1
|
Blanchard H, Bum-Erdene K, Bohari MH, Yu X. Galectin-1 inhibitors and their potential therapeutic applications: a patent review. Expert Opin Ther Pat 2016; 26:537-54. [PMID: 26950805 DOI: 10.1517/13543776.2016.1163338] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Galectins have affinity for β-galactosides. Human galectin-1 is ubiquitously expressed in the body and its expression level can be a marker in disease. Targeted inhibition of galectin-1 gives potential for treatment of inflammatory disorders and anti-cancer therapeutics. AREAS COVERED This review discusses progress in galectin-1 inhibitor discovery and development. Patent applications pertaining to galectin-1 inhibitors are categorised as monovalent- and multivalent-carbohydrate-based inhibitors, peptides- and peptidomimetics. Furthermore, the potential of galectin-1 protein as a therapeutic is discussed along with consideration of the unique challenges that galectin-1 presents, including its monomer-dimer equilibrium and oxidized and reduced forms, with regard to delivering an intact protein to a pathologically relevant site. EXPERT OPINION Significant evidence implicates galectin-1's involvement in cancer progression, inflammation, and host-pathogen interactions. Conserved sequence similarity of the carbohydrate-binding sites of different galectins makes design of specific antagonists (blocking agents/inhibitors of function) difficult. Key challenges pertaining to the therapeutic use of galectin-1 are its monomer-dimer equilibrium, its redox state, and delivery of intact galectin-1 to the desired site. Developing modified forms of galectin-1 has resulted in increased stability and functional potency. Gene and protein therapy approaches that deliver the protein toward the target are under exploration as is exploitation of different inhibitor scaffolds.
Collapse
Affiliation(s)
- Helen Blanchard
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| | - Khuchtumur Bum-Erdene
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| | | | - Xing Yu
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| |
Collapse
|
2
|
Hegedüs Z, Makra I, Imre N, Hetényi A, Mándity IM, Monostori É, Martinek TA. Foldameric probes for membrane interactions by induced β-sheet folding. Chem Commun (Camb) 2016; 52:1891-4. [PMID: 26672754 DOI: 10.1039/c5cc09257d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Design strategies were devised for α/β-peptide foldameric analogues of the antiangiogenic anginex with the goal of mimicking the diverse structural features from the unordered conformation to a folded β-sheet in response to membrane interactions. Structure-activity relationships were investigated in the light of different β-sheet folding levels.
Collapse
Affiliation(s)
- Zsófia Hegedüs
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research Group, University of Szeged, H-6720 Szeged, Hungary.
| | - Ildikó Makra
- Lymphocyte Signal Transduction Laboratory, Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - Norbert Imre
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research Group, University of Szeged, H-6720 Szeged, Hungary.
| | - Anasztázia Hetényi
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - István M Mándity
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Éva Monostori
- Lymphocyte Signal Transduction Laboratory, Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - Tamás A Martinek
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research Group, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|
3
|
Cabrele C, Martinek TA, Reiser O, Berlicki Ł. Peptides Containing β-Amino Acid Patterns: Challenges and Successes in Medicinal Chemistry. J Med Chem 2014; 57:9718-39. [DOI: 10.1021/jm5010896] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chiara Cabrele
- Department
of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Tamás A. Martinek
- SZTE-MTA
Lendulet Foldamer Research Group, Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 6., H-6720 Szeged, Hungary
| | - Oliver Reiser
- Institute
of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
4
|
Blanchard H, Bum-Erdene K, Hugo MW. Inhibitors of Galectins and Implications for Structure-Based Design of Galectin-Specific Therapeutics. Aust J Chem 2014. [DOI: 10.1071/ch14362] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Galectins are a family of galactoside-specific lectins that are involved in a myriad of metabolic and disease processes. Due to roles in cancer and inflammatory and heart diseases, galectins are attractive targets for drug development. Over the last two decades, various strategies have been used to inhibit galectins, including polysaccharide-based therapeutics, multivalent display of saccharides, peptides, peptidomimetics, and saccharide-modifications. Primarily due to galectin carbohydrate binding sites having high sequence identities, the design and development of selective inhibitors targeting particular galectins, thereby addressing specific disease states, is challenging. Furthermore, the use of different inhibition assays by research groups has hindered systematic assessment of the relative selectivity and affinity of inhibitors. This review summarises the status of current inhibitors, strategies, and novel scaffolds that exploit subtle differences in galectin structures that, in conjunction with increasing available data on multiple galectins, is enabling the feasible design of effective and specific inhibitors of galectins.
Collapse
|
5
|
Hegedüs Z, Wéber E, Kriston-Pál É, Makra I, Czibula Á, Monostori É, Martinek TA. Foldameric α/β-peptide analogs of the β-sheet-forming antiangiogenic anginex: structure and bioactivity. J Am Chem Soc 2013; 135:16578-84. [PMID: 24088182 DOI: 10.1021/ja408054f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The principles of β-sheet folding and design for α-peptidic sequences are well established, while those for sheet mimetics containing homologated amino acid building blocks are still under investigation. To reveal the structure-function relations of β-amino-acid-containing foldamers, we followed a top-down approach to study a series of α/β-peptidic analogs of anginex, a β-sheet-forming antiangiogenic peptide. Eight anginex analogs were developed by systematic α → β(3) substitutions and analyzed by using NMR and CD spectroscopy. The foldamers retained the β-sheet tendency, though with a decreased folding propensity. β-Sheet formation could be induced by a micellar environment, similarly to that of the parent peptide. The destructuring effect was higher when the α → β(3) exchange was located in the β-sheet core. Analysis of the β-sheet stability versus substitution pattern and the local conformational bias of the bulky β(3)V and β(3)I residues revealed that a mismatch between the H-bonding preferences of the α- and β-residues played a minor role in the structure-breaking effect. Temperature-dependent CD and NMR measurements showed that the hydrophobic stabilization was scaled-down for the α/β-peptides. Analysis of the biological activity of the foldamer peptides showed that four anginex derivatives dose-dependently inhibited the proliferation of a mouse endothelial cell line. The α → β(3) substitution strategy applied in this work can be a useful approach to the construction of bioactive β-sheet mimetics with a reduced aggregation tendency and improved pharmacokinetic properties.
Collapse
Affiliation(s)
- Zsófia Hegedüs
- SZTE-MTA Lendulet Foldamer Research Group, Institute of Pharmaceutical Chemistry, University of Szeged , Eötvös u. 6, H-6720 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
6
|
Dings RPM, Kumar N, Miller MC, Loren M, Rangwala H, Hoye TR, Mayo KH. Structure-based optimization of angiostatic agent 6DBF7, an allosteric antagonist of galectin-1. J Pharmacol Exp Ther 2012; 344:589-99. [PMID: 23232447 DOI: 10.1124/jpet.112.199646] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Galectin-1 (gal-1), which binds β-galactoside groups on various cell surface receptors, is crucial to cell adhesion and migration, and is found to be elevated in several cancers. Previously, we reported on 6DBF7, a dibenzofuran (DBF)-based peptidomimetic of the gal-1 antagonist anginex. In the present study, we used a structure-based approach to optimize 6DBF7. Initial NMR studies showed that 6DBF7 binds to gal-1 on one side of the β-sandwich away from the lectin's carbohydrate binding site. Although an alanine scan of 6DBF7 showed that the two cationic groups (lysines) in the partial peptide are crucial to its angiostatic activity, it is the hydrophobic face of the amphipath that appears to interact directly with the surface of gal-1. Based on this structural information, we designed and tested additional DBF analogs. In particular, substitution of the C-terminal Asp for alanine and branched alkyl side chains (Val, Leu, Ile) for linear ones (Nle, Nva) rendered the greatest improvements in activity. Flow cytometry with gal-1(-/-) splenocytes showed that 6DBF7 and two of its more potent analogs (DB16 and DB21) can fully inhibit fluorescein isothiocyanate-gal-1 binding. Moreover, heteronuclear single-quantum coherence NMR titrations showed that the presence of DB16 decreases gal-1 affinity for lactose, indicating that the peptidomimetic targets gal-1 as a noncompetitive, allosteric inhibitor of glycan binding. Using tumor mouse models (B16F10 melanoma, LS174 lung, and MA148 ovarian), we found that DB21 inhibits tumor angiogenesis and tumor growth significantly better than 6DBF7, DB16, or anginex. DB21 is currently being developed further and holds promise for the management of human cancer in the clinic.
Collapse
Affiliation(s)
- Ruud P M Dings
- Department of Biochemistry, University of Minnesota, 321 Church Street, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Rosca EV, Koskimaki JE, Rivera CG, Pandey NB, Tamiz AP, Popel AS. Anti-angiogenic peptides for cancer therapeutics. Curr Pharm Biotechnol 2011; 12:1101-16. [PMID: 21470139 DOI: 10.2174/138920111796117300] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 06/30/2010] [Indexed: 12/18/2022]
Abstract
Peptides have emerged as important therapeutics that are being rigorously tested in angiogenesis-dependent diseases due to their low toxicity and high specificity. Since the discovery of endogenous proteins and protein fragments that inhibit microvessel formation (thrombospondin, endostatin) several peptides have shown promise in pre-clinical and clinical studies for cancer. Peptides have been derived from thrombospondin, collagens, chemokines, coagulation cascade proteins, growth factors, and other classes of proteins and target different receptors. Here we survey recent developments for anti-angiogenic peptides with length not exceeding 50 amino acid residues that have shown activity in pre-clinical models of cancer or have been tested in clinical trials; some of the peptides have been modified and optimized, e.g., through L-to-D and non-natural amino acid substitutions. We highlight technological advances in peptide discovery and optimization including computational and bioinformatics tools and novel experimental techniques.
Collapse
Affiliation(s)
- Elena V Rosca
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
8
|
Apana SM, Griffin RJ, Koonce NA, Webber JS, Dings RPM, Mayo KH, Berridge MS. Synthesis of [18F]anginex with high specific activity [18F]fluorobenzaldehyde for targeting angiogenic activity in solid tumors. J Labelled Comp Radiopharm 2011. [DOI: 10.1002/jlcr.1912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Scott M. Apana
- 3D Imaging, LLC; Cyclotron Suite Rm PS010, UAMS Radiology #556, 4301 W. Markham Street; Little Rock; AR; 72205-7199; USA
| | - Robert J. Griffin
- Department of Radiation Oncology; University of Arkansas for Medical Sciences; Little Rock; AR; USA
| | - Nathan A. Koonce
- Department of Radiation Oncology; University of Arkansas for Medical Sciences; Little Rock; AR; USA
| | - Jessica S. Webber
- Department of Radiation Oncology; University of Arkansas for Medical Sciences; Little Rock; AR; USA
| | - Ruud P. M. Dings
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis; MN; USA
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis; MN; USA
| | | |
Collapse
|
9
|
Salomonsson E, Thijssen VL, Griffioen AW, Nilsson UJ, Leffler H. The anti-angiogenic peptide anginex greatly enhances galectin-1 binding affinity for glycoproteins. J Biol Chem 2011; 286:13801-4. [PMID: 21372130 PMCID: PMC3077580 DOI: 10.1074/jbc.c111.229096] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Angiogenesis is a key event in cancer progression and therefore a promising target in cancer treatment. Galectin-1, a β-galactoside binding lectin, is up-regulated in the endothelium of tumors of different origin and has been shown to be the target for anginex, a powerful anti-angiogenic peptide with anti-tumor activity. Here we show that when bound to anginex, galectin-1 binds various glycoproteins with hundred- to thousand-fold higher affinity. Anginex also interacts with galectin-2, -7, -8N, and -9N but not with galectin-3, -4, or -9C.
Collapse
Affiliation(s)
- Emma Salomonsson
- Section Microbiology, Immunology, Glycobiology, Institute of Laboratory Medicine, Lund University, Sölvegatan 23, SE-223 62 Lund, Sweden
| | | | | | | | | |
Collapse
|
10
|
Abstract
Cationic peptides, known to disrupt bacterial membranes, are being developed as promising agents for therapeutic intervention against infectious disease. In the present study, we investigate structure-activity relationships in the bacterial membrane disruptor betapep-25, a peptide 33-mer. For insight into which amino acid residues are functionally important, we synthesized alanine-scanning variants of betapep-25 and assessed their ability to kill bacteria (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) and to neutralize LPS (lipopolysaccharide). Activity profiles were found to vary with the bacterial strain examined. Specific cationic and smaller hydrophobic alkyl residues were crucial to optimal bactericidal activity against the Gram-negative bacteria, whereas larger hydrophobic and cationic residues mediated optimal activity against Gram-positive Staph. aureus. Lysine-substituted norleucine (n-butyl group) variants demonstrated that both charge and alkyl chain length mediate optimal activity. In terms of LPS neutralization, activity profiles were essentially the same against four species of LPS (E. coli 055 and 0111, Salmonella enterica serotype Typhimurium and Klebsiella pneumoniae), and different for two others (Ps. aeruginosa and Serratia marcescens), with specific hydrophobic, cationic and, surprisingly, anionic residues being functionally important. Furthermore, disulfide-bridged analogues demonstrated that an anti parallel beta-sheet structure is the bioactive conformation of betapep-25 in terms of its bactericidal, but not LPS endotoxin neutralizing, activity. Moreover, betapep-25 variants, like the parent peptide, do not lyse eukaryotic cells. This research contributes to the development and design of novel antibiotics.
Collapse
|
11
|
Dings RPM, Van Laar ES, Webber J, Zhang Y, Griffin RJ, Waters SJ, MacDonald JR, Mayo KH. Ovarian tumor growth regression using a combination of vascular targeting agents anginex or topomimetic 0118 and the chemotherapeutic irofulven. Cancer Lett 2008; 265:270-80. [PMID: 18378392 DOI: 10.1016/j.canlet.2008.02.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 02/08/2008] [Accepted: 02/12/2008] [Indexed: 01/04/2023]
Abstract
Combination of chemotherapeutic agents and angiogenesis inhibitors is now commonly employed in the clinic to treat cancer. Here, we used angiostatic agents anginex and 0118, in combination with the chemotherapeutic irofulven, to treat human ovarian tumor xenografts in mice. General linear mixed models were used to statistically analyze tumor growth curves. Overall, combination of a low, non-toxic dose of irofulven with either angiogenesis inhibitor was more effective at inhibiting tumor growth than any of the single agent therapies. For example, the anginex/irofulven and 0118/irofulven combinations inhibited tumor growth relative to controls by 92% (p<0.0001) and 96% (p<0.0001), respectively, with the 0118/irofulven combinations yielding 100% complete responses. This study suggests that combination therapy of 0118 or anginex and irofulven may be highly effective in the clinical setting.
Collapse
Affiliation(s)
- Ruud P M Dings
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|