1
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|
2
|
Abstract
The discovery of microbial communities in extreme conditions that would seem hostile to life leads to the question of how the molecules making up these microbes can maintain their structure and function. While microbes that live under extremes of temperature have been heavily studied, those that live under extremes of pressure, or "piezophiles", are now increasingly being studied because of advances in sample collection and high-pressure cells for biochemical and biophysical measurements. Here, adaptations of enzymes in piezophiles against the effects of pressure are discussed in light of recent experimental and computational studies. However, while concepts from studies of enzymes from temperature extremophiles can provide frameworks for understanding adaptations by piezophile enzymes, the effects of temperature and pressure on proteins differ in significant ways. Thus, the state of the knowledge of adaptation in piezophile enzymes is still in its infancy and many more experiments and computational studies on different enzymes from a variety of piezophiles are needed.
Collapse
Affiliation(s)
- Toshiko Ichiye
- Department of Chemistry, Georgetown University, Washington, DC, 20057, United States
| |
Collapse
|
3
|
Characterization of low-lying excited states of proteins by high-pressure NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:350-358. [PMID: 30366154 DOI: 10.1016/j.bbapap.2018.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/26/2022]
Abstract
Hydrostatic pressure alters the free energy of proteins by a few kJ mol-1, with the amount depending on their partial molar volumes. Because the folded ground state of a protein contains cavities, it is always a state of large partial molar volume. Therefore pressure always destabilises the ground state and increases the population of partially and completely unfolded states. This is a mild and reversible conformational change, which allows the study of excited states under thermodynamic equilibrium conditions. Many of the excited states studied in this way are functionally relevant; they also seem to be very similar to kinetic folding intermediates, thus suggesting that evolution has made use of the 'natural' dynamic energy landscape of the protein fold and sculpted it to optimise function. This includes features such as ligand binding, structural change during the catalytic cycle, and dynamic allostery.
Collapse
|
4
|
Roche J, Royer CA. Lessons from pressure denaturation of proteins. J R Soc Interface 2018; 15:rsif.2018.0244. [PMID: 30282759 DOI: 10.1098/rsif.2018.0244] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/13/2018] [Indexed: 12/26/2022] Open
Abstract
Although it is now relatively well understood how sequence defines and impacts global protein stability in specific structural contexts, the question of how sequence modulates the configurational landscape of proteins remains to be defined. Protein configurational equilibria are generally characterized by using various chemical denaturants or by changing temperature or pH. Another thermodynamic parameter which is less often used in such studies is high hydrostatic pressure. This review discusses the basis for pressure effects on protein structure and stability, and describes how the unique mechanisms of pressure-induced unfolding can provide unique insights into protein conformational landscapes.
Collapse
Affiliation(s)
- Julien Roche
- Department of Biochemistry, Biophysics and Molecular Biology Iowa State University, Ames, IA 50011, USA
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
5
|
Meier T. Journey to the centre of the Earth: Jules Vernes' dream in the laboratory from an NMR perspective. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:26-36. [PMID: 31047600 DOI: 10.1016/j.pnmrs.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 06/09/2023]
Abstract
High pressure nuclear magnetic resonance is among the most challenging fields of research for NMR spectroscopists due to inherently low signal intensities, ultra-small samples that are barely accessible, and overall extremely harsh conditions in the sample cavity of modern high pressure vessels. This review aims to provide a comprehensive overview of the topic of high pressure research and its fairly young and brief relationship with NMR.
Collapse
Affiliation(s)
- Thomas Meier
- Bayerisches Geoinstitut, Universitt Bayreuth, Universittsstrae 30, D-95447 Bayreuth, Germany.
| |
Collapse
|
6
|
Nguyen LM, Roche J. High-pressure NMR techniques for the study of protein dynamics, folding and aggregation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 277:179-185. [PMID: 28363306 DOI: 10.1016/j.jmr.2017.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/07/2017] [Accepted: 01/12/2017] [Indexed: 06/07/2023]
Abstract
High-pressure is a well-known perturbation method used to destabilize globular proteins and dissociate protein complexes or aggregates. The heterogeneity of the response to pressure offers a unique opportunity to dissect the thermodynamic contributions to protein stability. In addition, pressure perturbation is generally reversible, which is essential for a proper thermodynamic characterization of a protein equilibrium. When combined with NMR spectroscopy, hydrostatic pressure offers the possibility of monitoring at an atomic resolution the structural transitions occurring upon unfolding and determining the kinetic properties of the process. The recent development of commercially available high-pressure sample cells greatly increased the potential applications for high-pressure NMR experiments that can now be routinely performed. This review summarizes the recent applications and future directions of high-pressure NMR techniques for the characterization of protein conformational fluctuations, protein folding and the stability of protein complexes and aggregates.
Collapse
Affiliation(s)
- Luan M Nguyen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Julien Roche
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
7
|
La Penna G, Mori Y, Kitahara R, Akasaka K, Okamoto Y. Modeling 15N NMR chemical shift changes in protein backbone with pressure. J Chem Phys 2016; 145:085104. [DOI: 10.1063/1.4961507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Giovanni La Penna
- Institute for Chemistry of Organo–Metallic Compounds (ICCOM), National Research Council of Italy (Cnr), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Yoshiharu Mori
- Theoretical and Computational Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Japan
| | - Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Japan
| | - Kazuyuki Akasaka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan
| | - Yuko Okamoto
- Department of Physics, School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
8
|
Sashi P, Ramakrishna D, Bhuyan AK. Dispersion Forces and the Molecular Origin of Internal Friction in Protein. Biochemistry 2016; 55:4595-602. [DOI: 10.1021/acs.biochem.6b00500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pulikallu Sashi
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | | | - Abani K. Bhuyan
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
9
|
Pressure adaptation of 3-isopropylmalate dehydrogenase from an extremely piezophilic bacterium is attributed to a single amino acid substitution. Extremophiles 2016; 20:177-86. [PMID: 26847201 DOI: 10.1007/s00792-016-0811-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/15/2016] [Indexed: 10/22/2022]
Abstract
3-Isopropylmalate dehydrogenase (IPMDH) from the extreme piezophile Shewanella benthica (SbIPMDH) is more pressure-tolerant than that from the atmospheric pressure-adapted Shewanella oneidensis (SoIPMDH). To understand the molecular mechanisms of this pressure tolerance, we analyzed mutated enzymes. The results indicate that only a single mutation at position 266, corresponding to Ala (SbIPMDH) and Ser (SoIPMDH), essentially affects activity under higher-pressure conditions. Structural analyses of SoIPMDH suggests that penetration of three water molecules into the cleft around Ser266 under high-pressure conditions could reduce the activity of the wild-type enzyme; however, no water molecule is observed in the Ala266 mutant.
Collapse
|
10
|
Abstract
Protein cavities or voids are observed as defects in atomic packing. Cavities have long been suggested to play important roles in protein dynamics and function, but the underlying origin and mechanism remains elusive. Here, recent studies about the cavities characterized by high-pressure NMR spectroscopy have been reviewed. Analysis of the pressure-dependent chemical shifts showed both linear and nonlinear response of proteins to pressure. The linear response corresponded to compression within the native ensemble, while the nonlinear response indicated the involvement of low-lying excited states that were different from the native state. The finding of non-linear pressure shifts in various proteins suggested that the existence of the low-lying excited states was common for globular proteins. However, the absolute nonlinear coefficient values varied significantly from protein to protein, and showed a good correlation with the density of cavities. Extensive studies on hen lysozyme as a model system showed that the cavity hydration and water penetration into the interior of proteins was an origin of the conformational transition to the excited states. The importance of cavities for protein function and evolution has also been explained. In addition to these "equilibrium" cavities, there are also "transient" cavities formed in the interior of the protein structure, as manifested by the ring flip motions of aromatic rings. The significance of transient cavities, reflecting an intrinsic dynamic nature within the native state, has also been discussed.
Collapse
|
11
|
Kitahara R. High-Pressure NMR Spectroscopy Reveals Functional Sub-states of Ubiquitin and Ubiquitin-Like Proteins. Subcell Biochem 2015; 72:199-214. [PMID: 26174383 DOI: 10.1007/978-94-017-9918-8_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-pressure nuclear magnetic resonance (NMR) spectroscopy has revealed that ubiquitin has at least two high-energy states--an alternatively folded state N2 and a locally disordered state I--between the basic folded state N1 and totally unfolded U state. The high-energy states are conserved among ubiquitin-like post-translational modifiers, ubiquitin, NEDD8, and SUMO-2, showing the E1-E2-E3 cascade reaction. It is quite intriguing that structurally similar high-energy states are evolutionally conserved in the ubiquitin-like modifiers, and the thermodynamic stabilities vary among the proteins. To investigate atomic details of the high-energy states, a Q41N mutant of ubiquitin was created as a structural model of N2, which is 71% populated even at atmospheric pressure. The convergent structure of the "pure" N2 state was obtained by nuclear Overhauser effect (NOE)-based structural analysis of the Q41N mutant at 2.5 kbar, where the N2 state is 97% populated. The N2 state of ubiquitin is closely similar to the conformation of the protein bound to the ubiquitin-activating enzyme E1. The recognition of E1 by ubiquitin is best explained by conformational selection rather than by induced-fit motion.
Collapse
Affiliation(s)
- Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan,
| |
Collapse
|
12
|
Goursot A, Mineva T, Vásquez-Pérez JM, Calaminici P, Köster AM, Salahub DR. Contribution of high-energy conformations to NMR chemical shifts, a DFT-BOMD study. Phys Chem Chem Phys 2013. [PMID: 23202583 DOI: 10.1039/c2cp43514d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper highlights the relevance of including the high-energy conformational states sampled by Born-Oppenheimer molecular dynamics (BOMD) in the calculation of time-averaged NMR chemical shifts. Our case study is the very flexible glycerol molecule that undergoes interconversion between conformers in a nonrandom way. Along the sequence of structures from one backbone conformer to another, transition states have been identified. The three (13)C NMR chemical shifts of the molecule were estimated by averaging their calculated values over a large set of BOMD snapshots. The simulation time needed to obtain a good agreement with the two signals present in the experimental spectrum is shown to be dependent on the atomic orbital basis set used for the dynamics, with a necessary longer trajectory for the most extended basis sets. The large structural deformations with respect to the optimized conformer geometries that occur along the dynamics are related to a kinetically driven conformer distribution. Calculated conformer type populations are in good agreement with experimental gas phase microwave results.
Collapse
Affiliation(s)
- A Goursot
- ICGM, UMR 5253 CNRS, Ecole de chimie de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier, Cédex 5, France.
| | | | | | | | | | | |
Collapse
|
13
|
Kitahara R, Hata K, Li H, Williamson MP, Akasaka K. Pressure-induced chemical shifts as probes for conformational fluctuations in proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 71:35-58. [PMID: 23611314 DOI: 10.1016/j.pnmrs.2012.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/18/2012] [Indexed: 06/02/2023]
Affiliation(s)
- Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | | | | | | | | |
Collapse
|
14
|
Roche J, Caro JA, Dellarole M, Guca E, Royer CA, García-Moreno BE, Garcia AE, Roumestand C. Structural, energetic, and dynamic responses of the native state ensemble of staphylococcal nuclease to cavity-creating mutations. Proteins 2013; 81:1069-80. [PMID: 23239146 DOI: 10.1002/prot.24231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/19/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022]
Abstract
The effects of cavity-creating mutations on the structural flexibility, local and global stability, and dynamics of the folded state of staphylococcal nuclease (SNase) were examined with NMR spectroscopy, MD simulations, H/D exchange, and pressure perturbation. Effects on global thermodynamic stability correlated well with the number of heavy atoms in the vicinity of the mutated residue. Variants with substitutions in the C-terminal domain and the interface between α and β subdomains showed large amide chemical shift variations relative to the parent protein, moderate, widespread, and compensatory perturbations of the H/D protection factors and increased local dynamics on a nanosecond time scale. The pressure sensitivity of the folded states of these variants was similar to that of the parent protein. Such observations point to the capacity of the folded proteins to adjust to packing defects in these regions. In contrast, cavity creation in the β-barrel subdomain led to minimal perturbation of the structure of the folded state, However, significant pressure dependence of the native state amide resonances, along with strong effects on native state H/D exchange are consistent with increased probability of population of excited state(s) for these variants. Such contrasted responses to the creation of cavities could not be anticipated from global thermodynamic stability or crystal structures; they depend on the local structural and energetic context of the substitutions.
Collapse
Affiliation(s)
- Julien Roche
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Universités de Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Dellarole M, Roumestand C, Royer C, Lecomte JTJ. Volumetric properties underlying ligand binding in a monomeric hemoglobin: a high-pressure NMR study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1910-22. [PMID: 23619242 DOI: 10.1016/j.bbapap.2013.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/09/2013] [Accepted: 04/15/2013] [Indexed: 11/16/2022]
Abstract
The 2/2 hemoglobin of the cyanobacterium Synechococcus sp. PCC 7002, GlbN, coordinates the heme iron with two histidines and exists either with a b heme or with a covalently attached heme. The binding of exogenous ligands displaces the distal histidine and induces a conformational rearrangement involving the reorganization of internal void volumes. The formation of passageways within the resulting conformation is thought to facilitate ligand exchange and play a functional role. Here we monitored the perturbation induced by pressure on the ferric bis-histidine and cyanide-bound states of GlbN using (1)H-(15)N HSQC NMR spectroscopy. We inspected the outcome with a statistical analysis of 170 homologous 2/2 hemoglobin sequences. We found that the compression landscape of GlbN, as represented by the variation of an average chemical shift parameter, was highly sensitive to ligand swapping and heme covalent attachment. Stabilization of rare conformers was observed at high pressures and consistent with cavity redistribution upon ligand binding. In all states, the EF loop was found to be exceptionally labile to pressure, suggesting a functional role as a semi-flexible hinge between the adjacent helices. Finally, coevolved clusters presented a common pattern of compensating pressure responses. The high-pressure dissection combined with protein sequence analysis established locations with volumetric signatures relevant to residual communication of 2/2 hemoglobins. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Mariano Dellarole
- Centre de Biochimie Structurale, CNRS, UMR 5048, Montpellier, France
| | | | | | | |
Collapse
|
16
|
Kitazawa S, Kameda T, Yagi-Utsumi M, Sugase K, Baxter NJ, Kato K, Williamson MP, Kitahara R. Solution Structure of the Q41N Variant of Ubiquitin as a Model for the Alternatively Folded N2 State of Ubiquitin. Biochemistry 2013; 52:1874-85. [DOI: 10.1021/bi301420m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Soichiro Kitazawa
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Tomoshi Kameda
- Computational Biology Research
Center (CBRC), Advanced Industrial Science and Technology (AIST), 2-43 Aomi, Koto, Tokyo 135-0064, Japan
| | - Maho Yagi-Utsumi
- Okazaki Institute for Integrative
Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical
Sciences, Nagoya City University, Nagoya
467-8603, Japan
| | - Kenji Sugase
- Structure
and Function Group,
Division of Structural Biomolecular Science, Bioorganic Research Institute, Suntory Foundation for Life Sciences, Osaka 618-8503,
Japan
| | - Nicola J. Baxter
- Department of Molecular
Biology and
Biotechnology, University of Sheffield,
Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Koichi Kato
- Okazaki Institute for Integrative
Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical
Sciences, Nagoya City University, Nagoya
467-8603, Japan
| | - Michael P. Williamson
- Department of Molecular
Biology and
Biotechnology, University of Sheffield,
Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| |
Collapse
|
17
|
Akasaka K, Kitahara R, Kamatari YO. Exploring the folding energy landscape with pressure. Arch Biochem Biophys 2013; 531:110-5. [DOI: 10.1016/j.abb.2012.11.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/27/2012] [Accepted: 11/30/2012] [Indexed: 11/29/2022]
|
18
|
Klare JP, Steinhoff HJ. Structural Information from Spin-Labelled Membrane-Bound Proteins. STRUCTURAL INFORMATION FROM SPIN-LABELS AND INTRINSIC PARAMAGNETIC CENTRES IN THE BIOSCIENCES 2013. [DOI: 10.1007/430_2012_88] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Kawamoto J, Sato T, Nakasone K, Kato C, Mihara H, Esaki N, Kurihara T. Favourable effects of eicosapentaenoic acid on the late step of the cell division in a piezophilic bacterium, Shewanella violacea DSS12, at high-hydrostatic pressures. Environ Microbiol 2011; 13:2293-8. [PMID: 21518217 DOI: 10.1111/j.1462-2920.2011.02487.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shewanella violacea DSS12, a deep-sea bacterium, produces eicosapentaenoic acid (EPA) as a component of membrane phospholipids. Although various isolates from the deep sea, such as Photobacterium profundum SS9, Colwellia psychrerythraea 34H and various Shewanella strains, produce EPA- or docosahexaenoic acid-containing phospholipids, the physiological role of these polyunsaturated fatty acids remains unclear. In this article, we illustrate the physiological importance of EPA for high-pressure adaptation in strain DSS12 with the help of an EPA-deficient mutant (DSS12(pfaA)). DSS12(pfaA) showed significant growth retardation at 30 MPa, but not at 0.1 MPa. We also found that DSS12(pfaA) grown at 30 MPa forms filamentous cells. When an EPA-containing phospholipid (sn-1-oleoly-sn-2-eicosapentaenoyl phosphatidylethanolamine) was supplemented, the growth retardation and the morphological defect of DSS12(pfaA) were suppressed, indicating that the externally added EPA-containing phospholipid compensated for the loss of endogenous EPA. In contrast, the addition of an oleic acid-containing phospholipid (sn-1,2-dioleoyl phosphatidylethanolamine) did not affect the growth and the morphology of the cells. Immunofluorescent microscopic analysis with anti-FtsZ antibody revealed a number of Z-rings and separated nucleoids in DSS12(pfaA) grown at 30 MPa. These results demonstrate the physiological importance of EPA for the later step of Z-ring formation of S. violacea DSS12 under high-pressure conditions.
Collapse
Affiliation(s)
- Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
McCoy J, Hubbell WL. High-pressure EPR reveals conformational equilibria and volumetric properties of spin-labeled proteins. Proc Natl Acad Sci U S A 2011; 108:1331-6. [PMID: 21205903 PMCID: PMC3029758 DOI: 10.1073/pnas.1017877108] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying equilibrium conformational exchange and characterizing conformational substates is essential for elucidating mechanisms of function in proteins. Site-directed spin labeling has previously been employed to detect conformational changes triggered by some event, but verifying conformational exchange at equilibrium is more challenging. Conformational exchange (microsecond-millisecond) is slow on the EPR time scale, and this proves to be an advantage in directly revealing the presence of multiple substates as distinguishable components in the EPR spectrum, allowing the direct determination of equilibrium constants and free energy differences. However, rotameric exchange of the spin label side chain can also give rise to multiple components in the EPR spectrum. Using spin-labeled mutants of T4 lysozyme, it is shown that high-pressure EPR can be used to: (i) demonstrate equilibrium between spectrally resolved states, (ii) aid in distinguishing conformational from rotameric exchange as the origin of the resolved states, and (iii) determine the relative partial molar volume (ΔV°) and isothermal compressibility (Δβ(T)) of conformational substates in two-component equilibria from the pressure dependence of the equilibrium constant. These volumetric properties provide insight into the structure of the substates. Finally, the pressure dependence of internal side-chain motion is interpreted in terms of volume fluctuations on the nanosecond time scale, the magnitude of which may reflect local backbone flexibility.
Collapse
Affiliation(s)
- John McCoy
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Wayne L. Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| |
Collapse
|
21
|
Bujak M, Bläser D, Katrusiak A, Boese R. Conformational polymorphs of 1,1,2,2-tetrachloroethane: pressure vs. temperature. Chem Commun (Camb) 2011; 47:8769-71. [DOI: 10.1039/c1cc10689a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Chandra K, Sharma Y, Chary KVR. Characterization of low-energy excited states in the native state ensemble of non-myristoylated and myristoylated neuronal calcium sensor-1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:334-44. [PMID: 21035569 DOI: 10.1016/j.bbapap.2010.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 10/05/2010] [Accepted: 10/18/2010] [Indexed: 11/29/2022]
Abstract
Information on the low-energy excited states of a given protein is important as this controls the structural adaptability and various biological functions of proteins such as co-operativity, response towards various external perturbations. In this article, we characterized individual residues in both non-myristoylated (non-myr) and myristoylated (myr) neuronal calcium sensor-1 (NCS-1) that access alternate states by measuring nonlinear temperature dependence of the backbone amide-proton (¹H(N)) chemical shifts. We found that ~20% of the residues in the protein access alternative conformations in non-myr case, which increases to ~28% for myr NCS-1. These residues are spread over the entire polypeptide stretch and include the edges of α-helices and β-strands, flexible loop regions, and the Ca²(+)-binding loops. Besides, residues responsible for the absence of Ca²(+)-myristoyl switch are also found accessing alternative states. The C-terminal domain is more populated with these residues compared to its N-terminal counterpart. Individual EF-hands in NCS-1 show significantly different number of alternate states. This observation prompts us to conclude that this may lead to differences in their individual conformational flexibility and has implications on the functionality. Theoretical simulations reveal that these low-energy excited states are within an energy band of 2-4 kcal/mol with respect to the native state.
Collapse
Affiliation(s)
- Kousik Chandra
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | | | | |
Collapse
|
23
|
Cioni P, Gabellieri E. Protein dynamics and pressure: what can high pressure tell us about protein structural flexibility? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:934-41. [PMID: 20934540 DOI: 10.1016/j.bbapap.2010.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/22/2010] [Accepted: 09/30/2010] [Indexed: 11/25/2022]
Abstract
After a brief overview of NMR and X-ray crystallography studies on protein flexibility under pressure, we summarize the effects of hydrostatic pressure on the native fold of azurin from Pseudomonas aeruginosa as inferred from the variation of the intrinsic phosphorescence lifetime and the acrylamide bimolecular quenching rate constants of the buried Trp residue. The pressure/temperature response of the globular fold and modulation of its dynamical structure is analyzed both in terms of a reduction of internal cavities and of the hydration of the polypeptide. The study of the effect of two single point cavity forming mutations, F110S and I7S, on the unfolding volume change (ΔV(0)) of azurin and on the internal dynamics of the protein fold under pressure demonstrate that the creation of an internal cavity will enhance the plasticity and lower the stability of the globular structure. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Patrizia Cioni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Area della Ricerca di Pisa, Via Moruzzi 1, 56100-Pisa, Italy.
| | | |
Collapse
|
24
|
Ascone I, Savino C, Kahn R, Fourme R. Flexibility of the Cu,Zn superoxide dismutase structure investigated at 0.57 GPa. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:654-63. [DOI: 10.1107/s0907444910012321] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 04/01/2010] [Indexed: 11/11/2022]
Abstract
The 2 Å resolution crystal structure of bovine erythrocyte Cu,Zn superoxide dismutase (CuZnSOD) has been determined by X-ray diffraction at high pressure (0.57 GPa) and room temperature. At 0.57 GPa the secondary, tertiary and quaternary structures are similar to other previously determined bovine erythrocyte CuZnSOD structures. Nevertheless, pressure has a localized impact on the atomic coordinates of Cαatoms and on side chains. The compression of the crystal and of the protein backbone is anisotropic. This anisotropy is discussed, taking into account intermolecular contacts and protein conformation. Pressure perturbation highlights the more flexible zones in the protein such as the electrostatic loop. At 0.57 GPa, a global shift of the dimetallic sites in both subunits and changes in the oxidation state of Cu were observed. The flexibility of the electrostatic loop may be useful for the interaction of different metal carriers in the copper-uptake process, whereas the flexibility of the metal sites involved in the activity of the protein could contribute to explaining the ubiquitous character of CuZnSODs, which are found in organisms living in very different conditions, including the deep-sea environment. This work illustrates the potential of combining X-ray crystallography with high pressure to promote and stabilize higher energy conformational substates.
Collapse
|
25
|
Marston JP, Cliff MJ, Reed MAC, Blackburn GM, Hounslow AM, Craven CJ, Waltho JP. Structural tightening and interdomain communication in the catalytic cycle of phosphoglycerate kinase. J Mol Biol 2010; 396:345-60. [PMID: 19944703 DOI: 10.1016/j.jmb.2009.11.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/16/2009] [Accepted: 11/19/2009] [Indexed: 11/25/2022]
Abstract
Changes in amide-NH chemical shift and hydrogen exchange rates as phosphoglycerate kinase progresses through its catalytic cycle have been measured to assess whether they correlate with changes in hydrogen bonding within the protein. Four representative states were compared: the free enzyme, a product complex containing 3-phosphoglyceric acid (3PG), a substrate complex containing ADP and a transition-state analogue (TSA) complex containing a 3PG-AlF(4)(-)-ADP moiety. There are an overall increases in amide protection from hydrogen exchange when the protein binds the substrate and product ligands and an additional increase when the TSA complex is formed. This is consistent with stabilisation of the protein structure by ligand binding. However, there is no correlation between the chemical shift changes and the protection factor changes, indicating that the protection factor changes are not associated with an overall shortening of hydrogen bonds in the protected ground state, but rather can be ascribed to the properties of the high-energy, exchange-competent state. Therefore, an overall structural tightening mechanism is not supported by the data. Instead, we observed that some cooperativity is exhibited in the N-domain, such that within this domain the changes induced upon forming the TSA complex are an intensification of those induced by binding 3PG. Furthermore, chemical shift changes induced by 3PG binding extend through the interdomain region to the C-domain beta-sheet, highlighting a network of hydrogen bonds between the domains that suggests interdomain communication. Interdomain communication is also indicated by amide protection in one domain being significantly altered by binding of substrate to the other, even where no associated change in the structure of the substrate-free domain is indicated by chemical shifts. Hence, the communication between domains is also manifested in the accessibility of higher-energy, exchange-competent states. Overall, the data that are consistent with structural tightening relate to defined regions and are close to the 3PG binding site and in the hinge regions of 3-phosphoglycerate kinase.
Collapse
Affiliation(s)
- James P Marston
- Department of Molecular Biology and Biotechnology, Firth Court, The University of Sheffield, Western Bank, Sheffield, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Min S, Sastry S, Balasubramaniam V. Compressibility and density of select liquid and solid foods under pressures up to 700MPa. J FOOD ENG 2010. [DOI: 10.1016/j.jfoodeng.2009.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Gsponer J, Madan Babu M. The rules of disorder or why disorder rules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 99:94-103. [DOI: 10.1016/j.pbiomolbio.2009.03.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Hedwig GR, Høgseth E, Høiland H. Volumetric properties of the glycyl group of proteins in aqueous solution at high pressures. Phys Chem Chem Phys 2008; 10:884-97. [DOI: 10.1039/b706345h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Boldyreva EV. High-pressure diffraction studies of molecular organic solids. A personal view. Acta Crystallogr A 2007; 64:218-31. [DOI: 10.1107/s0108767307065786] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 12/05/2007] [Indexed: 11/10/2022] Open
Abstract
This paper discusses the trends in the experimental studies of molecular organic solids at high pressures by diffraction techniques. Crystallization of liquids, crystallization from solutions and solid-state transformations are considered. Special attention is paid to the high-pressure studies of pharmaceuticals and of biomimetics.
Collapse
|
30
|
Davydov DR, Baas BJ, Sligar SG, Halpert JR. Allosteric mechanisms in cytochrome P450 3A4 studied by high-pressure spectroscopy: pivotal role of substrate-induced changes in the accessibility and degree of hydration of the heme pocket. Biochemistry 2007; 46:7852-64. [PMID: 17555301 PMCID: PMC2527461 DOI: 10.1021/bi602400y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allosteric mechanisms in human cytochrome P450 3A4 (CYP3A4) in oligomers in solution or monomeric enzyme incorporated into Nanodiscs (CYP3A4ND) were studied by high-pressure spectroscopy. The allosteric substrates 1-pyrenebutanol (1-PB) and testosterone were compared with bromocriptine (BCT), which shows no cooperativity. In both CYP3A4 in solution and CYP3A4ND, we observed a complete pressure-induced high-to-low spin shift at pressures of <3 kbar either in the substrate-free enzyme or in the presence of BCT. In addition, both substrate-free and BCT-bound enzyme revealed a pressure-dependent equilibrium between two states with different barotropic parameters designated R for relaxed and P for pressure-promoted conformations. This pressure-induced conformational transition was also observed in the studies with 1-PB and testosterone. In CYP3A4 oligomers, the transition was accompanied by an important increase in homotropic cooperativity with both substrates. Surprisingly, at high concentrations of allosteric substrates, the amplitude of the spin shift in both CYP3A4 in solution and Nanodiscs was very low, demonstrating that hydrostatic pressure induces neither substrate dissociation nor an increase in the heme pocket hydration in the complexes of the pressure-promoted conformation of CYP3A4 with 1-PB or testosterone. These findings suggest that the mechanisms of interactions of CYP3A4 with 1-PB and testosterone involve an effector-induced transition that displaces a system of conformational equilibria in the enzyme toward the state(s) with decreased solvent accessibility of the active site so that the flux of water into the heme pocket is impeded and the high-spin state of the heme iron is stabilized.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA.
| | | | | | | |
Collapse
|
31
|
Kumar A, Srivastava S, Hosur RV. NMR characterization of the energy landscape of SUMO-1 in the native-state ensemble. J Mol Biol 2007; 367:1480-93. [PMID: 17320104 DOI: 10.1016/j.jmb.2007.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 01/11/2007] [Accepted: 01/12/2007] [Indexed: 01/24/2023]
Abstract
Characterizing the low energy excited states in the energy landscape of a protein is one of the exciting and demanding problems in structural biology at the present time. These describe the adaptability of the protein structure to external perturbations. In this context, we used here non-linear dependence of amide proton chemical shifts on temperature to identify residues accessing alternative conformations in SUMO-1 in the native state as well as in the near-native states created by sub-denaturing concentrations of urea. The number of residues accessing alternative conformations increases and the profiles of curved temperature dependence also change with increasing urea concentration. In every case these alternative conformations lie within 2 kcal/mol from the ground state, and are separated from it by low energy barriers. The residues that access alternative conformations span the length of the protein chain but are located at particular regions on the protein structure. These include many of the loops, beta2 and beta5 strands, and some edges of the helices. We observed that some of the regions of the protein structure that exhibit such fluctuations coincide with the protein's binding surfaces with different substrate like GTPase effector domain (GED) of dynamin, SUMO binding motifs (SBM), E1 (activating enzyme, SAE1/SAE2) and E2 (conjugating enzyme, UBC9) enzymes of sumoylation machinery, reported earlier. We speculate that this would have significant implications for the binding of diversity of targets by SUMO-1 for the variety of functions it is involved in.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | | | | |
Collapse
|
32
|
Kitahara R, Yamaguchi Y, Sakata E, Kasuya T, Tanaka K, Kato K, Yokoyama S, Akasaka K. Evolutionally conserved intermediates between ubiquitin and NEDD8. J Mol Biol 2006; 363:395-404. [PMID: 16979187 DOI: 10.1016/j.jmb.2006.07.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 07/24/2006] [Accepted: 07/27/2006] [Indexed: 11/19/2022]
Abstract
The investigation of common structural motifs provides additional information on why proteins conserve similar topologies yet may have non-conserved amino acid sequences. Proteins containing the ubiquitin superfold have similar topologies, although the sequence conservation is rather poor. Here, we present novel similarities and differences between the proteins ubiquitin and NEDD8. They have 57% identical sequence, almost identical backbone topology and similar functional strategy, although their physiological functions are mutually different. Using variable pressure NMR spectroscopy, we found that the two proteins have similar conformational fluctuation in the evolutionary conserved enzyme-binding region and contain a structurally similar locally disordered conformer (I) in equilibrium with the basic folded conformer (N). A notable difference between the two proteins is that the equilibrium population of I is far greater for NEDD8 (DeltaG(0)(NI)<5 kJ/mol) than for ubiquitin (DeltaG(0)(NI)=15.2(+/-1.0) kJ/mol), and that the tendency for overall unfolding (U) is also far higher for NEDD8 (DeltaG(0)(NU)=11.0(+/-1.5) kJ/mol) than for ubiquitin (DeltaG(0)(NU)=31.3(+/-4.7) kJ/mol). These results suggest that the marked differences in thermodynamic stabilities of the locally disordered conformer (I) and the overall unfolding species (U) are a key to determine the functional differences of the two structurally similar proteins in physiology.
Collapse
Affiliation(s)
- Ryo Kitahara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-chou, Sayo-gun, Hyogo, 679-5148, Japan
| | | | | | | | | | | | | | | |
Collapse
|