of molecular dynamics (MD) simulations, we have provided molecular-level insights into the role of different parts of the sequence on the stability of fibrils, the collective properties of supramolecular complexes, and the presence of native-like conformations and dynamics in supramolecular aggregates. We have been able to show that within the fibrils the three-dimensional globular domain-swapped units preserve the conformational, dynamical, and hydration properties typical of the monomeric state, providing a rationalization for the experimentally observed catalytic activity of fibrils. The nativeness of the globular domains is not affected by the amyloidogenic stretches, which determine the molecular recognition process underlying aggregation through the formation of a stable steric zipper motif. Moreover, through the study of the hydration features of a single sheet model, we have been able to show that polyglutamine stretches of the domain-swapped ribonuclease tend to minimize the interaction with water in favor of sidechain-sidechain interactions, shedding light on the factors leading to the supramolecular assembly of beta-sheet layers into dry steric zippers.
Collapse
Affiliation(s)
- Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco, 9, 20131 Milano, Italy.
| | | | | |
Collapse
|
38
|
Bennett MJ, Sawaya MR, Eisenberg D. Deposition diseases and 3D domain swapping. Structure 2006; 14:811-24. [PMID: 16698543 DOI: 10.1016/j.str.2006.03.011] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 02/21/2006] [Accepted: 03/01/2006] [Indexed: 12/30/2022]
Abstract
Protein aggregation is a feature of both normal cellular assemblies and pathological protein depositions. Although the limited order of aggregates has often impeded their structural characterization, 3D domain swapping has been implicated in the formation of several protein aggregates. Here, we review known structures displaying 3D domain swapping in the context of amyloid and related fibrils, prion proteins, and macroscopic aggregates, and we discuss the possible involvement of domain swapping in protein deposition diseases.
Collapse
Affiliation(s)
- Melanie J Bennett
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|