1
|
Liew JJM, Wicht DK, Gonzalez R, Dowling DP, Ellis HR. Current understanding of enzyme structure and function in bacterial two-component flavin-dependent desulfonases: Cleaving C-S bonds of organosulfur compounds. Arch Biochem Biophys 2024; 758:110048. [PMID: 38848996 DOI: 10.1016/j.abb.2024.110048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The inherent structural properties of enzymes are critical in defining catalytic function. Often, studies to evaluate the relationship between structure and function are limited to only one defined structural element. The two-component flavin-dependent desulfonase family of enzymes involved in bacterial sulfur acquisition utilize a comprehensive range of structural features to carry out the desulfonation of organosulfur compounds. These metabolically essential two-component FMN-dependent desulfonase systems have been proposed to utilize oligomeric changes, protein-protein interactions for flavin transfer, and common mechanistic steps for carbon-sulfur bond cleavage. This review is focused on our current functional and structural understanding of two-component FMN-dependent desulfonase systems from multiple bacterial sources. Mechanistic and structural comparisons from recent independent studies provide fresh insights into the overall functional properties of these systems and note areas in need of further investigation. The review acknowledges current studies focused on evaluating the structural properties of these enzymes in relationship to their distinct catalytic function. The role of these enzymes in maintaining adequate sulfur levels, coupled with the conserved nature of these enzymes in diverse bacteria, underscore the importance in understanding the functional and structural nuances of these systems.
Collapse
Affiliation(s)
- Jeremy J M Liew
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Denyce K Wicht
- Department of Biochemistry, Chemistry, Environment, and Physics, Suffolk University, Boston, MA, 02108, USA
| | - Reyaz Gonzalez
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Daniel P Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Holly R Ellis
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
2
|
Thakur A, Somai S, Yue K, Ippolito N, Pagan D, Xiong J, Ellis HR, Acevedo O. Substrate-Dependent Mobile Loop Conformational Changes in Alkanesulfonate Monooxygenase from Accelerated Molecular Dynamics. Biochemistry 2020; 59:3582-3593. [PMID: 32881481 DOI: 10.1021/acs.biochem.0c00633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Shruti Somai
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Kun Yue
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Nicole Ippolito
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Dianne Pagan
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Jingyuan Xiong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Holly R. Ellis
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
3
|
McFarlane JS, Hagen RA, Chilton AS, Forbes DL, Lamb AL, Ellis HR. Not as easy as π: An insertional residue does not explain the π-helix gain-of-function in two-component FMN reductases. Protein Sci 2018; 28:123-134. [PMID: 30171650 DOI: 10.1002/pro.3504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 11/08/2022]
Abstract
The π-helix located at the tetramer interface of two-component FMN-dependent reductases contributes to the structural divergence from canonical FMN-bound reductases within the NADPH:FMN reductase family. The π-helix in the SsuE FMN-dependent reductase of the alkanesulfonate monooxygenase system has been proposed to be generated by the insertion of a Tyr residue in the conserved α4-helix. Variants of Tyr118 were generated, and their X-ray crystal structures determined, to evaluate how these alterations affect the structural integrity of the π-helix. The structure of the Y118A SsuE π-helix was converted to an α-helix, similar to the FMN-bound members of the NADPH:FMN reductase family. Although the π-helix was altered, the FMN binding region remained unchanged. Conversely, deletion of Tyr118 disrupted the secondary structural properties of the π-helix, generating a random coil region in the middle of helix 4. Both the Y118A and Δ118 SsuE SsuE variants crystallize as a dimer. The MsuE FMN reductase involved in the desulfonation of methanesulfonates is structurally similar to SsuE, but the π-helix contains a His insertional residue. Exchanging the π-helix insertional residue of each enzyme did not result in equivalent kinetic properties. Structure-based sequence analysis further demonstrated the presence of a similar Tyr residue in an FMN-bound reductase in the NADPH:FMN reductase family that is not sufficient to generate a π-helix. Results from the structural and functional studies of the FMN-dependent reductases suggest that the insertional residue alone is not solely responsible for generating the π-helix, and additional structural adaptions occur to provide the altered gain of function.
Collapse
Affiliation(s)
- Jeffrey S McFarlane
- The Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| | - Richard A Hagen
- The Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, 36849
| | - Annemarie S Chilton
- The Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| | - Dianna L Forbes
- The Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, 36849
| | - Audrey L Lamb
- The Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| | - Holly R Ellis
- The Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, 36849
| |
Collapse
|
4
|
Musila JM, L Forbes D, Ellis HR. Functional Evaluation of the π-Helix in the NAD(P)H:FMN Reductase of the Alkanesulfonate Monooxygenase System. Biochemistry 2018; 57:4469-4477. [PMID: 29979040 DOI: 10.1021/acs.biochem.8b00544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A subgroup of enzymes in the NAD(P)H:FMN reductase family is comprised of flavin reductases from two-component monooxygenase systems. The diverging structural feature in these FMN reductases is a π-helix centrally located at the tetramer interface that is generated by the insertion of an amino acid in a conserved α4 helix. The Tyr insertional residue of SsuE makes specific contacts across the dimer interface that may assist in the altered mechanistic properties of this enzyme. The Y118F SsuE variant maintained the π-π stacking interactions at the tetramer interface and had kinetic parameters similar to those of wild-type SsuE. Substitution of the π-helical residue (Tyr118) to Ala or Ser transformed the enzymes into flavin-bound SsuE variants that could no longer support flavin reductase and desulfonation activities. These variants existed as dimers and could form protein-protein interactions with SsuD even though flavin transfer was not sustained. The ΔY118 SsuE variant was flavin-free as purified and did not undergo the tetramer to dimer oligomeric shift with the addition of flavin. The absence of desulfonation activity can be attributed to the inability of ΔY118 SsuE to promote flavin transfer and undergo the requisite oligomeric changes to support desulfonation. Results from these studies provide insights into the role of the SsuE π-helix in promoting flavin transfer and oligomeric changes that support protein-protein interactions with SsuD.
Collapse
Affiliation(s)
- Jonathan M Musila
- Department of Chemistry and Biochemistry , Auburn University , Auburn , Alabama 36849 , United States
| | - Dianna L Forbes
- Department of Chemistry and Biochemistry , Auburn University , Auburn , Alabama 36849 , United States
| | - Holly R Ellis
- Department of Chemistry and Biochemistry , Auburn University , Auburn , Alabama 36849 , United States
| |
Collapse
|
5
|
Sena FV, Sousa FM, Oliveira ASF, Soares CM, Catarino T, Pereira MM. Regulation of the mechanism of Type-II NADH: Quinone oxidoreductase from S. aureus. Redox Biol 2018. [PMID: 29524843 PMCID: PMC5857484 DOI: 10.1016/j.redox.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type-II NADH:quinone oxidoreductases (NDH-2s) are membrane proteins involved in respiratory chains and the only enzymes with NADH:quinone oxidoreductase activity expressed in Staphylococcus aureus (S. aureus), one of the most common causes of clinical infections. NDH-2s are members of the two-Dinucleotide Binding Domains Flavoprotein (tDBDF) superfamily, having a flavin adenine dinucleotide, FAD, as prosthetic group and NAD(P)H as substrate. The establishment of a Charge-Transfer Complex (CTC) between the isoalloxazine ring of the reduced flavin and the nicotinamide ring of NAD+ in NDH-2 was described, and in this work we explored its role in the kinetic mechanism using different electron donors and electron acceptors. We observed that CTC slows down the rate of the second half reaction (quinone reduction) and determines the effect of HQNO, an inhibitor. Also, protonation equilibrium simulations clearly indicate that the protonation probability of an important residue for proton transfer to the active site (D302) is influenced by the presence of the CTC. We propose that CTC is critical for the overall mechanism of NDH-2 and possibly relevant to keep a low quinol/quinone ratio and avoid excessive ROS production in vivo.
Collapse
Affiliation(s)
- Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - A Sofia F Oliveira
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Cláudio M Soares
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Teresa Catarino
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal; University of Lisbon, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal.
| |
Collapse
|
6
|
Musila JM, Ellis HR. Transformation of a Flavin-Free FMN Reductase to a Canonical Flavoprotein through Modification of the π-Helix. Biochemistry 2016; 55:6389-6394. [DOI: 10.1021/acs.biochem.6b00452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan M. Musila
- Department
of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Holly R. Ellis
- Department
of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
7
|
WrpA Is an Atypical Flavodoxin Family Protein under Regulatory Control of the Brucella abortus General Stress Response System. J Bacteriol 2016; 198:1281-93. [PMID: 26858101 DOI: 10.1128/jb.00982-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/27/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The general stress response (GSR) system of the intracellular pathogen Brucella abortus controls the transcription of approximately 100 genes in response to a range of stress cues. The core genetic regulatory components of the GSR are required for B. abortus survival under nonoptimal growth conditions in vitro and for maintenance of chronic infection in an in vivo mouse model. The functions of the majority of the genes in the GSR transcriptional regulon remain undefined. bab1_1070 is among the most highly regulated genes in this regulon: its transcription is activated 20- to 30-fold by the GSR system under oxidative conditions in vitro. We have solved crystal structures of Bab1_1070 and demonstrate that it forms a homotetrameric complex that resembles those of WrbA-type NADH:quinone oxidoreductases, which are members of the flavodoxin protein family. However, B. abortus WrbA-related protein (WrpA) does not bind flavin cofactors with a high affinity and does not function as an NADH:quinone oxidoreductase in vitro. Soaking crystals with flavin mononucleotide (FMN) revealed a likely low-affinity binding site adjacent to the canonical WrbA flavin binding site. Deletion of wrpA (ΔwrpA) does not compromise cell survival under acute oxidative stress in vitro or attenuate infection in cell-based or mouse models. However, a ΔwrpA strain does elicit increased splenomegaly in a mouse model, suggesting that WrpA modulates B. abortus interaction with its mammalian host. Despite high structural homology with canonical WrbA proteins, we propose that B. abortus WrpA represents a functionally distinct member of the diverse flavodoxin family. IMPORTANCE Brucella abortus is an etiological agent of brucellosis, which is among the most common zoonotic diseases worldwide. The general stress response (GSR) regulatory system of B. abortus controls the transcription of approximately 100 genes and is required for maintenance of chronic infection in a murine model; the majority of GSR-regulated genes remain uncharacterized. We present in vitro and in vivo functional and structural analyses of WrpA, whose expression is strongly induced by GSR under oxidative conditions. Though WrpA is structurally related to NADH:quinone oxidoreductases, it does not bind redox cofactors in solution, nor does it exhibit oxidoreductase activity in vitro. However, WrpA does affect spleen inflammation in a murine infection model. Our data provide evidence that WrpA forms a new functional class of WrbA/flavodoxin family proteins.
Collapse
|
8
|
Driggers CM, Dayal PV, Ellis HR, Karplus PA. Crystal Structure of Escherichia coli SsuE: Defining a General Catalytic Cycle for FMN Reductases of the Flavodoxin-like Superfamily. Biochemistry 2014; 53:3509-19. [DOI: 10.1021/bi500314f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Camden M. Driggers
- Department
of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural
and Life Sciences Building, Corvallis, Oregon 97331, United States
| | - Paritosh V. Dayal
- Department
of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Holly R. Ellis
- Department
of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - P. Andrew Karplus
- Department
of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural
and Life Sciences Building, Corvallis, Oregon 97331, United States
| |
Collapse
|
9
|
Armacost K, Musila J, Gathiaka S, Ellis HR, Acevedo O. Exploring the Catalytic Mechanism of Alkanesulfonate Monooxygenase Using Molecular Dynamics. Biochemistry 2014; 53:3308-17. [DOI: 10.1021/bi5002085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kira Armacost
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Jonathan Musila
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Symon Gathiaka
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Holly R. Ellis
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Orlando Acevedo
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
10
|
Knuuti J, Belevich G, Sharma V, Bloch DA, Verkhovskaya M. A single amino acid residue controls ROS production in the respiratory Complex I from Escherichia coli. Mol Microbiol 2013; 90:1190-200. [PMID: 24325249 DOI: 10.1111/mmi.12424] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2013] [Indexed: 01/08/2023]
Abstract
Reactive oxygen species (ROS) production by respiratory Complex I from Escherichia coli was studied in bacterial membrane fragments and in the isolated and purified enzyme, either solubilized or incorporated in proteoliposomes. We found that the replacement of a single amino acid residue in close proximity to the nicotinamide adenine dinucleotide (NADH)-binding catalytic site (E95 in the NuoF subunit) dramatically increases the reactivity of Complex I towards dioxygen (O2 ). In the E95Q variant short-chain ubiquinones exhibit strong artificial one-electron reduction at the catalytic site, also leading to a stronger increase in ROS production. Two mechanisms can contribute to the observed kinetic effects: (a) a change in the reactivity of flavin mononucleotide (FMN) towards dioxygen at the catalytic site, and (b) a change in the population of the ROS-generating state. We propose the existence of two (closed and open) states of the NAD(+) -bound enzyme as one feature of the substrate-binding site of Complex I. The analysis of the kinetic model of ROS production allowed us to propose that the population of Complex I with reduced FMN is always low in the wild-type enzyme even at low ambient redox potentials, minimizing the rate of reaction with O2 in contrast to E95Q variant.
Collapse
Affiliation(s)
- Juho Knuuti
- Helsinki Bioenergetics Group, Institute of Biotechnology, University of Helsinki, PO Box 65 (Viikinkaari 1), FIN-00014, Helsinki, Finland
| | | | | | | | | |
Collapse
|
11
|
Identification of critical steps governing the two-component alkanesulfonate monooxygenase catalytic mechanism. Biochemistry 2012; 51:6378-87. [PMID: 22775358 DOI: 10.1021/bi300138d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alkanesulfonate monooxygenase enzyme (SsuD) catalyzes the oxygenolytic cleavage of a carbon-sulfur bond from sulfonated substrates. A mechanism involving acid-base catalysis has been proposed for the desulfonation mechanism by SsuD. In the proposed mechanism, base catalysis is involved in abstracting a proton from the alkane peroxyflavin intermediate, while acid catalysis is needed for the protonation of the FMNO(-) intermediate. The pH profiles of k(cat) indicate that catalysis by SsuD requires a group with a pK(a) of 6.6 ± 0.2 to be deprotonated and a second group with a pK(a) of 9.5 ± 0.1 to be protonated. The upper pK(a) value was not present in the pH profiles of k(cat)/K(m). Several conserved amino acid residues (His228, His11, His333, Cys54, and Arg226) have been identified as having potential catalytic importance due to the similar spatial arrangements with close structural and functional relatives of SsuD. Substitutions to these amino acid residues were generated, and the pH dependencies were evaluated and compared to wild-type SsuD. Although a histidine residue was previously proposed to be the active site base, the His variants possessed similar steady-state kinetic parameters as wild-type SsuD. Interestingly, R226A and R226K SsuD variants possessed undetectable activity, and there was no detectable formation of the C4a-(hydro)peroxyflavin intermediate for the Arg226 SsuD variants. Guanidinium rescue with the R226A SsuD variant resulted in the recovery of 1.5% of the wild-type SsuD k(cat) value. These results implicate Arg226 playing a critical role in catalysis and provide essential insights into the mechanistic steps that guide the SsuD desulfonation process.
Collapse
|
12
|
Ellis HR. Mechanism for sulfur acquisition by the alkanesulfonate monooxygenase system. Bioorg Chem 2011; 39:178-84. [DOI: 10.1016/j.bioorg.2011.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/01/2011] [Accepted: 08/03/2011] [Indexed: 11/28/2022]
|
13
|
Nijvipakul S, Ballou DP, Chaiyen P. Reduction kinetics of a flavin oxidoreductase LuxG from Photobacterium leiognathi (TH1): half-sites reactivity. Biochemistry 2010; 49:9241-8. [PMID: 20836540 DOI: 10.1021/bi1009985] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial bioluminescence is a phenomenon resulting from the reaction of a two-component FMN-dependent aldehyde monooxygenase system, which comprises a bacterial luciferase and a flavin reductase. Bacterial luciferase (LuxAB) is one of the most extensively investigated two-component monooxygenases, while its reductase partner, the flavin reductase (LuxG) from the same operon, has only been recently expressed in a functional form. This work reports transient kinetics identification of intermediates in the LuxG reaction using stopped-flow spectrophotometry. The results indicate that the overall reaction follows a sequential-ordered mechanism in which NADH binds first to the enzyme, followed by FMN, resulting in the formation of charge-transfer intermediate 1 (CT-1) typical of those between reduced pyridine nucleotides and oxidized flavins. The next step is the reduction of FMN as indicated by a large decrease in absorbance at 450 nm. The reduction of FMN is biphasic. The first phase of FMN reduction occurs concurrently with formation of charge-transfer intermediate 2 (CT-2), while the second phase is synchronous with the decay of CT-2. When the isotope-labeled substrate, 4(R)-[(2)H]NADH, was used, the first reduction phase showed a primary kinetic isotope effect ((D)k(red)) of ≥3.9 and resulted in greater accumulation of CT-1. These results are consistent with CT-1 being the FMN(ox):NADH complex, while CT-2 is the FMN(red):NAD(+) complex. Because CT-2 decays with a rate constant of 2.8 ± 0.2 s(-1), while the turnover number obtained from the steady-steady-state kinetics is 1.7 s(-1), it is likely that the CT-2 decay step largely controls the overall reaction rate. All kinetic data are consistent with a half-sites reactivity model in which flavin reduction occurs at only one subunit at a time. The first reduction phase is due to the reduction of FMN in the first subunit, while the second phase is due to the reduction of FMN in the second subunit. The latter phase is limited by the rate of decay of CT-2 in the first subunit. The half-sites reactivity model is also supported by detection of burst kinetics during the pre-steady-state period that is correlated with 0.5 mol of the FMN being reduced/mol of the LuxG:NADH complex. The functional importance of this half-site reactivity phenomenon is still unclear.
Collapse
Affiliation(s)
- Sarayut Nijvipakul
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|
14
|
A multi-analytical approach for the identification of aloe as a colorant in oil–resin varnishes. Anal Bioanal Chem 2010; 399:3093-107. [DOI: 10.1007/s00216-010-4402-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/20/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
|
15
|
A study on the reactions of NADH models with electron-deficient alkenes. A probe for the extreme of concerted electron-hydrogen atom transfer mechanism. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2008.10.143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|