1
|
Cario A, Larzillière M, Nguyen O, Alain K, Marre S. High-Pressure Microfluidics for Ultra-Fast Microbial Phenotyping. Front Microbiol 2022; 13:866681. [PMID: 35677901 PMCID: PMC9168469 DOI: 10.3389/fmicb.2022.866681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
Here, we present a novel methodology based on high-pressure microfluidics to rapidly perform temperature-based phenotyping of microbial strains from deep-sea environments. The main advantage concerns the multiple on-chip temperature conditions that can be achieved in a single experiment at pressures representative of the deep-sea, overcoming the conventional limitations of large-scale batch metal reactors to conduct fast screening investigations. We monitored the growth of the model strain Thermococcus barophilus over 40 temperature and pressure conditions, without any decompression, in only 1 week, whereas it takes weeks or months with conventional approaches. The results are later compared with data from the literature. An additional example is also shown for a hydrogenotrophic methanogen strain (Methanothermococcus thermolithotrophicus), demonstrating the robustness of the methodology. These microfluidic tools can be used in laboratories to accelerate characterizations of new isolated species, changing the widely accepted paradigm that high-pressure microbiology experiments are time-consuming.
Collapse
Affiliation(s)
- Anaïs Cario
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac, France
- *Correspondence: Anaïs Cario,
| | - Marina Larzillière
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac, France
- CNRS, Univ. Brest, Ifremer, IRP 1211 MicrobSea, Unité de Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, IUEM, Plouzané, France
| | - Olivier Nguyen
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac, France
| | - Karine Alain
- CNRS, Univ. Brest, Ifremer, IRP 1211 MicrobSea, Unité de Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, IUEM, Plouzané, France
| | - Samuel Marre
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac, France
- Samuel Marre,
| |
Collapse
|
2
|
Gómez-López VM, Pataro G, Tiwari B, Gozzi M, Meireles MÁA, Wang S, Guamis B, Pan Z, Ramaswamy H, Sastry S, Kuntz F, Cullen PJ, Vidyarthi SK, Ling B, Quevedo JM, Strasser A, Vignali G, Veggi PC, Gervilla R, Kotilainen HM, Pelacci M, Viganó J, Morata A. Guidelines on reporting treatment conditions for emerging technologies in food processing. Crit Rev Food Sci Nutr 2021; 62:5925-5949. [PMID: 33764212 DOI: 10.1080/10408398.2021.1895058] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the last decades, different non-thermal and thermal technologies have been developed for food processing. However, in many cases, it is not clear which experimental parameters must be reported to guarantee the experiments' reproducibility and provide the food industry a straightforward way to scale-up these technologies. Since reproducibility is one of the most important science features, the current work aims to improve the reproducibility of studies on emerging technologies for food processing by providing guidelines on reporting treatment conditions of thermal and non-thermal technologies. Infrared heating, microwave heating, ohmic heating and radiofrequency heating are addressed as advanced thermal technologies and isostatic high pressure, ultra-high-pressure homogenization sterilization, high-pressure homogenization, microfluidization, irradiation, plasma technologies, power ultrasound, pressure change technology, pulsed electric fields, pulsed light and supercritical CO2 are approached as non-thermal technologies. Finally, growing points and perspectives are highlighted.
Collapse
Affiliation(s)
- Vicente M Gómez-López
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Católica de Murcia (UCAM), Guadalupe, Murcia, Spain
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy
| | - Brijesh Tiwari
- Food Biosciences Department, Teagasc Food Research Centre, Dublin, Ireland
| | - Mario Gozzi
- Catelli Food Technology Group; CFT S.p.A., Parma, Italy
| | - María Ángela A Meireles
- Department of Chemical Engineering, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Buenaventura Guamis
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO, XaRTA, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, California, USA
| | - Hosahalli Ramaswamy
- Department of Food Science and Agricultural Chemistry, McGill University, Macdonald Campus, Montreal, Quebec, Canada
| | - Sudhir Sastry
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, Ohio, USA
| | | | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Sriram K Vidyarthi
- Department of Biological and Agricultural Engineering, University of California, Davis, California, USA
| | - Bo Ling
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Joan Miquel Quevedo
- SPTA-Servei Planta Tecnologia Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Giuseppe Vignali
- Department of Engineering and Architecture, University of Parma, Parma, Italy
| | - Priscilla C Veggi
- Department of Food Engineering, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ramon Gervilla
- SPTA-Servei Planta Tecnologia Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | - Juliane Viganó
- Department of Food Engineering, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Antonio Morata
- Dept. Química y Tecnología de Alimentos, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Balima F, Le Floch S, San-Miguel A, Reinert L, Duclaux L, Nguyen AN, Daniel I, Brûlet A, Gremillard L, Pischedda V. Porosity evolution of expanded vermiculite under pressure: the effect of pre-compaction. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0627-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
4
|
Ragon M, Nguyen Thi Minh H, Guyot S, Loison P, Burgaud G, Dupont S, Beney L, Gervais P, Perrier-Cornet JM. Innovative High Gas Pressure Microscopy Chamber Designed for Biological Cell Observation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:63-70. [PMID: 26810277 DOI: 10.1017/s1431927615015639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An original high-pressure microscopy chamber has been designed for real-time visualization of biological cell growth during high isostatic (gas or liquid) pressure treatments up to 200 MPa. This new system is highly flexible allowing cell visualization under a wide range of pressure levels as the thickness and the material of the observation window can be easily adapted. Moreover, the design of the observation area allows different microscope objectives to be used as close as possible to the observation window. This chamber can also be temperature controlled. In this study, the resistance and optical properties of this new high-pressure chamber have been tested and characterized. The use of this new chamber was illustrated by a real-time study of the growth of two different yeast strains - Saccharomyces cerevisiae and Candida viswanathii - under high isostatic gas pressure (30 or 20 MPa, respectively). Using image analysis software, we determined the evolution of the area of colonies as a function of time, and thus calculated colony expansion rates.
Collapse
Affiliation(s)
- Mélanie Ragon
- 1UMR A 02.102 Procédés Alimentaires et Microbiologiques,Université Bourgogne Franche-Comté/AgroSup Dijon,1 Esplanade Erasme,21000 Dijon,France
| | - Hue Nguyen Thi Minh
- 1UMR A 02.102 Procédés Alimentaires et Microbiologiques,Université Bourgogne Franche-Comté/AgroSup Dijon,1 Esplanade Erasme,21000 Dijon,France
| | - Stéphane Guyot
- 1UMR A 02.102 Procédés Alimentaires et Microbiologiques,Université Bourgogne Franche-Comté/AgroSup Dijon,1 Esplanade Erasme,21000 Dijon,France
| | - Pauline Loison
- 1UMR A 02.102 Procédés Alimentaires et Microbiologiques,Université Bourgogne Franche-Comté/AgroSup Dijon,1 Esplanade Erasme,21000 Dijon,France
| | - Gaëtan Burgaud
- 2Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (EA3882),IFR 148,Université Européenne de Bretagne/Université de Brest/ESMISAB,Technopole Brest-Iroise,29280 Plouzané,France
| | - Sébastien Dupont
- 1UMR A 02.102 Procédés Alimentaires et Microbiologiques,Université Bourgogne Franche-Comté/AgroSup Dijon,1 Esplanade Erasme,21000 Dijon,France
| | - Laurent Beney
- 1UMR A 02.102 Procédés Alimentaires et Microbiologiques,Université Bourgogne Franche-Comté/AgroSup Dijon,1 Esplanade Erasme,21000 Dijon,France
| | - Patrick Gervais
- 1UMR A 02.102 Procédés Alimentaires et Microbiologiques,Université Bourgogne Franche-Comté/AgroSup Dijon,1 Esplanade Erasme,21000 Dijon,France
| | - Jean-Marie Perrier-Cornet
- 1UMR A 02.102 Procédés Alimentaires et Microbiologiques,Université Bourgogne Franche-Comté/AgroSup Dijon,1 Esplanade Erasme,21000 Dijon,France
| |
Collapse
|
5
|
Sterr J, Rötzer K, Weck K, Wirth ALK, Fleckenstein BS, Langowski HC. In-situ measurement of oxygen concentration under high pressure and the application to oxygen permeation through polymer films. J Chem Phys 2015; 143:114201. [PMID: 26395698 DOI: 10.1063/1.4931399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Up until now, gas permeation through polymers under high pressure has not been able to be measured continuously. The combination of a special high pressure cell and a commercially available fluorescence-based oxygen measurement system allows in-situ monitoring of oxygen permeation through a polymer sample under pressure in an aqueous environment. The principle of the oxygen sensor is based on dynamic fluorescence quenching and measurement of the fluorescence decay time. It was observed that the decay time increases non-linearly with the applied pressure, and hence, the displayed oxygen concentration has to be corrected. This deviation between the measured and the real concentration depends not only on the pressure but also on the absolute oxygen concentration in the water. To obtain a calibration curve, tests were performed in the pressure range between 1 and 2000 bars and initial oxygen concentrations in the range between 40 and 280 μmol/l. The polynomial calibration curve was of the fourth order, describing the raw data with a coefficient of determination R(2) > 0.99. The effective oxygen permeation through polymeric samples can be calculated with this function. A pressure hysteresis test was undertaken but no hysteresis was found. No temperature dependence of the oxygen sensor signal was observed in the range between 20 °C and 30 °C. This study presents for the first time data showing the oxygen permeation rates through a polyethylene film in the pressure range between 1 and 2000 bars at 23 °C.
Collapse
Affiliation(s)
- Julia Sterr
- Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - Katharina Rötzer
- Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - Kathrin Weck
- Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - Andreas Leonhard Karl Wirth
- Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | | | - Horst-Christian Langowski
- Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
6
|
Le Floch S, Balima F, Pischedda V, Legrand F, San-Miguel A. Small angle scattering methods to study porous materials under high uniaxial strain. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:023901. [PMID: 25725857 DOI: 10.1063/1.4908168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We developed a high pressure cell for the in situ study of the porosity of solids under high uniaxial strain using neutron small angle scattering. The cell comprises a hydraulically actioned piston and a main body equipped with two single-crystal sapphire windows allowing for the neutron scattering of the sample. The sample cavity is designed to allow for a large volume variation as expected when compressing highly porous materials. We also implemented a loading protocol to adapt an existing diamond anvil cell for the study of porous materials by X-ray small angle scattering under high pressure. The two techniques are complementary as the radiation beam and the applied pressure are in one case perpendicular to each other (neutron cell) and in the other case parallel (X-ray cell). We will illustrate the use of these two techniques in the study of lamellar porous systems up to a maximum pressure of 0.1 GPa and 0.3 GPa for the neutron and X-ray cells, respectively. These devices allow obtaining information on the evolution of porosity with pressure in the pore dimension subdomain defined by the wave-numbers explored in the scattering process. The evolution with the applied load of such parameters as the fractal dimension of the pore-matrix interface or the apparent specific surface in expanded graphite and in expanded vermiculite is used to illustrate the use of the high pressure cells.
Collapse
Affiliation(s)
- Sylvie Le Floch
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Félix Balima
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Vittoria Pischedda
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Franck Legrand
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Alfonso San-Miguel
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| |
Collapse
|
7
|
Brooks NJ. Pressure effects on lipids and bio-membrane assemblies. IUCRJ 2014; 1:470-7. [PMID: 25485127 PMCID: PMC4224465 DOI: 10.1107/s2052252514019551] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/28/2014] [Indexed: 05/06/2023]
Abstract
Membranes are amongst the most important biological structures; they maintain the fundamental integrity of cells, compartmentalize regions within them and play an active role in a wide range of cellular processes. Pressure can play a key role in probing the structure and dynamics of membrane assemblies, and is also critical to the biology and adaptation of deep-sea organisms. This article presents an overview of the effect of pressure on the mesostructure of lipid membranes, bilayer organization and lipid-protein assemblies. It also summarizes recent developments in high-pressure structural instrumentation suitable for experiments on membranes.
Collapse
Affiliation(s)
- Nicholas J. Brooks
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, England
| |
Collapse
|
8
|
Monitoring rates and heterogeneity of high-pressure germination of bacillus spores by phase-contrast microscopy of individual spores. Appl Environ Microbiol 2013; 80:345-53. [PMID: 24162576 DOI: 10.1128/aem.03043-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Germination of Bacillus spores with a high pressure (HP) of ∼150 MPa is via activation of spores' germinant receptors (GRs). The HP germination of multiple individual Bacillus subtilis spores in a diamond anvil cell (DAC) was monitored with phase-contrast microscopy. Major conclusions were that (i) >95% of wild-type spores germinated in 40 min in a DAC at ∼150 MPa and 37°C but individual spores' germination kinetics were heterogeneous; (ii) individual spores' HP germination kinetic parameters were similar to those of nutrient-triggered germination with a variable lag time (Tlag) prior to a period of the rapid release (ΔTrelease) of the spores' dipicolinic acid in a 1:1 chelate with Ca(2+) (CaDPA); (iii) spore germination at 50 MPa had longer average Tlag values than that at ∼150 MPa, but the ΔTrelease values at the two pressures were identical and HPs of <10 MPa did not induce germination; (iv) B. subtilis spores that lacked the cortex-lytic enzyme CwlJ and that were germinated with an HP of 150 MPa exhibited average ΔTrelease values ∼15-fold longer than those for wild-type spores, but the two types of spores exhibited similar average Tlag values; and (v) the germination of wild-type spores given a ≥30-s 140-MPa HP pulse followed by a constant pressure of 1 MPa was the same as that of spores exposed to a constant pressure of 140 MPa that was continued for ≥35 min; (vi) however, after short 150-MPa HP pulses and incubation at 0.1 MPa (ambient pressure), spore germination stopped 5 to 10 min after the HP was released. These results suggest that an HP of ∼150 MPa for ≤30 s is sufficient to fully activate spores' GRs, which remain activated at 1 MPa but can deactivate at ambient pressure.
Collapse
|
9
|
Picard A, Daniel I, Testemale D, Kieffer I, Bleuet P, Cardon H, Oger PM. Monitoring microbial redox transformations of metal and metalloid elements under high pressure using in situ X-ray absorption spectroscopy. GEOBIOLOGY 2011; 9:196-204. [PMID: 21231995 DOI: 10.1111/j.1472-4669.2010.00270.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
X-ray absorption spectroscopy is a well-established method for probing local structural and electronic atomic environments in a variety of systems. We used X-ray absorption near-edge structure (XANES) spectroscopy for monitoring in real-time conditions selenium reduction in situ in live cultures of Shewanella oneidensis MR-1 under high hydrostatic pressure. High-quality XANES data show that Shewanella oneidensis MR-1 reduces selenite Se(IV) to red elemental selenium Se(0) up to 150 MPa without any intermediate redox state. MR-1 reduces all selenite provided (5-10 mM) between 0.1 and 60 MPa. Above 60 MPa the selenite reduction yield decreases linearly with pressure and the activity is calculated to stop at 155 ± 5 MPa. The analysis of cultures recovered after in situ measurements showed that the decrease in activity is linked to a decrease in viability. This study emphasizes the promising potential of XANES spectroscopy for real-time probing in situ microbial redox transformations of a broad range of metal and metalloid elements in live samples, including under high hydrostatic pressure.
Collapse
Affiliation(s)
- A Picard
- Laboratoire de Sciences de la Terre, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
10
|
Brooks NJ, Ces O, Templer RH, Seddon JM. Pressure effects on lipid membrane structure and dynamics. Chem Phys Lipids 2010; 164:89-98. [PMID: 21172328 DOI: 10.1016/j.chemphyslip.2010.12.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 11/30/2022]
Abstract
The effect of hydrostatic pressure on lipid structure and dynamics is highly important as a tool in biophysics and bio-technology, and in the biology of deep sea organisms. Despite its importance, high hydrostatic pressure remains significantly less utilised than other thermodynamic variables such as temperature and chemical composition. Here, we give an overview of some of the theoretical aspects which determine lipid behaviour under pressure and the techniques and technology available to study these effects. We also summarise several recent experiments which highlight the information available from these approaches.
Collapse
Affiliation(s)
- Nicholas J Brooks
- Membrane Biophysics Platform and Institute of Chemical Biology, Department of Chemistry, Imperial College London, South Kensington Campus, UK
| | | | | | | |
Collapse
|
11
|
Bonetti M, Zalczer G. Pressure effect on the kinetic of fluorescence photobleaching. J Phys Chem A 2010; 114:5985-8. [PMID: 20429531 DOI: 10.1021/jp9119759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate by fluorescence microscopy the bulk fluorescence photobleaching of coumarin 1 and fluorescein in different solvents as a function of pressure up to 3.5 kbar. We show that for coumarin 1, the decrease in the fluorescence intensity is well described by a single exponential function whose characteristic time decreases with pressure following a power law with exponent close to -0.29. Fluorescein photobleaching follows a double exponential function, the shorter time of which seems to follow a similar behavior as a function of pressure.
Collapse
Affiliation(s)
- Marco Bonetti
- Service de Physique de l'Etat Condensé, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | |
Collapse
|
12
|
Vass H, Black SL, Herzig EM, Ward FB, Clegg PS, Allen RJ. A multipurpose modular system for high-resolution microscopy at high hydrostatic pressure. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:053710. [PMID: 20515148 DOI: 10.1063/1.3427224] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have developed a modular system for high-resolution microscopy at high hydrostatic pressure. The system consists of a pressurized cell of volume approximately 100 microl, a temperature controlled holder, a ram, and a piston. We have made each of these components in several versions which can be interchanged to allow a wide range of applications. Here, we report two pressure cells with pressure ranges 0.1-700 MPa and 0.1-100 MPa, which can be combined with hollow or solid rams and pistons. Our system is designed to work with fluorescent samples (using a confocal or epifluorescence microscope), but also allows for transmitted light microscopy via the hollow ram and piston. The system allows precise control of pressure and temperature (-20 to 70 degrees C), as well as rapid pressure quenching. We demonstrate its performance and versatility with two applications: time-resolved imaging of colloidal phase transitions caused by pressure changes between 0.1 and 100 MPa, and imaging the growth of Escherichia coli bacteria at 50 MPa. We also show that the isotropic-nematic phase transition of pentyl-cyanobiphenyl (5CB) liquid crystal provides a simple, convenient, and accurate method for calibrating pressure in the range 0.1-200 MPa.
Collapse
Affiliation(s)
- Hugh Vass
- SUPA, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
13
|
Oger PM, Daniel I, Picard A. In situ Raman and X-ray spectroscopies to monitor microbial activities under high hydrostatic pressure. Ann N Y Acad Sci 2010; 1189:113-20. [PMID: 20233376 DOI: 10.1111/j.1749-6632.2009.05176.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Until recently, monitoring of cells and cellular activities at high hydrostatic pressure (HHP) was mainly limited to ex situ observations. Samples were analyzed prior to and following the depressurization step to evaluate the effect of the pressure treatment. Such ex situ measurements have several drawbacks: (i) it does not allow for kinetic measurements and (ii) the depressurization step often leads to artifactual measurements. Here, we describe recent advances in diamond anvil cell (DAC) technology to adapt it to the monitoring of microbial processes in situ. The modified DAC is asymmetrical, with a single anvil and a diamond window to improve imaging quality and signal collection. Using this novel DAC combined to Raman and X-ray spectroscopy, we monitored the metabolism of glucose by baker's yeast and the reduction of selenite by Agrobacterium tumefaciens in situ under HHP. In situ spectroscopy is also a promising tool to study piezophilic microorganisms.
Collapse
|
14
|
Barstow B, Ando N, Kim CU, Gruner SM. Coupling of pressure-induced structural shifts to spectral changes in a yellow fluorescent protein. Biophys J 2009; 97:1719-27. [PMID: 19751677 PMCID: PMC2749779 DOI: 10.1016/j.bpj.2009.06.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/02/2009] [Accepted: 06/24/2009] [Indexed: 11/19/2022] Open
Abstract
X-ray diffraction analysis of pressure-induced structural changes in the Aequorea yellow fluorescent protein Citrine reveals the structural basis for the continuous fluorescence peak shift from yellow to green that is observed on pressurization. This fluorescence peak shift is caused by a reorientation of the two elements of the Citrine chromophore. This study describes the structural linkages in Citrine that are responsible for the local reorientation of the chromophore. The deformation of the Citrine chromophore is actuated by the differential motion of two clusters of atoms that compose the beta-barrel scaffold of the molecule, resulting in a slight bending of the beta-barrel. The high-pressure structures also show a perturbation of the hydrogen bonding network that stabilizes the excited state of the Citrine chromophore. The perturbation of this network is implicated in the reduction of fluorescence intensity of Citrine. The blue-shift of the Citrine fluorescence spectrum resulting from the bending of the beta-barrel provides structural insight into the transient blue-shifting of isolated yellow fluorescent protein molecules under ambient conditions and suggests mechanisms to alter the time-dependent behavior of Citrine under ambient conditions.
Collapse
Affiliation(s)
- Buz Barstow
- School of Applied Physics, Cornell University, Ithaca, New York
| | - Nozomi Ando
- Department of Physics, Cornell University, Ithaca, New York
| | - Chae Un Kim
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York
| | - Sol M. Gruner
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York
- Department of Physics, Cornell University, Ithaca, New York
| |
Collapse
|
15
|
Aertsen A, Meersman F, Hendrickx ME, Vogel RF, Michiels CW. Biotechnology under high pressure: applications and implications. Trends Biotechnol 2009; 27:434-41. [DOI: 10.1016/j.tibtech.2009.04.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 11/26/2022]
|
16
|
Haver T, Raber EC, Urayama P. An application of spatial deconvolution to a capillary-based high-pressure chamber for fluorescence microscopy imaging. J Microsc 2008; 230:363-71. [PMID: 18503661 DOI: 10.1111/j.1365-2818.2008.01994.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Capillary-based high-pressure chambers for which the wall serves as both the optical window and mechanical support have been reported for fluorescence microscopy imaging. Although capillary chambers are straightforward and economical to construct, the curved capillary wall introduces image aberrations. The significance of these aberrations in imaging sub-cellular-dimension objects has yet to be assessed. Using a capillary chamber that is routinely pressurized to between 20 and 30 MPa, a pressure range suitable for studying a wide variety of cellular processes, we demonstrate sub-cellular-dimension spatial resolution in the imaging of fluorescent micro-spheres. Objectives with a range of numerical apertures (0.5-1.3) and working distances (0.1-7.4 mm) are considered. We show that spatial (or point-spread function, PSF) deconvolution improves image contrast in capillary-based images by comparing deconvolution results with those obtained from slide-mounted controls. Furthermore, similar deconvolution results between a measured PSF and a calculated, flat-geometry PSF indicate that the capillary wall is optically flat on cellular length scales. Results here facilitate the application of contemporary techniques in fluorescence microscopy to high-pressure imaging fields.
Collapse
Affiliation(s)
- T Haver
- Department of Physics, Miami University, Oxford, OH, USA
| | | | | |
Collapse
|
17
|
Picard A, Daniel I, Montagnac G, Oger P. In situ monitoring by quantitative Raman spectroscopy of alcoholic fermentation by Saccharomyces cerevisiae under high pressure. Extremophiles 2006; 11:445-52. [PMID: 17186315 DOI: 10.1007/s00792-006-0054-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 11/24/2006] [Indexed: 05/13/2023]
Abstract
We monitored alcoholic fermentation in Saccharomyces cerevisiae as a function of high hydrostatic pressure. Ethanol production from 0.15 M glucose was measured by Raman spectroscopy in situ in a diamond-anvil cell. At 10 MPa, fermentation proceeds three times faster than at ambient pressure and the fermentation yield is enhanced by 5% after 24 h. Above 20 MPa, the reaction kinetics slows down with increasing pressure. The pressure above which no more ethanol is produced is calculated to be 87 +/- 7 MPa. These results indicate that the activity of one or several enzymes of the glycolytic pathway is enhanced at low pressure up to 10 MPa. At higher pressures, they become progressively repressed, and they are completely inhibited above 87 MPa. Although fermentation was predicted to stop at ca. 50 MPa, due to the loss of activity of phosphofructokinase, the present study demonstrates that there is still an activity of ca. 30% of that measured at ambient pressure at 65 MPa. This study also validates the use of Raman spectroscopy for monitoring the metabolism of living microorganisms.
Collapse
Affiliation(s)
- A Picard
- Laboratoire de Sciences de la Terre, UMR 5570 CNRS-ENSL-UCBL, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon Cedex 07, France.
| | | | | | | |
Collapse
|