1
|
Izadi N, Solár P, Hašanová K, Zamani A, Akbar MS, Mrázová K, Bartošík M, Kazda T, Hrstka R, Joukal M. Breaking boundaries: role of the brain barriers in metastatic process. Fluids Barriers CNS 2025; 22:3. [PMID: 39780275 PMCID: PMC11708195 DOI: 10.1186/s12987-025-00618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Brain metastases (BMs) are the most common intracranial tumors in adults and occur 3-10 times more frequently than primary brain tumors. Despite intensive multimodal therapies, including resection, radiotherapy, and chemotherapy, BMs are associated with poor prognosis and remain challenging to treat. BMs predominantly originate from primary lung (20-56%), breast (5-20%), and melanoma (7-16%) tumors, although they can arise from other cancer types less frequently. The metastatic cascade is a multistep process involving local invasion, intravasation into the bloodstream or lymphatic system, extravasation into normal tissue, and colonization of the distal site. After reaching the brain, circulating tumor cells (CTCs) breach the blood-brain barrier (BBB).The selective permeability of the BBB poses a significant challenge for therapeutic compounds, limiting the treatment efficacy of BMs. Understanding the mechanisms of tumor cell interactions with the BBB is crucial for the development of effective treatments. This review provides an in-depth analysis of the brain barriers, including the BBB, blood-spinal cord barrier, blood-meningeal barrier, blood-arachnoid barrier, and blood-cerebrospinal fluid barrier. It explores the molecular and cellular components of these barriers and their roles in brain metastasis, highlighting the importance of this knowledge for identifying druggable targets to prevent or limit BM formation.
Collapse
Affiliation(s)
- Nasim Izadi
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University, St Anne University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Klaudia Hašanová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Maryam Shahidian Akbar
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Klára Mrázová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Martin Bartošík
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Tomáš Kazda
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic.
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
2
|
Wu X, Deng Y, Xu Y, Kang H, Hu JJ, Yoon J, Liang G. Activatable Fluorescence and Bio/Chemiluminescence Probes for Aminopeptidases: From Design to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409893. [PMID: 39235570 DOI: 10.1002/adma.202409893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Aminopeptidases are exopeptidases that catalyze the cleavage of amino acid residues from the N-terminal fragment of protein or peptide substrates. Owing to their function, they play important roles in protein maturation, signal transduction, cell-cycle control, and various disease mechanisms, notably in cancer pathology. To gain better insights into their function, molecular imaging assisted by fluorescence and bio/chemiluminescence probes has become an indispensable method to their superiorities, including excellent sensitivity, selectivity, and real-time and noninvasive imaging. Numerous efforts are made to develop activatable probes that can effectively enhance efficiency and accuracy as well as minimize the side effects. This review is classified according to the type of aminopeptidases, summarizing some recent works on the design, work mechanism, and sensing, imaging, and theranostic performance of their activatable probe. Finally, the current challenges are outlined in developing activatable probes for aminopeptidases and provide possible solutions for future advancements.
Collapse
Affiliation(s)
- Xiaofeng Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Deng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ying Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
3
|
Yadav MP, Ballal S, Martin M, Roesch F, Satapathy S, Moon ES, Tripathi M, Gogia A, Bal C. Therapeutic potential of [ 177Lu]Lu-DOTAGA-FAPi dimers in metastatic breast cancer patients with limited treatment options: efficacy and safety assessment. Eur J Nucl Med Mol Imaging 2024; 51:805-819. [PMID: 37932560 DOI: 10.1007/s00259-023-06482-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE The upregulation of fibroblast activation protein (FAP) expression has been observed in various cancers, including metastatic breast carcinoma, prompting research into small molecule inhibitors for both diagnostic and therapeutic purposes. While the diagnostic value of PET/CT imaging using 68 Ga- or 18F-labelled FAPi-monomers in breast cancer diagnosis is well-established, there is a significant need for therapeutic analogs. This retrospective study aimed to assess the safety and effectiveness of [177Lu]Lu-DOTAGA.FAPi dimer radionuclide therapy in patients with advanced-stage breast cancer who had previously undergone [68 Ga]Ga-DOTA.SA.FAPi PET/CT scans to confirm the expression of FAP. MATERIALS AND METHODS Between November 2020 and March 2023, a compassionate treatment approach was utilized to administer [177Lu]Lu-DOTAGA.FAPi dimer radionuclide therapy to heavily pretreated patients with advanced breast cancer. Nineteen patients (18 females, 1 male) with metastatic breast cancer participated in the study, with an average age of 44.6 ± 10.7 years. The therapy was administered at intervals of 8 to 12 weeks, and the median follow-up duration was 14 months. The primary objective of the study was to assess molecular response using [68 Ga]Ga-DOTA.SA.FAPi PET/CT scans, with response evaluation based on the PERCIST criteria. Secondary endpoints included overall survival (OS), progression-free survival (PFS), clinical response assessment, and safety evaluation using CTCAE v5.0 guidelines. RESULTS A total of 65 cycles were administered, with a mean cumulative activity of 19 ± 5.7 GBq (510 ± 154 mCi) ranging from 11 to 33.3 GBq (300 to 900 mCi) of [177Lu]Lu-DOTAGA.FAPi dimer. The number of cycles ranged from 2 to 6, with a median of 3 cycles. The treatment protocol consisted of different numbers of cycles administered to the patients: specifically, two cycles were given to five patients, three cycles to nine patients, four cycles to one patient, and six cycles to four patients. Most patients had invasive/infiltrative ductal carcinoma (94.7%), while a small percentage had invasive lobular carcinoma (5.3%). All patients had bone metastases, and five of them also had liver involvement, while seven had brain metastases. Response assessment using [68 Ga]Ga-DOTA.SA.FAPi PET/CT scans showed that 25% of the 16 patients evaluated had partial remission, while 37.5% exhibited disease progression. According to the VAS response criteria, 26.3% achieved complete response, 15.7% had partial response, 42% showed minimal response, 11% had stable disease, and 5% had no response. The clinical disease control rate was promising, with 95% of patients achieving disease control. The clinical objective response rate was 84%. The median follow-up period was 14 months. At the time of analysis, the median overall survival was 12 months, and the median progression-free survival was 8.5 months. Notably, no severe hematological, renal, or hepatic toxicities, electrolyte imbalances, or adverse events of grade 3 or 4 were observed during the study. CONCLUSION The findings suggest that [177Lu]Lu-DOTAGA.FAPi dimer therapy is well-tolerated, safe, and effective for treating end-stage metastatic breast cancer patients. [177Lu]Lu-DOTAGA.FAPi dimer treatment demonstrated promising efficacy in patients with advanced breast cancer, as indicated by high disease control rates, favorable response outcomes, and acceptable safety profile. Further research and longer follow-up are warranted to assess long-term outcomes and validate these findings.
Collapse
Affiliation(s)
- Madhav P Yadav
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sanjana Ballal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Marcel Martin
- Department of Chemistry - TRIGA site, Johannes Gutenberg University, Mainz, Germany
| | - Frank Roesch
- Department of Chemistry - TRIGA site, Johannes Gutenberg University, Mainz, Germany
| | - Swayamjeet Satapathy
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Euy S Moon
- Department of Chemistry - TRIGA site, Johannes Gutenberg University, Mainz, Germany
| | - Madhavi Tripathi
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
4
|
Zhang XL, Xiao W, Qian JP, Yang WJ, Xu H, Xu XD, Zhang GW. The Role and Application of Fibroblast Activating Protein. Curr Mol Med 2024; 24:1097-1110. [PMID: 37259211 DOI: 10.2174/1566524023666230530095305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/02/2023]
Abstract
Fibroblast activation protein-α (FAP), a type-II transmembrane serine protease, is rarely expressed in normal tissues but highly abundant in pathological diseases, including fibrosis, arthritis, and cancer. Ever since its discovery, we have deciphered its structure and biological properties and continue to investigate its roles in various diseases while attempting to utilize it for targeted therapy. To date, no significant breakthroughs have been made in terms of efficacy. However, in recent years, several practical applications in the realm of imaging diagnosis have been discovered. Given its unique expression in a diverse array of pathological tissues, the fundamental biological characteristics of FAP render it a crucial target for disease diagnosis and immunotherapy. To obtain a more comprehensive understanding of the research progress of FAP, its biological characteristics, involvement in diseases, and recent targeted application research have been reviewed. Moreover, we explored its development trend in the direction of clinical diagnoses and treatment.
Collapse
Affiliation(s)
- Xiao-Lou Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wang Xiao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Jun Yang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xing-da Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Li X, Gao Y, Li H, Majoral JP, Shi X, Pich A. Smart and bioinspired systems for overcoming biological barriers and enhancing disease theranostics. PROGRESS IN MATERIALS SCIENCE 2023; 140:101170. [DOI: 10.1016/j.pmatsci.2023.101170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Basalova N, Alexandrushkina N, Grigorieva O, Kulebyakina M, Efimenko A. Fibroblast Activation Protein Alpha (FAPα) in Fibrosis: Beyond a Perspective Marker for Activated Stromal Cells? Biomolecules 2023; 13:1718. [PMID: 38136590 PMCID: PMC10742035 DOI: 10.3390/biom13121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The development of tissue fibrosis is a complex process involving the interaction of multiple cell types, which makes the search for antifibrotic agents rather challenging. So far, myofibroblasts have been considered the key cell type that mediated the development of fibrosis and thus was the main target for therapy. However, current strategies aimed at inhibiting myofibroblast function or eliminating them fail to demonstrate sufficient effectiveness in clinical practice. Therefore, today, there is an unmet need to search for more reliable cellular targets to contribute to fibrosis resolution or the inhibition of its progression. Activated stromal cells, capable of active proliferation and invasive growth into healthy tissue, appear to be such a target population due to their more accessible localization in the tissue and their high susceptibility to various regulatory signals. This subpopulation is marked by fibroblast activation protein alpha (FAPα). For a long time, FAPα was considered exclusively a marker of cancer-associated fibroblasts. However, accumulating data are emerging on the diverse functions of FAPα, which suggests that this protein is not only a marker but also plays an important role in fibrosis development and progression. This review aims to summarize the current data on the expression, regulation, and function of FAPα regarding fibrosis development and identify promising advances in the area.
Collapse
Affiliation(s)
- Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia (O.G.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Natalya Alexandrushkina
- Institute for Regenerative Medicine, Medical Research and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia (O.G.); (A.E.)
| | - Olga Grigorieva
- Institute for Regenerative Medicine, Medical Research and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia (O.G.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Maria Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia (O.G.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia;
| |
Collapse
|
7
|
Bukhari M, Patel N, Fontana R, Santiago-Medina M, Jiang Y, Li D, Pestonjamasp K, Christiansen VJ, Jackson KW, McKee PA, Yang J. Fibroblast activation protein drives tumor metastasis via a protease-independent role in invadopodia stabilization. Cell Rep 2023; 42:113302. [PMID: 37862167 PMCID: PMC10742343 DOI: 10.1016/j.celrep.2023.113302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/09/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
During metastasis, tumor cells invade through the basement membrane and intravasate into blood vessels and then extravasate into distant organs to establish metastases. Here, we report a critical role of a transmembrane serine protease fibroblast activation protein (FAP) in tumor metastasis. Expression of FAP and TWIST1, a metastasis driver, is significantly correlated in several types of human carcinomas, and FAP is required for TWIST1-induced breast cancer metastasis to the lung. Mechanistically, FAP is localized at invadopodia and required for invadopodia-mediated extracellular matrix degradation independent of its proteolytic activity. Live cell imaging shows that association of invadopodia precursors with FAP at the cell membrane promotes the stabilization and growth of invadopodia precursors into mature invadopodia. Together, our study identified FAP as a functional target of TWIST1 in driving tumor metastasis via promoting invadopodia-mediated matrix degradation and uncovered a proteolytic activity-independent role of FAP in stabilizing invadopodia precursors for maturation.
Collapse
Affiliation(s)
- Maurish Bukhari
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Navneeta Patel
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Rosa Fontana
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Miguel Santiago-Medina
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Yike Jiang
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Dongmei Li
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Kersi Pestonjamasp
- Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Victoria J Christiansen
- William K. Warren Medical Research Center, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kenneth W Jackson
- William K. Warren Medical Research Center, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Patrick A McKee
- William K. Warren Medical Research Center, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jing Yang
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Pöhler A, Jany C, Butzer J, Bach T, Opolka-Hoffmann E, Staack RF, Jordan G. High ionic strength dissociation assay reduces dimeric target interference in immunogenicity testing. Bioanalysis 2023; 15:823-832. [PMID: 37326333 DOI: 10.4155/bio-2023-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Aim: The presence of di-/multi-meric forms of soluble target in biological samples can interfere in anti-drug antibody (ADA) assays, leading to increased background values and potentially false positivity. The authors investigated the use of the high ionic strength dissociation assay (HISDA) to reduce target interference in two different ADA assays. Results: Interference caused by homodimeric FAP was successfully eliminated to enable cut point determination after applying HISDA. Biochemical experiments confirmed the dissociation of homodimeric FAP after treatment with high ionic strength conditions. Conclusion: HISDA is a promising approach to simultaneously achieve high drug tolerance and reduced interference by noncovalently bound dimeric target molecules in ADA assays without extensive optimization, which is particularly advantageous in routine use.
Collapse
Affiliation(s)
- Alexander Pöhler
- Roche Pharma Research & Early Development (pRED), Pharmaceutical Sciences, Bioanalysis & Biomarkers, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| | - Cordula Jany
- Roche Pharma Research & Early Development (pRED), Pharmaceutical Sciences, Bioanalysis & Biomarkers, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| | - Joachim Butzer
- Roche Pharma Research & Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| | - Thomas Bach
- Roche Pharma Research & Early Development (pRED), Pharmaceutical Sciences, Bioanalysis & Biomarkers, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| | - Eugenia Opolka-Hoffmann
- Roche Pharma Research & Early Development (pRED), Pharmaceutical Sciences, Bioanalysis & Biomarkers, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| | - Roland F Staack
- Roche Pharma Research & Early Development (pRED), Pharmaceutical Sciences, Bioanalysis & Biomarkers, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| | - Gregor Jordan
- Roche Pharma Research & Early Development (pRED), Pharmaceutical Sciences, Bioanalysis & Biomarkers, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| |
Collapse
|
9
|
Shahvali S, Rahiman N, Jaafari MR, Arabi L. Targeting fibroblast activation protein (FAP): advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy. Drug Deliv Transl Res 2023; 13:2041-2056. [PMID: 36840906 DOI: 10.1007/s13346-023-01308-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/26/2023]
Abstract
Fibroblast activation protein (FAP) is a serine protease with dual enzymatic activities overexpressed in cancer-associated fibroblasts (CAFs) in several tumor types, while its expression in healthy adult tissues is scarce. FAP overexpression on CAFs is associated with poor prognosis and plays an important role in tumor development, progression, and invasion. Therefore, FAP is considered a robust therapeutic target for cancer therapy. Here, we try to review and highlight the recent advances in immunotherapies for FAP targeting including the anti-FAP antibodies and immunoconjugates, FAP chimeric antigen receptor (CAR)-T cell, and various FAP vaccines in a preclinical and clinical setting. Subsequently, a discussion on the challenges and prospects associated with the development and translation of effective and safe therapies for targeting and depletion of FAP is provided. We proposed that new CAR-T cell engineering strategies and nanotechnology-based systems as well as advanced functional biomaterials can be used to improve the efficiency and safety of CAR-T cells and vaccines against FAP for more personalized immunotherapy. This review emphasizes the immune targeting of FAP as an emerging stromal candidate and one of the crucial elements in immunotherapy and shows the potential for improvement of current cancer therapy. A summary of different immunotherapy approaches to target fibroblast activation protein (FAP) for cancer therapy.
Collapse
Affiliation(s)
- Sedigheh Shahvali
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
DiMagno SG, Babich JW. Advanced Fibroblast Activation Protein-Ligand Developments: FAP Imaging Agents: A Review of the Structural Requirements. PET Clin 2023:S1556-8598(23)00028-7. [PMID: 37117123 DOI: 10.1016/j.cpet.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Fibroblast activation protein-α (FAP) has attracted increasing attention as a selective marker of cancer-associated fibroblasts (CAFs) and more broadly, of activated fibroblasts in tissues undergoing remodeling of their ECM due to chronic inflammation, fibrosis, or wound healing. Since FAP is critical to the initiation of metastatic growth, its expression will serve as a molecular marker to detect tumors at an earlier stage of development compared to currently available methods. The design of high affinity small molecule FAP inhibitor will allow for noninvasive imaging of activated fibroblast in cancer patients. Small molecule inhibitors of FAP are being developed for targeted radiotherapy of tumors.
Collapse
Affiliation(s)
- Stephen G DiMagno
- Ratio Therapeutics, Inc., One Design Center Place, Suite# 19-601, Boston, MA 02210, USA
| | - John W Babich
- Ratio Therapeutics, Inc., One Design Center Place, Suite# 19-601, Boston, MA 02210, USA.
| |
Collapse
|
11
|
Martin M, Ballal S, Yadav MP, Bal C, Van Rymenant Y, De Loose J, Verhulst E, De Meester I, Van Der Veken P, Roesch F. Novel Generation of FAP Inhibitor-Based Homodimers for Improved Application in Radiotheranostics. Cancers (Basel) 2023; 15:cancers15061889. [PMID: 36980775 PMCID: PMC10047490 DOI: 10.3390/cancers15061889] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Radiopharmaceuticals based on the highly potent FAP inhibitor (FAPi) UAMC-1110 have shown great potential in molecular imaging, but the short tumor retention time of the monomers do not match the physical half-lives of the important therapeutic radionuclides 177Lu and 225Ac. This was improved with the dimer DOTAGA.(SA.FAPi)2, but pharmacological and radiolabeling properties still need optimization. Therefore, the novel FAPi homodimers DO3A.Glu.(FAPi)2 and DOTAGA.Glu.(FAPi)2. were synthesized and quantitatively radiolabeled with 68Ga, 90Y, 177Lu and 225Ac. The radiolabeled complexes showed high hydrophilicity and were generally stable in human serum (HS) and phosphate-buffered saline (PBS) at 37 °C over two half-lives, except for [225Ac]Ac-DOTAGA.Glu.(FAPi)2 in PBS. In vitro affinity studies resulted in subnanomolar IC50 values for FAP and high selectivity for FAP over the related proteases PREP and DPP4 for both compounds as well as for [natLu]Lu-DOTAGA.Glu.(FAPi)2. In a first proof-of-principle patient study (medullary thyroid cancer), [177Lu]Lu-DOTAGA.Glu.(FAPi)2 was compared to [177Lu]Lu-DOTAGA.(SA.FAPi)2. High uptake and long tumor retention was observed in both cases, but [177Lu]Lu-DOTAGA.Glu.(FAPi)2 significantly reduces uptake in non-target and critical organs (liver, colon). Overall, the novel FAPi homodimer DOTAGA.Glu.(FAPi)2 showed improved radiolabeling in vitro and pharmacological properties in vivo compared to DOTAGA.(SA.FAPi)2. [177Lu]Lu-DOTAGA.Glu.(FAPi)2 and [225Ac]Ac-DOTAGA.Glu.(FAPi)2 appear promising for translational application in patients.
Collapse
Affiliation(s)
- Marcel Martin
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Sanjana Ballal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Madhav Prasad Yadav
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Yentl Van Rymenant
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Joni De Loose
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Emile Verhulst
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Frank Roesch
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
12
|
Wang Z, Wang J, Lan T, Zhang L, Yan Z, Zhang N, Xu Y, Tao Q. Role and mechanism of fibroblast-activated protein-α expression on the surface of fibroblast-like synoviocytes in rheumatoid arthritis. Front Immunol 2023; 14:1135384. [PMID: 37006278 PMCID: PMC10064071 DOI: 10.3389/fimmu.2023.1135384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Fibroblast-activated protein-α (FAP) is a type II integrated serine protease expressed by activated fibroblasts during fibrosis or inflammation. Fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA) synovial sites abundantly and stably overexpress FAP and play important roles in regulating the cellular immune, inflammatory, invasion, migration, proliferation, and angiogenesis responses in the synovial region. Overexpression of FAP is regulated by the initial inflammatory microenvironment of the disease and epigenetic signaling, which promotes RA development by regulating FLSs or affecting the signaling cross-linking FLSs with other cells at the local synovium and inflammatory stimulation. At present, several treatment options targeting FAP are in the process of development. This review discusses the basic features of FAP expressed on the surface of FLSs and its role in RA pathophysiology and advances in targeted therapies.
Collapse
Affiliation(s)
- Zihan Wang
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Jinping Wang
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Tianyi Lan
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Liubo Zhang
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Zeran Yan
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Nan Zhang
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Yuan Xu, ; Qingwen Tao,
| | - Qingwen Tao
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Yuan Xu, ; Qingwen Tao,
| |
Collapse
|
13
|
Rodrigues AF, Rebelo C, Simões S, Paulo C, Pinho S, Francisco V, Ferreira L. A Polymeric Nanoparticle Formulation for Targeted mRNA Delivery to Fibroblasts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205475. [PMID: 36529964 PMCID: PMC9929262 DOI: 10.1002/advs.202205475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Indexed: 05/10/2023]
Abstract
Messenger RNA (mRNA)-based therapies offer enhanced control over the production of therapeutic proteins for many diseases. Their clinical implementation warrants formulations capable of delivering them safely and effectively to target sites. Owing to their chemical versatility, polymeric nanoparticles can be designed by combinatorial synthesis of different ionizable, cationic, and aromatic moieties to modulate cell targeting, using inexpensive formulation steps. Herein, 152 formulations are evaluated by high-throughput screening using a reporter fibroblast model sensitive to functional delivery of mRNA encoding Cre recombinase. Using in vitro and in vivo models, a polymeric nanoformulation based on the combination of 3 specific monomers is identified to transfect fibroblasts much more effectively than other cell types populating the skin, with superior performance than lipid-based transfection agents in the delivery of Cas9 mRNA and guide RNA. This tropism can be explained by receptor-mediated endocytosis, involving CD26 and FAP, which are overexpressed in profibrotic fibroblasts. Structure-activity analysis reveals that efficient mRNA delivery required the combination of high buffering capacity and low mRNA binding affinity for rapid release upon endosomal escape. These results highlight the use of high-throughput screening to rapidly identify chemical features towards the design of highly efficient mRNA delivery systems targeting fibrotic diseases.
Collapse
Affiliation(s)
- Artur Filipe Rodrigues
- CNC–Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbra3000‐517Portugal
| | - Catarina Rebelo
- CNC–Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbra3000‐517Portugal
- Faculty of MedicinePólo das Ciências da SaúdeUnidade CentralUniversity of CoimbraCoimbra3000‐354Portugal
| | - Susana Simões
- CNC–Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbra3000‐517Portugal
| | - Cristiana Paulo
- CNC–Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbra3000‐517Portugal
| | - Sónia Pinho
- CNC–Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbra3000‐517Portugal
| | - Vítor Francisco
- CNC–Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbra3000‐517Portugal
| | - Lino Ferreira
- CNC–Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbra3000‐517Portugal
- Faculty of MedicinePólo das Ciências da SaúdeUnidade CentralUniversity of CoimbraCoimbra3000‐354Portugal
| |
Collapse
|
14
|
Gao Y, Hou X, Dai Y, Yang T, Chen K. Radiation-induced FAP + fibroblasts are involved in keloid recurrence after radiotherapy. Front Cell Dev Biol 2022; 10:957363. [PMID: 36092734 PMCID: PMC9449371 DOI: 10.3389/fcell.2022.957363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Keloid scars (KSs), which are composed of abnormal hyperplastic scar tissue, form during skin wound healing due to excessive fibroblast activation and collagen secretion. Although surgical resection and radiation therapy are used to prevent recurrence, KS recurrence rates range from 15 to 23%, and the underlying mechanism is unclear. Methods: To elucidate the mechanism of keloid recurrence, we established a PDX model and the grafts remained for over 20 weeks after transplantation on the bilateral backs of the NCG mice. Results: RNA-seq revealed that KS tissue gene expression was highly consistent before and after transplantation. Then, one side of the KS graft was irradiated with electron beam therapy (10 Gy), significant increases in vimentin and fibroblast activation protein alpha (FAP) expression were observed after irradiation and were accompanied by severe microvascular destruction. Surprisingly, 4 weeks after irradiation, significantly increased recurrence was observed with increased FAP + tissue and cell cycle regulator expression, resulting in a remarkable altered graft volume. Moreover, irradiation-induced FAP upregulation markedly facilitated radiation resistance and increased cell cycle progression, decreased senescence, and increased energy production. Conclusion: Our findings revealed that irradiation causes increased abundance of FAP + cells, which was associated with cell proliferation and delayed cellular senescence, accompanied by ATP production.
Collapse
Affiliation(s)
- Yan Gao
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - Xue Hou
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - Yuyin Dai
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ting Yang
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Kexin Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Kexin Chen,
| |
Collapse
|
15
|
Liu SY, Wang H, Nie G. Ultrasensitive Fibroblast Activation Protein-α-Activated Fluorogenic Probe Enables Selective Imaging and Killing of Melanoma In Vivo. ACS Sens 2022; 7:1837-1846. [PMID: 35713201 DOI: 10.1021/acssensors.2c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanoma is a malignant cancer with a high risk of metastasis and continued increase in death rates over the past decades, and its prognosis is highly related to the disease's stage, while early detection and treatment of melanoma are significant to the improvement of its therapy outcome. Different from the traditional methods for disease diagnosis, enzyme-activated fluorescent probes were developed rapidly due to their high sensitivity and temporal-spatial ratio and have been widely applied in tumor detection, surgical navigation, and cancer-related research. Fibroblast activation protein-α (FAPα), a serine-type cell surface protease that plays important roles in cell invasion and extracellular matrix degradation, is widely involved in tumor progression such as malignant melanoma, so developing a FAPα activity-based molecular tool would be of great potential for the early diagnosis and therapy of melanoma. However, few fluorescent probes targeting FAPα have been applied in melanoma-related studies, and thus, the construction of FAPα activity-based fluorescent probes for melanoma detection is in urgent need. By incorporating the selective recognition unit with a red-emission fluorophore, cresyl violet, we herein report an ultrasensitive (limit of detection = 5.3 ng/mL) fluorogenic probe for FAPα activity sensing, named CV-FAP; the acquired probe showed a significantly higher binding affinity (15.7-fold) and overall catalytic efficiency (2.6-fold) when compared with those of the best reported FAPα probes. The good performance of CV-FAP made it possible to discriminate malignant melanoma cells and tumor-bearing mice from normal cells and mice with high contrast. More importantly, CV-FAP showed significant antitumor activity toward melanoma in cultured cells and tumor-bearing nude mice (over 95% inhibited tumor growth) with good safety, which made it an ideal theranostic agent for melanoma.
Collapse
Affiliation(s)
- Shi-Yu Liu
- Department of Laboratory Medicine, School of Medicine, Yangtze University, Jingzhou 434023, P. R. China
| | - Huiling Wang
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Gang Nie
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| |
Collapse
|
16
|
Verhulst E, Garnier D, De Meester I, Bauvois B. Validating Cell Surface Proteases as Drug Targets for Cancer Therapy: What Do We Know, and Where Do We Go? Cancers (Basel) 2022; 14:624. [PMID: 35158891 PMCID: PMC8833564 DOI: 10.3390/cancers14030624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cell surface proteases (also known as ectoproteases) are transmembrane and membrane-bound enzymes involved in various physiological and pathological processes. Several members, most notably dipeptidyl peptidase 4 (DPP4/CD26) and its related family member fibroblast activation protein (FAP), aminopeptidase N (APN/CD13), a disintegrin and metalloprotease 17 (ADAM17/TACE), and matrix metalloproteinases (MMPs) MMP2 and MMP9, are often overexpressed in cancers and have been associated with tumour dysfunction. With multifaceted actions, these ectoproteases have been validated as therapeutic targets for cancer. Numerous inhibitors have been developed to target these enzymes, attempting to control their enzymatic activity. Even though clinical trials with these compounds did not show the expected results in most cases, the field of ectoprotease inhibitors is growing. This review summarizes the current knowledge on this subject and highlights the recent development of more effective and selective drugs targeting ectoproteases among which small molecular weight inhibitors, peptide conjugates, prodrugs, or monoclonal antibodies (mAbs) and derivatives. These promising avenues have the potential to deliver novel therapeutic strategies in the treatment of cancers.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| |
Collapse
|
17
|
Zhou C, Hu X, Liu Q, Wang L, Zhou Y, Jin Y, Ma Y, Liu Y. Stromal Barrier-Dismantled Nanodrill-Like and Cancer Cell-Targeted pH-Responsive Polymeric Micelles for Further Enhancing the Anticancer Efficacy of Doxorubicin. ACS Biomater Sci Eng 2021; 7:5690-5705. [PMID: 34761919 DOI: 10.1021/acsbiomaterials.1c01131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer-associated fibroblasts (CAFs) were believed to establish a tight physical barrier and a dense scaffold for tumor cells to make them maintain immunosuppression and drug resistance, strongly hindering nanoparticles to penetrate into the core of tumor tissues and limiting the performance of tumor cell-targeted nanoparticles. Here, we fabricated the substrate Z-Gly-Pro of fibroblast activation protein α (FAPα) and folic acid-codecorated pH-responsive polymeric micelles (dual ligand-modified PEOz-PLA polymeric micelles, DL-PP-PMs) that possessed nanodrill and tumor cell-targeted functions based on Z-Gly-pro-conjugated poly(2-ethyl-2-oxazoline)-poly(D,l-lactide) (ZGP-PEOz-PLA), folic acid (FA)-conjugated PEOz-PLA (FA-PEOz-PLA), and PEOz-PLA for cancer therapy. The micelles with about 40 nm particle size and a narrow distribution exhibited favorable pH-activated endo/lysosome escape induced by their pH responsibility. In addition, the enhancement of in vitro cellular uptake and cytotoxicity to folate receptors or FAPα-positive cells for doxorubicin (DOX)/DL-PP-PMs compared with DOX/PP-PMs evidenced the dual target ability of DOX/DL-PP-PMs, which was further supported by in vivo biodistribution results. As expected, in the human oral epidermal carcinoma (KB) cells xenograft nude mice model, the remarkable enhancement of antitumor efficacy for DOX/DL-PP-PMs with low toxicity was observed compared with DOX/FA-PP-PMs and DOX/ZGP-PP-PMs. The possible mechanism was elucidated to be the dismantling of the stromal barrier by nanodrill-like DOX/DL-PP-PMs via the deletion of CAFs evidenced by the downregulation of α-SMA and inhibition of their functions proved by the decrease in the microvascular density labeled with CD31 and the reduction in the extracellular matrix detected by the collagen content, thereby promoting tumor penetration and enhancing their uptake by tumor cells. The present research offered an alternative approach integrating anticancer and antifibrosis effects in one delivery system to enhance the delivery efficiency and therapeutic efficacy of anticancer drugs.
Collapse
Affiliation(s)
- Chuhang Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinping Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qi Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Leqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuanhang Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yao Jin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yining Ma
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
18
|
Zhang X, Chen Y, He X, Zhang Y, Zhou M, Peng C, He Z, Gui S, Li Z. Smart Nanogatekeepers for Tumor Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103712. [PMID: 34677898 DOI: 10.1002/smll.202103712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticulate drug delivery systems (nano-DDSs) are required to reliably arrive and persistently reside at the tumor site with minimal off-target side effects for clinical theranostics. However, due to the complicated environment and high interstitial pressure in tumor tissue, they can return to the bloodstream and cause secondary side effects in normal organs. Recently, a number of nanogatekeepers have been engineered via structure-transformable/stable strategies to overcome this undesirable dilemma. The emerging structure-transformable nanogatekeepers for tumor imaging and therapy are first overviewed here, particularly for nanogatekeepers undergoing structural transformation in tumor microenvironments, cell membranes, and organelles. Thereafter, intelligent structure-stable nanogatekeepers through reversible activation and artificial individualization receptors are overviewed. Finally, the ongoing challenges and prospects of nanogatekeepers for clinical translation are briefly discussed.
Collapse
Affiliation(s)
- Xunfa Zhang
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xian He
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Yachao Zhang
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Mei Zhou
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Chengjun Peng
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Zhenbao Li
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| |
Collapse
|
19
|
Juillerat-Jeanneret L, Tafelmeyer P, Golshayan D. Regulation of Fibroblast Activation Protein-α Expression: Focus on Intracellular Protein Interactions. J Med Chem 2021; 64:14028-14045. [PMID: 34523930 DOI: 10.1021/acs.jmedchem.1c01010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prolyl-specific peptidase fibroblast activation protein-α (FAP-α) is expressed at very low or undetectable levels in nondiseased human tissues but is selectively induced in activated (myo)fibroblasts at sites of tissue remodeling in fibrogenic processes. In normal regenerative processes involving transient fibrosis FAP-α+(myo)fibroblasts disappear from injured tissues, replaced by cells with a normal FAP-α- phenotype. In chronic uncontrolled pathological fibrosis FAP-α+(myo)fibroblasts permanently replace normal tissues. The mechanisms of regulation and elimination of FAP-α expression in(myo)fibroblasts are unknown. According to a yeast two-hybrid screen and protein databanks search, we propose that the intracellular (co)-chaperone BAG6/BAT3 can interact with FAP-α, mediated by the BAG6/BAT3 Pro-rich domain, inducing proteosomal degradation of FAP-α protein under tissue homeostasis. In this Perspective, we discuss our findings in the context of current knowledge on the regulation of FAP-α expression and comment potential therapeutic strategies for uncontrolled fibrosis, including small molecule degraders (PROTACs)-modified FAP-α targeted inhibitors.
Collapse
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), CH1011 Lausanne, Switzerland.,University Institute of Pathology, CHUV and UNIL, CH1011 Lausanne, Switzerland
| | - Petra Tafelmeyer
- Hybrigenics Services, Laboratories and Headquarters-Paris, 1 rue Pierre Fontaine, 91000 Evry, France.,Hybrigenics Corporation, Cambridge Innovation Center, 50 Milk Street, Cambridge, Massachusetts 02142, United States
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), CH1011 Lausanne, Switzerland
| |
Collapse
|
20
|
Qian XK, Zhang J, Li XD, Song PF, Zou LW. Research Progress on Dipeptidyl Peptidase Family: Structure, Function and Xenobiotic Metabolism. Curr Med Chem 2021; 29:2167-2188. [PMID: 34525910 DOI: 10.2174/0929867328666210915103431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/22/2022]
Abstract
Prolyl-specific peptidases or proteases, including Dipeptidyl Peptidase 2, 4, 6, 8, 9, 10, Fibroblast Activation Protein, prolyl endopeptidase and prolyl carboxypeptidase, belong to the dipeptidyl peptidase family. In human physiology and anatomy, they have homology amino acid sequences, similarities in structure, but play distinct functions and roles. Some of them also play important roles in the metabolism of drugs containing endogenous peptides, xenobiotics containing peptides, and exogenous peptides. The major functions of these peptidases in both the metabolism of human health and bioactive peptides are of significant importance in the development of effective inhibitors to control the metabolism of endogenous bioactive peptides. The structural characteristics, distribution of tissue, endogenous substrates, and biological functions were summarized in this review. Furthermore, the xenobiotics metabolism of the dipeptidyl peptidase family is illustrated. All the evidence and information summarized in this review would be very useful for researchers to extend the understanding of the proteins of these families and offer advice and assistance in physiology and pathology studies.
Collapse
Affiliation(s)
- Xing-Kai Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Jing Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Xiao-Dong Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Pei-Fang Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| |
Collapse
|
21
|
Van Rymenant Y, Tanc M, Van Elzen R, Bracke A, De Wever O, Augustyns K, Lambeir AM, Kockx M, De Meester I, Van Der Veken P. In Vitro and In Situ Activity-Based Labeling of Fibroblast Activation Protein with UAMC1110-Derived Probes. Front Chem 2021; 9:640566. [PMID: 33996747 PMCID: PMC8114891 DOI: 10.3389/fchem.2021.640566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/08/2021] [Indexed: 12/29/2022] Open
Abstract
Fibroblast activation protein (FAP) is a proline-selective protease that belongs to the S9 family of serine proteases. It is typically highly expressed in the tumor microenvironment (TME) and especially in cancer-associated fibroblasts, the main cell components of the tumor stroma. The exact role of its enzymatic activity in the TME remains largely unknown. Hence, tools that enable selective, activity-based visualization of FAP within the TME can help to unravel FAP’s function. We describe the synthesis, biochemical characterization, and application of three different activity-based probes (biotin-, Cy3-, and Cy5-labeled) based on the FAP-inhibitor UAMC1110, an in-house developed molecule considered to be the most potent and selective FAP inhibitor available. We demonstrate that the three probes have subnanomolar FAP affinity and pronounced selectivity with respect to the related S9 family members. Furthermore, we report that the fluorescent Cy3- and Cy5-labeled probes are capable of selectively detecting FAP in a cellular context, making these chemical probes highly suitable for further biological studies. Moreover, proof of concept is provided for in situ FAP activity staining in patient-derived cryosections of urothelial tumors.
Collapse
Affiliation(s)
- Yentl Van Rymenant
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Muhammet Tanc
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - An Bracke
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Faculty of Medicine and Health Sciences, University of Ghent, Ghent, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
22
|
Li M, Cheng X, Rong R, Gao Y, Tang X, Chen Y. High expression of fibroblast activation protein (FAP) predicts poor outcome in high-grade serous ovarian cancer. BMC Cancer 2020; 20:1032. [PMID: 33109151 PMCID: PMC7590670 DOI: 10.1186/s12885-020-07541-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) is a fatal form of ovarian cancer. Previous studies indicated some potential biomarkers for clinical evaluation of HGSOC prognosis. However, there is a lack of systematic analysis of different expression genes (DEGs) to screen and detect significant biomarkers of HGSOC. METHODS TCGA database was conducted to analyze relevant genes expression in HGSOC. Outcomes of candidate genes expression, including overall survival (OS) and progression-free survival (PFS), were calculated by Cox regression analysis for hazard rates (HR). Histopathological investigation of the identified genes was carried out in 151 Chinese HGSOC patients to validate gene expression in different stages of HGSOC. RESULTS Of all 57,331 genes that were analyzed, FAP was identified as the only novel gene that significantly contributed to both OS and PFS of HGSOC. In addition, FAP had a consistent expression profile between carcinoma-paracarcinoma and early-advanced stages of HGSOC. Immunological tests in paraffin section also confirmed that up-regulation of FAP was present in advanced stage HGSOC patients. Prediction of FAP network association suggested that FN1 could be a potential downstream gene which further influenced HGSOC survival. CONCLUSIONS High-level expression of FAP was associated with poor prognosis of HGSOC via FN1 pathway.
Collapse
Affiliation(s)
- Min Li
- Department of Gynecology & Obstetrics, the First Affiliated Hospital of Soochow University, No.188, Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Xue Cheng
- Department of Pathology, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Rong Rong
- Department of Pathology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Yan Gao
- Institute of Suzhou Biobank, Suzhou Center for Disease Prevention and Control, Suzhou, 215004, China.,School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Xiuwu Tang
- Department of Gynecology & Obstetrics, the First Affiliated Hospital of Soochow University, No.188, Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| | - Youguo Chen
- Department of Gynecology & Obstetrics, the First Affiliated Hospital of Soochow University, No.188, Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
23
|
Dunaevsky YE, Tereshchenkova VF, Oppert B, Belozersky MA, Filippova IY, Elpidina EN. Human proline specific peptidases: A comprehensive analysis. Biochim Biophys Acta Gen Subj 2020; 1864:129636. [DOI: 10.1016/j.bbagen.2020.129636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
|
24
|
Wang X, Gessier F, Perozzo R, Stojkov D, Hosseini A, Amirshahrokhi K, Kuchen S, Yousefi S, Lötscher P, Simon HU. RIPK3–MLKL–Mediated Neutrophil Death Requires Concurrent Activation of Fibroblast Activation Protein-α. THE JOURNAL OF IMMUNOLOGY 2020; 205:1653-1663. [DOI: 10.4049/jimmunol.2000113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022]
|
25
|
Multiplexed Proteomic Approach for Identification of Serum Biomarkers in Hepatocellular Carcinoma Patients with Normal AFP. J Clin Med 2020; 9:jcm9020323. [PMID: 31979338 PMCID: PMC7074125 DOI: 10.3390/jcm9020323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Alpha fetoprotein (AFP) has been used as a serologic indicator of hepatocellular carcinoma (HCC). We aimed to identify an HCC-specific serum biomarker for diagnosis using a multiplexed proteomic technique in HCC patients with normal AFP levels. A total of 152 patients were included from Guro Hospital, Korea University. Among 267 identified proteins, 28 and 86 proteins showed at least a two-fold elevation or reduction in expression, respectively. Multiple reaction monitoring (MRM) analysis of 41 proteins revealed 10 proteins were differentially expressed in patients with liver cirrhosis and HCC patients with normal AFP. A combination of tripartite motif22 (Trim22), seprase, and bone morphogenetic protein1 had an area under receiver operating characteristic of 0.957 for HCC diagnosis. Real-time PCR and western blot analysis of the paired tumor/non-tumor liver tissue in HCC revealed a reduced expression of Trim22 in the tumor tissue. Also, serum levels of Trim22 were significantly reduced in HCC patients with normal AFP compared to those with liver cirrhosis (p = 0.032). Inhibition of Trim22 increased cellular proliferation in human hepatoma cell lines, whereas overexpression of Trim22 decreased cellular proliferation in hepatoma cell lines. In conclusion, the combination of three serum markers improved the chance of diagnosing HCC. MRM-based quantification of the serum protein in patients with normal AFP provides the potential for early diagnosis of HCC.
Collapse
|
26
|
Zhao X, Li L, Zhao Y, An H, Cai Q, Lang J, Han X, Peng B, Fei Y, Liu H, Qin H, Nie G, Wang H. In Situ Self‐Assembled Nanofibers Precisely Target Cancer‐Associated Fibroblasts for Improved Tumor Imaging. Angew Chem Int Ed Engl 2019; 58:15287-15294. [DOI: 10.1002/anie.201908185] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Xiao‐Xiao Zhao
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
- Sino-Danish CenterUniversity of Chinese Academy of Science (UCAS) No.19A Yuquan Road Beijing 100049 China
| | - Li‐Li Li
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Zhao
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Hong‐Wei An
- Institute of High Energy PhysicsChinese Academy of Science (CAS) No.19A Yuquan Road Beijing 100049 China
| | - Qian Cai
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Jia‐Yan Lang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Xue‐Xiang Han
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Bo Peng
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Yue Fei
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Liu
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Qin
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Guangjun Nie
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Wang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
27
|
Zhao X, Li L, Zhao Y, An H, Cai Q, Lang J, Han X, Peng B, Fei Y, Liu H, Qin H, Nie G, Wang H. In Situ Self‐Assembled Nanofibers Precisely Target Cancer‐Associated Fibroblasts for Improved Tumor Imaging. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiao‐Xiao Zhao
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
- Sino-Danish Center University of Chinese Academy of Science (UCAS) No.19A Yuquan Road Beijing 100049 China
| | - Li‐Li Li
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Zhao
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Hong‐Wei An
- Institute of High Energy Physics Chinese Academy of Science (CAS) No.19A Yuquan Road Beijing 100049 China
| | - Qian Cai
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Jia‐Yan Lang
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Xue‐Xiang Han
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Bo Peng
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Yue Fei
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Liu
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Qin
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Guangjun Nie
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
28
|
Dong H, Tulley S, Zhao Q, Cho L, Chen D, Pearl ML, Chen W. The propensity of invasive circulating tumor cells (iCTCs) in metastatic progression and therapeutic responsiveness. Cancer Med 2019; 8:3864-3874. [PMID: 31115187 PMCID: PMC6639176 DOI: 10.1002/cam4.2218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/01/2019] [Accepted: 04/13/2019] [Indexed: 12/19/2022] Open
Abstract
Circulating tumor cells (CTCs) are important clinical indicators of metastatic progression and treatment efficacy. However, because of their low number and heterogeneity, reliable patient-derived CTC models are not readily available. We report here the isolation and characterization of the invasive population of CTCs, iCTCs, from blood of 10 patients with epithelial ovarian cancer (EOC) and one pancreatic cancer patient based on the avidity of tumor cells toward an artificial collagen-based adhesion matrix (CAM), in comparison with tumor progenitor (TP) cells isolated from tumor cell lines, tumors and ascites from EOC patients. CAM-avid cells identified to be iCTCs were indistinguishable with TP cells using either functional CAM uptake or surface markers (seprase and CD44). In addition, iCTCs were characterized using peritoneal and spontaneous metastasis models in vivo to evaluate their metastatic propensity and therapeutic response. TP cells and iCTCs had a doubling time of about 34-42 hours. TP cells were rare (<3.5%) in most patient-derived specimens, however, iCTCs emigrated into blood, at a high frequency, 64.2% (n = 49). Approximately 500 patient-derived iCTCs recapitulated formation of iCTCs in mouse blood and formed micrometastases in the liver and/or lung, a degree of metastatic spread equivalent to the inoculation of 5 × 105 bulk tumor cells isolated from ascites and tumors. iCTCs were shown to be novel therapeutic targets for blocking metastasis using the reduced formation of iCTCs and micrometastases by RNAi, peptides, and monoclonal antibodies against seprase.
Collapse
Affiliation(s)
- Huan Dong
- Stony Brook MedicineStony BrookNew York
- Vitatex IncStony BrookNew York
| | - Shaun Tulley
- Stony Brook MedicineStony BrookNew York
- Vitatex IncStony BrookNew York
| | - Qiang Zhao
- Stony Brook MedicineStony BrookNew York
- Vitatex IncStony BrookNew York
| | - Leong Cho
- Stony Brook MedicineStony BrookNew York
| | | | | | - Wen‐Tien Chen
- Stony Brook MedicineStony BrookNew York
- Vitatex IncStony BrookNew York
| |
Collapse
|
29
|
Huet E, Jaroz C, Nguyen HQ, Belkacemi Y, de la Taille A, Stavrinides V, Whitaker H. Stroma in normal and cancer wound healing. FEBS J 2019; 286:2909-2920. [PMID: 30958920 DOI: 10.1111/febs.14842] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/18/2019] [Accepted: 04/05/2019] [Indexed: 12/28/2022]
Abstract
It is currently believed that stroma, the connective framework of biological tissues, plays a central role in normal wound healing and in cancer. In both these contexts, stromal cellular components such as activated fibroblasts interact with complex protein networks that include growth factors, structural protein or proteinases in order to initiate and sustain an extensive remodelling process. However, although this process is usually spatially and temporally self-limited, it is unregulated in the case of cancer and leads to uncontrolled cell proliferation and invasion within tissues, metastasis and therapeutic resistance. In this review, we outline the role of stroma in normal healing, cancer and post radiotherapy, with a particular focus on the crosstalk between normal or cancer cells and fibroblasts. Understanding these mechanisms is particularly important as several stromal components have been proposed as potential therapeutic targets.
Collapse
Affiliation(s)
- Eric Huet
- Université Paris-Est, UPEC, Créteil, France.,INSERM, U955, Equipe 7, Créteil, France.,Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, UK
| | | | | | - Yazid Belkacemi
- INSERM, U955, Equipe 7, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, Service d'oncologie-radiothérapie et Centre Sein Henri Mondor Créteil, France
| | - Alexandre de la Taille
- INSERM, U955, Equipe 7, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, Service d'urologie, Créteil, France
| | - Vasilis Stavrinides
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, UK
| | - Hayley Whitaker
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, UK
| |
Collapse
|
30
|
Golyan FF, Moghaddassian M, Forghanifard MM, Talebi S, Farshchian M, Mahmoudian RA, Abbaszadegan MR. Whole Exome Sequencing Reveals a Novel Damaging Mutation in Human Fibroblast Activation Protein in a Family with Esophageal Squamous Cell Carcinoma. J Gastrointest Cancer 2019; 51:179-188. [DOI: 10.1007/s12029-019-00224-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Yang Z, Zhang C, Qi W, Cui C, Cui Y, Xuan Y. Tenascin-C as a prognostic determinant of colorectal cancer through induction of epithelial-to-mesenchymal transition and proliferation. Exp Mol Pathol 2018; 105:216-222. [PMID: 30170017 DOI: 10.1016/j.yexmp.2018.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/22/2018] [Accepted: 08/26/2018] [Indexed: 01/11/2023]
Abstract
Although Tenascin-C (TNC) as an extracellular matrix protein involved in various cancers, the mechanisms by which TNC leads to decreased survival time remain to be clarified in CRC. We assessed the expression of TNC and its relationship with cancer associated fibroblasts (CAFs) markers, epithelial-to-mesenchymal transition (EMT) and cell cycle markers in 100 paraffin-embedded CRC tissue samples using immunohistochemistry. TNC expression was higher in CRC tissue samples than in adjacent non-tumor-tissues (P < .001). In addition, TNC was involved in clinical stage (P = .030), pT stage (P = .049), distant metastasis (P = .004), tumor recurrence (P = .007), and tumor budding (P < .001). TNC play crucial roles in regulating the poor 5-year CRC survival rate by Kaplan-Meier analysis, and was an independent predictor of poor overall survival (P = .007) and disease-free survival (P = .004) in CRC. Moreover, it was postively correlated with CAF (SMA (P < .001) and FSP1 (P = .005)) and cell cycle marker p27 (P = .013) along with EMT (E-cadherin, P = .599; Snail, P < .001; vimentin, P = .012). TNC may promote EMT-like change and proliferation, which lead to poor prognosis for patients with CRC.
Collapse
Affiliation(s)
- Zhaoting Yang
- Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji, China; Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
| | - Chengye Zhang
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
| | - Wenbo Qi
- Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji, China; Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
| | - Chunai Cui
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
| | - Yan Cui
- Department of Oncology, Yanbian University Affiliate Hospital, Yanji, China
| | - Yanhua Xuan
- Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji, China; Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China.
| |
Collapse
|
32
|
Liao Y, Xing S, Xu B, Liu W, Zhang G. Evaluation of the circulating level of fibroblast activation protein α for diagnosis of esophageal squamous cell carcinoma. Oncotarget 2018; 8:30050-30062. [PMID: 28415791 PMCID: PMC5444725 DOI: 10.18632/oncotarget.16274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/09/2017] [Indexed: 01/01/2023] Open
Abstract
To evaluate whether circulating fibroblast activation protein α (FAPα) could serve as a biomarker for the diagnosis of esophageal squamous cell carcinoma (ESCC), enzyme-linked immunosorbent assay (ELISA) was used to detect plasma FAPα in 556 participants including ESCC group, benign esophageal disease group, healthy controls and other cancer controls group. The levels of plasma FAPα were significantly decreased in ESCC patients (P < 0.001) and showed a positive correlation with HDL-C levels (R = 0.372, P < 0.001). The sensitivity and specificity of plasma FAPα were 56.1% and 85.6% based on the optimal cut-off (49.04 ng/ml, AUC = 0.714). The combination of FAPα and the traditional biomarkers (CEA, CYFR211 and SCCA) improved the sensitivity (41.5%) without compromising the specificity (95.0%). Contradictorily, the immunohistochemical staining revealed the overexpression of FAPα in stroma of ESCC tissues. So the source of soluble FAPα was further explored by qRT-PCR, Western blotting, ELISA and immunoprecipitation in fibroblast cell lines and mouse xenograft models. We found that the plasma FAPα was not correlated with the FAPα expressed in tumor, and the multi-organ might contribute to the circulating levels of FAPα including skeletal muscle, liver and bone marrow. These results indicated that the low plasma FAPα level might due to the systemic reaction to the presence of tumor and circulating FAPα level might be a potential indicator for diagnosing ESCC.
Collapse
Affiliation(s)
- Yuehua Liao
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, China
| | - Shan Xing
- Department of Clinical Laboratory Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Banglao Xu
- Department of Clinical Laboratory Medicine, Guangzhou First Municipal People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wanli Liu
- Department of Clinical Laboratory Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, China
| |
Collapse
|
33
|
Abstract
During development of a novel treatment for cancer patients, the tumor microenvironment and its interaction with the tumor cells must be considered. Aspects such as the extracellular matrix (ECM), the epithelial-mesenchymal transition (EMT), secreted factors, cancer-associated fibroblasts (CAFs), the host immune response, and tumor-associated microphages (TAM) are critical for cancer progression and metastasis. Additionally, signaling pathways such as the nuclear factor κB (NF-κB), transforming growth factor β (TGFβ), and tumor necrosis factor α (TNFα) can promote further cytokine release in the tumor environment, and impact tumor progression greatly. Importantly, cytokine overexpression has been linked to drug resistance in cancers and is therefore an attractive target for combinational therapies. Specific inhibitors of cytokines involved in signaling between tumor cells and the microenvironment have not been studied in depth and have great potential for use in personalized medicines. Together, the interactions between the microenvironment and tumors are critical for tumor growth and promotion and should be taken into serious consideration for future novel therapeutic approaches.
Collapse
|
34
|
Jiang GM, Xu W, Du J, Zhang KS, Zhang QG, Wang XW, Liu ZG, Liu SQ, Xie WY, Liu HF, Liu JS, Wu BP. The application of the fibroblast activation protein α-targeted immunotherapy strategy. Oncotarget 2017; 7:33472-82. [PMID: 26985769 PMCID: PMC5078111 DOI: 10.18632/oncotarget.8098] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/28/2016] [Indexed: 12/31/2022] Open
Abstract
Cancer immunotherapy has primarily been focused on attacking tumor cells. However, given the close interaction between tumor cells and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME), CAF-targeted strategies could also contribute to an integrated cancer immunotherapy. Fibroblast activation protein α (FAP α) is not detectible in normal tissues, but is overexpressed by CAFs and is the predominant component of the stroma in most types of cancer. FAP α has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. When all FAP α-expressing cells (stromal and cancerous) are destroyed, tumors rapidly die. Furthermore, a FAP α antibody, FAP α vaccine, and modified vaccine all inhibit tumor growth and prolong survival in mouse models, suggesting FAP α is an adaptive tumor-associated antigen. This review highlights the role of FAP α in tumor development, explores the relationship between FAP α and immune suppression in the TME, and discusses FAP α as a potential immunotherapeutic target.
Collapse
Affiliation(s)
- Guan-Min Jiang
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kun-Shui Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiu-Gui Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xiao-Wei Wang
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhi-Gang Liu
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuang-Quan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Wan-Ying Xie
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Hui-Fang Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing-Shi Liu
- Department of Anesthesia, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bai-Ping Wu
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Jia J, Martin TA, Ye L, Meng L, Xia N, Jiang WG, Zhang X. Fibroblast activation protein-α promotes the growth and migration of lung cancer cells via the PI3K and sonic hedgehog pathways. Int J Mol Med 2017; 41:275-283. [PMID: 29115573 PMCID: PMC5746330 DOI: 10.3892/ijmm.2017.3224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
A characteristic of the epithelial-to-mesenchymal transition in cancer cells is the upregulation of mesenchymal markers. Fibroblast activation protein α (FAPα) is predominantly expressed by stromal fibroblasts. Previous studies have demonstrated that FAPα is also expressed by certain epithelium-derived cancer cells and is involved in the regulation of certain signaling pathways. One of our previous studies showed that FAPα promoted the proliferation of breast cancer cells via the phosphatidylinositol-3-kinase (PI3K) signaling pathway. In the present study, the A549 adenocarcinoma (AC) and SK-MES-1 squamous cell carcinoma (SCC) lung cancer cell lines were transfected with FAPα. The FAPα-expressing SK-MES-1 cells exhibited an increased growth rate, whereas the FAPα-expressing A549 cells exhibited a similar growth rate, compared with respective empty vector-transfected control cells. Electric cell-substrate impedance sensing (ECIS)-based attachment and wound-healing assays showed that the overexpression of FAPα markedly increased the adhesive and migratory properties of the SK-MES-1 cells but not those of the A549 cells. Additionally, inhibitors of focal adhesion kinase, agonist-induced phospholipase C, neural Wiskott-Aldrich syndrome protein, extracellular signal-regulated kinase, Rho-associated protein kinase, PI3K, and sonic hedgehog (SHH) were used to evaluate the interaction between FAPα and signaling pathways. Only the inhibitors of SHH and PI3K inhibited the increased motility of the FAPα-expressing SK-MES-1 cells. Western blot analysis confirmed the activation of PI3K/AKT and SHH/GLI family zinc finger 1 signaling in the FAPα-expressing SK-MES-1 cells. These results revealed that FAPα promoted the growth, adhesion and migration of lung SCC cells. In addition, FAPα regulated lung cancer cell function, potentially via the PI3K and SHH pathways. Further investigations are required to examine the role of FAPα in lung AC cells.
Collapse
Affiliation(s)
- Jun Jia
- VIP-II Division of Medical Department, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Tracey A Martin
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - Lin Meng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Nan Xia
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - Xiaodong Zhang
- VIP-II Division of Medical Department, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| |
Collapse
|
36
|
Juillerat-Jeanneret L, Tafelmeyer P, Golshayan D. Fibroblast activation protein-α in fibrogenic disorders and cancer: more than a prolyl-specific peptidase? Expert Opin Ther Targets 2017; 21:977-991. [DOI: 10.1080/14728222.2017.1370455] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- CHUV and UNIL, University Institute of Pathology, Lausanne, Switzerland
| | - Petra Tafelmeyer
- Hybrigenics Services, Laboratories and Headquarters, Paris, France
- Hybrigenics Corporation, Cambridge Innovation Center, Cambridge, MA, USA
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
37
|
Belvedere R, Bizzarro V, Parente L, Petrella F, Petrella A. Effects of Prisma® Skin dermal regeneration device containing glycosaminoglycans on human keratinocytes and fibroblasts. Cell Adh Migr 2017; 12:168-183. [PMID: 28795878 DOI: 10.1080/19336918.2017.1340137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prisma® Skin is a new pharmaceutical device developed by Mediolanum Farmaceutici S.p.a. It includes alginates, hyaluronic acid and mainly mesoglycan. The latter is a natural glycosaminoglycan preparation containing chondroitin sulfate, dermatan sulfate, heparan sulfate and heparin and it is used in the treatment of vascular disease. Glycosaminoglycans may contribute to the re-epithelialization in the skin wound healing, as components of the extracellular matrix. Here we describe, for the first time, the effects of Prisma® Skin in in vitro cultures of adult epidermal keratinocytes and dermal fibroblasts. Once confirmed the lack of cytotoxicity by mesoglycan and Prisma® Skin, we have shown the increase of S and G2 phases of fibroblasts cell cycle distribution. We further report the strong induction of cell migration rate and invasion capability on both cell lines, two key processes of wound repair. In support of these results, we found significant cytoskeletal reorganization, following the treatments with mesoglycan and Prisma® Skin, as confirmed by the formation of F-actin stress fibers. Additionally, together with a significant reduction of E-cadherin, keratinocytes showed an increase of CD44 expression and the translocation of ezrin to the plasma membrane, suggesting the involvement of CD44/ERM (ezrin-radixin-moesin) pathway in the induction of the analyzed processes. Furthermore, as showed by immunofluorescence assay, fibroblasts treated with mesoglycan and Prisma® Skin exhibited the increase of Fibroblast Activated Protein α and a remarkable change in shape and orientation, two common features of reactive stromal fibroblasts. In all experiments Prisma® Skin was slightly more potent than mesoglycan. In conclusion, based on these findings we suggest that Prisma® Skin may be able to accelerate the healing process in venous skin ulcers, principally enhancing re-epithelialization and granulation processes.
Collapse
Affiliation(s)
- Raffaella Belvedere
- a Department of Pharmacy , University of Salerno , Fisciano, Salerno , Italy
| | - Valentina Bizzarro
- a Department of Pharmacy , University of Salerno , Fisciano, Salerno , Italy
| | - Luca Parente
- a Department of Pharmacy , University of Salerno , Fisciano, Salerno , Italy
| | - Francesco Petrella
- b Primary Care - Wound Care Service , Health Local Agency Naples 3 South , Portici, Napoli , Italy
| | - Antonello Petrella
- a Department of Pharmacy , University of Salerno , Fisciano, Salerno , Italy
| |
Collapse
|
38
|
Jackson JM, Witek MA, Kamande JW, Soper SA. Materials and microfluidics: enabling the efficient isolation and analysis of circulating tumour cells. Chem Soc Rev 2017; 46:4245-4280. [PMID: 28632258 PMCID: PMC5576189 DOI: 10.1039/c7cs00016b] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a critical review of microfluidic technologies and material effects on the analyses of circulating tumour cells (CTCs) selected from the peripheral blood of cancer patients. CTCs are a minimally invasive source of clinical information that can be used to prognose patient outcome, monitor minimal residual disease, assess tumour resistance to therapeutic agents, and potentially screen individuals for the early diagnosis of cancer. The performance of CTC isolation technologies depends on microfluidic architectures, the underlying principles of isolation, and the choice of materials. We present a critical review of the fundamental principles used in these technologies and discuss their performance. We also give context to how CTC isolation technologies enable downstream analysis of selected CTCs in terms of detecting genetic mutations and gene expression that could be used to gain information that may affect patient outcome.
Collapse
|
39
|
UV radiation promotes melanoma dissemination mediated by the sequential reaction axis of cathepsins-TGF-β1-FAP-α. Br J Cancer 2017; 117:535-544. [PMID: 28697174 PMCID: PMC5558678 DOI: 10.1038/bjc.2017.182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/12/2017] [Accepted: 05/26/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Ultraviolet radiation (UVR) is the major risk factor for development of malignant melanoma. Fibroblast activation protein (FAP)-α is a serine protease expressed on the surface of activated fibroblasts, promoting tumour invasion through extracellular matrix (ECM) degradation. The signalling mechanism behind the upregulation of FAP-α is not yet completely revealed. METHODS Expression of FAP-α was analysed after UVR exposure in in vitro co-culture systems, gene expression arrays and artificial skin constructs. Cell migration and invasion was studied in relation to cathepsin activity and secretion of transforming growth factor (TGF)-β1. RESULTS Fibroblast activation protein-α expression was induced by UVR in melanocytes of human skin. The FAP-α expression was regulated by UVR-induced release of TGF-β1 and cathepsin inhibitors prevented such secretion. In melanoma cell culture models and in a xenograft tumour model of zebrafish embryos, FAP-α mediated ECM degradation and facilitated tumour cell dissemination. CONCLUSIONS Our results provide evidence for a sequential reaction axis from UVR via cathepsins, TGF-β1 and FAP-α expression, promoting cancer cell dissemination and melanoma metastatic spread.
Collapse
|
40
|
Tabola R, Zaremba-Czogalla M, Baczynska D, Cirocchi R, Stach K, Grabowski K, Augoff K. Fibroblast activating protein-α expression in squamous cell carcinoma of the esophagus in primary and irradiated tumors: the use of archival FFPE material for molecular techniques. Eur J Histochem 2017; 61:2793. [PMID: 28735527 PMCID: PMC5484010 DOI: 10.4081/ejh.2017.2793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 01/19/2023] Open
Abstract
There are numerous reports suggesting that fibroblast activating protein-α (FAP-α) plays an important role in invasion of various tumor types. We studied the expression pattern of FAP-α in esophageal squamous cell carcinoma (ESCC) patients who had not been treated primarily and those who had received neoadjuvant radiochemotherapy. Our goal was to establish whether readily available tissue specimens fixed in formalin and stored in paraffin blocks for years might still be a source of FAP-α RNA for PCR analysis. The study included 20 patients divided into two groups, 10 patients in each group. We evaluated the expression of FAP- α by PCR techniques in fresh frozen and in paraffin-embedded tissues, and compared it to the expression in non-cancer tissues. To detect the protein expression level of FAP-α in paraffin-embedded tissues we used chromogenic immunohistochemical (IHC) staining. Data were analyzed by t-test or the nonparametric Wilcoxon matched pair test using Statistica 12.5 software. We observed an increased level of the FAP-α gene and protein expression in cancer tissues when compared with their corresponding normal tissues. However, statistically significant differences were found only in the group of patients untreated before surgery. RNA extracted from paraffin-embedded tissue sections had very low quality, especially in the context of degradation. FAP-α remains a highly altered participant of a complex microenvironment in esophageal squamous cell carcinoma, and its role in cell signaling requires further study. In this paper, we conclude that the use of a regular RT-PCR method for diagnostic purposes, which we have presented in an earlier paper, can be as good as qRT-PCR. Also, immunohistochemistry proved to be very useful and the only reliable method that can be used on longterm stored formalin-fixed, paraffin-embedded tissues.
Collapse
Affiliation(s)
- Renata Tabola
- Medical University of Wroclaw, Department of Gastrointestinal and General Surgery.
| | | | | | | | | | | | | |
Collapse
|
41
|
Wonganu B, Berger BW. A specific, transmembrane interface regulates fibroblast activation protein (FAP) homodimerization, trafficking and exopeptidase activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1876-82. [PMID: 27155568 DOI: 10.1016/j.bbamem.2016.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/08/2016] [Accepted: 05/03/2016] [Indexed: 11/29/2022]
Abstract
Fibroblast activation protein (FAP) is a cell-surface serine protease which promotes invasiveness of certain epithelial cancers and is therefore a potential target for cancer drug development and delivery. Unlike dipeptidyl peptidase IV (DPPIV), FAP exhibits prolyl endopeptidase activity and is active as a homodimer with specificity for type I collagen. The mechanism that regulates FAP homodimerization and its relation to prolyl endopeptidase activity is not completely understood. Here, we investigate key residues in the FAP TM domain that may be significant for FAP homodimerization. Mutations to predicted TM interfacial residues (G10L, S14L, and A18L) comprising a small-X3-small motif reduced FAP TM-CYTO dimerization relative to wild type as measured using the AraTM assay, whereas predicted off-interface residues showed no significant change from wild type. The results implied that the predicted small-X3-small dimer interface affect stabilization of FAP TM-CYTO homodimerization. Compared with FAPwild-type, the interfacial TM residue G10L significantly decreased FAP endopeptidase activity more than 25%, and also reduced cell-surface versus intracellular expression relative to other interfacial residues S14L and A18L. Thus, our results suggest FAP dimerization is important for both trafficking and protease activity, and is dependent on a specific TM interface.
Collapse
Affiliation(s)
- Benjamaporn Wonganu
- Program in Bioengineering, Lehigh University, Bethlehem, PA 18015, United States
| | - Bryan W Berger
- Program in Bioengineering, Lehigh University, Bethlehem, PA 18015, United States; Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, United States.
| |
Collapse
|
42
|
TNF-α promotes breast cancer cell migration and enhances the concentration of membrane-associated proteases in lipid rafts. Cell Oncol (Dordr) 2016; 39:353-63. [PMID: 27042827 PMCID: PMC4972855 DOI: 10.1007/s13402-016-0280-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2016] [Indexed: 01/15/2023] Open
Abstract
Purpose Tumor progression is associated with cell migration, invasion and metastasis. These processes are accompanied by the activation of specific proteases that are either linked to cellular membranes or are secreted into extracellular spaces. TNF-α is known to play an important role in various aspects of tumor progression. The aim of this work was to assess the effect of TNF-α on the migration of breast cancer cells and, in addition, to assess its association with the location of membrane-associated proteases in lipid rafts. Methods Wound scratch healing and Transwell migration assays were used to study the effect of TNF-α on the migration of both hormone-dependent and hormone-independent breast cancer-derived cells, i.e., MCF7 and MDA-MB-231, respectively. The expression and secretion of three matrix metalloproteases, MMP9, MMP2 and MT1-MMP, and two dipeptidyl peptidases, CD26 and FAP-α, was investigated using RT-PCR, Western blotting and gelatin zymography. In addition, activation of the MAPK/ERK signaling pathway was investigated by Western blotting. Results We found that a TNF-α-induced enhancement of breast cancer cell migration was accompanied by an increased secretion of MMP9, but not MMP2, into the culture media. We also found that TNF-α upregulated the expression of the dipeptidyl peptidases CD26 and FAP-α in a dose-dependent manner and, in addition, enhanced the concentration of all five proteases in lipid rafts in the breast cancer-derived cells tested, regardless of cell type. Furthermore, we found that TNF-α activated the MAPK/ERK signaling pathway by increasing the ERK1/2 phosphorylation level. Application of the MEK/ERK1/2 inhibitor U-0126 resulted in down-regulation of TNF-α-induced MMP9 secretion and abrogation of the enhanced concentration of proteases in the lipid rafts. Conclusions From our results we conclude that TNF-α-induced activation of the MAPK/ERK signaling pathway may promote breast cancer cell migration via both upregulation of MMP9, CD26 and FAP-α and concentration of these proteases, as also MT1-MMP and MMP2, in the lipid rafts. TNF-α may serve as a potential therapeutic target in breast cancers susceptible to TNF-α stimulation.
Collapse
|
43
|
Fang J, Hu B, Li S, Zhang C, Liu Y, Wang P. A multi-antigen vaccine in combination with an immunotoxin targeting tumor-associated fibroblast for treating murine melanoma. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16007. [PMID: 27119119 PMCID: PMC4824564 DOI: 10.1038/mto.2016.7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 02/08/2023]
Abstract
A therapeutically effective cancer vaccine must generate potent antitumor immune responses and be able to overcome tolerance mechanisms mediated by the progressing tumor itself. Previous studies showed that glycoprotein 100 (gp100), tyrosinase-related protein 1 (TRP1), and tyrosinase-related protein 2 (TRP2) are promising immunogens for melanoma immunotherapy. In this study, we administered these three melanoma-associated antigens via lentiviral vectors (termed LV-3Ag) and found that this multi-antigen vaccine strategy markedly increased functional T-cell infiltration into tumors and generated protective and therapeutic antitumor immunity. We also engineered a novel immunotoxin, αFAP-PE38, capable of targeting fibroblast activation protein (FAP)-expressing fibroblasts within the tumor stroma. When combined with αFAP-PE38, LV-3Ag exhibited greatly enhanced antitumor effects on tumor growth in an established B16 melanoma model. The mechanism of action underlying this combination treatment likely modulates the immune suppressive tumor microenvironment and, consequently, activates cytotoxic CD8+ T cells capable of specifically recognizing and destroying tumor cells. Taken together, these results provide a strong rationale for combining an immunotoxin with cancer vaccines for the treatment of patients with advanced cancer.
Collapse
Affiliation(s)
- Jinxu Fang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California, USA
| | - Biliang Hu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California, USA
| | - Si Li
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California , Los Angeles, California, USA
| | - Chupei Zhang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California, USA
| | - Yarong Liu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
44
|
Ji T, Zhao Y, Ding Y, Wang J, Zhao R, Lang J, Qin H, Liu X, Shi J, Tao N, Qin Z, Nie G, Zhao Y. Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via Cancer-Associated Fibroblast Activation. Angew Chem Int Ed Engl 2016; 55:1050-5. [PMID: 26283097 PMCID: PMC4736689 DOI: 10.1002/anie.201506262] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 12/12/2022]
Abstract
A novel cleavable amphiphilic peptide (CAP) was designed to be specifically responsive to fibroblast activation protein-α (FAP-α), a protease specifically expressed on the surface of cancer-associated fibroblasts. The CAP self-assembled into fiber-like nanostructures in solution, while the presence of hydrophobic chemotherapeutic drugs readily transformed the assemblies into drug-loaded spherical nanoparticles. The disassembly of these nanoparticles (CAP-NPs) upon FAP-α cleavage resulted in rapid and efficient release of the encapsulated drugs specifically at tumor sites. This Transformers-like drug delivery strategy could allow them to disrupt the stromal barrier and enhance local drug accumulation. Therapeutic results suggested that drug-loaded CAP-NPs hold promising tumor specificity and therapeutic efficacy for various solid tumor models, confirming its potential utility and versatility in antitumor therapy.
Collapse
Affiliation(s)
- Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Ying Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yanping Ding
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Jiayan Lang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xiaoman Liu
- CAS Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, 15 Datun Road, Beijing, 100101, China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Ning Tao
- CAS Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, 15 Datun Road, Beijing, 100101, China
| | - Zhihai Qin
- CAS Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, 15 Datun Road, Beijing, 100101, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.
| |
Collapse
|
45
|
Cho JG, Lee JH, Hong SH, Lee HN, Kim CM, Kim SY, Yoon KJ, Oh BJ, Kim JH, Jung SY, Asahara T, Kwon SM, Park SG. Tauroursodeoxycholic acid, a bile acid, promotes blood vessel repair by recruiting vasculogenic progenitor cells. Stem Cells 2015; 33:792-805. [PMID: 25407160 DOI: 10.1002/stem.1901] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/22/2014] [Accepted: 10/26/2014] [Indexed: 01/19/2023]
Abstract
Although serum bile acid concentrations are approximately 10 µM in healthy subjects, the crosstalk between the biliary system and vascular repair has never been investigated. In this study, tauroursodeoxycholic acid (TUDCA) induced dissociation of CD34(+) hematopoietic stem cells (HSCs) from stromal cells by reducing adhesion molecule expression. TUDCA increased CD34(+) /Sca1(+) progenitors in mice peripheral blood (PB), and CD34(+) , CD31(+) , and c-kit(+) progenitors in human PB. In addition, TUDCA increased differentiation of CD34(+) HSCs into EPC lineage cells via Akt activation. EPC invasion was increased by TUDCA, which was mediated by fibroblast activating protein via Akt activation. Interestingly, TUDCA induced integration of EPCs into human aortic endothelial cells (HAECs) by increasing adhesion molecule expression. In the mouse hind limb ischemia model, TUDCA promoted blood perfusion by enhancing angiogenesis through recruitment of Flk-1(+) /CD34(+) and Sca-1(+) /c-kit(+) progenitors into damaged tissue. In GFP(+) bone marrow-transplanted hind limb ischemia, TUDCA induced recruitment of GFP(+) /c-kit(+) progenitors to the ischemic area, resulting in an increased blood perfusion ratio. Histological analysis suggested that GFP(+) progenitors mobilized from bone marrow, integrated into blood vessels, and differentiated into VEGFR(+) cells. In addition, TUDCA decreased cellular senescence by reducing levels of p53, p21, and reactive oxygen species and increased nitric oxide. Transplantation of TUDCA-primed senescent EPCs in hind limb ischemia significantly improved blood vessel regeneration, as compared with senescent EPCs. Our results suggested that TUDCA promoted neovascularization by enhancing the mobilization of stem/progenitor cells from bone marrow, their differentiation into EPCs, and their integration with preexisting endothelial cells.
Collapse
Affiliation(s)
- Jin Gu Cho
- Department of Biomedical Science, CHA University, Sungnamsi, Gyunggido, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lee SE, West KP, Cole RN, Schulze KJ, Christian P, Wu LSF, Yager JD, Groopman J, Ruczinski I. Plasma Proteome Biomarkers of Inflammation in School Aged Children in Nepal. PLoS One 2015; 10:e0144279. [PMID: 26636573 PMCID: PMC4670104 DOI: 10.1371/journal.pone.0144279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 11/13/2015] [Indexed: 11/25/2022] Open
Abstract
Inflammation is a condition stemming from complex host defense and tissue repair mechanisms, often simply characterized by plasma levels of a single acute reactant. We attempted to identify candidate biomarkers of systemic inflammation within the plasma proteome. We applied quantitative proteomics using isobaric mass tags (iTRAQ) tandem mass spectrometry to quantify proteins in plasma of 500 Nepalese children 6–8 years of age. We evaluated those that co-vary with inflammation, indexed by α-1-acid glycoprotein (AGP), a conventional biomarker of inflammation in population studies. Among 982 proteins quantified in >10% of samples, 99 were strongly associated with AGP at a family-wise error rate of 0.1%. Magnitude and significance of association varied more among proteins positively (n = 41) than negatively associated (n = 58) with AGP. The former included known positive acute phase proteins including C-reactive protein, serum amyloid A, complement components, protease inhibitors, transport proteins with anti-oxidative activity, and numerous unexpected intracellular signaling molecules. Negatively associated proteins exhibited distinct differences in abundance between secretory hepatic proteins involved in transporting or binding lipids, micronutrients (vitamin A and calcium), growth factors and sex hormones, and proteins of largely extra-hepatic origin involved in the formation and metabolic regulation of extracellular matrix. With the same analytical approach and the significance threshold, seventy-two out of the 99 proteins were commonly associated with CRP, an established biomarker of inflammation, suggesting the validity of the identified proteins. Our findings have revealed a vast plasma proteome within a free-living population of children that comprise functional biomarkers of homeostatic and induced host defense, nutrient metabolism and tissue repair, representing a set of plasma proteins that may be used to assess dynamics and extent of inflammation for future clinical and public health application.
Collapse
Affiliation(s)
- Sun Eun Lee
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Keith P. West
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Kerry J. Schulze
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Parul Christian
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Lee Shu-Fune Wu
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - James D. Yager
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - John Groopman
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
47
|
A whole-cell tumor vaccine modified to express fibroblast activation protein induces antitumor immunity against both tumor cells and cancer-associated fibroblasts. Sci Rep 2015; 5:14421. [PMID: 26394925 PMCID: PMC4585784 DOI: 10.1038/srep14421] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 08/19/2015] [Indexed: 02/05/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are common components of the tumor-suppressive microenvironment, and are a major determinant of the poor outcome of therapeutic vaccination. In this study, we modified tumor cells to express the fibroblast activation protein (FAP), which is highly expressed by CAFs, to potentially improve whole-cell tumor vaccines by targeting both tumor cells and CAFs. Tumor cells were transfected with murine FAP plasmids bearing the cationic lipid DOTAP. Its antitumor effects were investigated in three established tumor models. Vaccination with tumor cells expressing FAP eliminated solid tumors and tumors resulting from hematogenous dissemination. This antitumor immune response was mediated by CD8+ T cells. Additionally, we found that CAFs were significantly reduced within the tumors. Furthermore, this vaccine enhanced the infiltration of CD8+ T lymphocytes, and suppressed the accumulation of immunosuppressive cells in the tumor microenvironment. Our results indicated that the FAP-modified whole-cell tumor vaccine induced strong antitumor immunity against both tumor cells and CAFs and reversed the immunosuppressive effects of tumors by decreasing the recruitment of immunosuppressive cells and enhancing the recruitment of effector T cells. This conclusion may have important implications for the clinical use of genetically modified tumor cells as cancer vaccines.
Collapse
|
48
|
Prognostic relevance of stromal CD26 expression in rectal cancer after chemoradiotherapy. Int J Clin Oncol 2015; 21:350-358. [PMID: 26370256 DOI: 10.1007/s10147-015-0902-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/30/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND CD26 is a transmembrane glycoprotein whose role in various types of malignancies, along with the potential therapeutic and diagnostic targets, has been evaluated. Preoperative chemoradiotherapy (CRT) is an effective tool for local control of rectal cancer, but the rate of disease recurrence remains high. The aim of this study was to clarify the association between CD26 expression and rectal cancer after preoperative CRT. METHODS A total of 85 patients with rectal cancer who had undergone preoperative CRT were enrolled in this study. We investigated CD26 expression in residual tumors and the surrounding stromal tissue using immunohistochemistry. Additionally, stromal CD26 gene expression was assessed by real-time quantitative polymerase chain reaction. RESULTS Patients with high CD26 expression in cancer tissue more frequently had serosal invasion, vascular invasion, and a poor pathological response. High expression of CD26 in the tumor stroma was significantly correlated with histology and tumor recurrence. High CD26 expression in the stroma, but not the tumor itself, was significantly correlated with a poor prognosis. Patients expressing CD26 in the tumor stroma, based on transcriptional analysis, also had a significantly poorer prognosis than those without the expression. In multivariate analysis, lymph node metastasis and high stromal CD26 expression were identified as independent prognostic factors in patients with rectal cancer after neoadjuvant CRT. CONCLUSION Stromal CD26 expression after preoperative CRT was significantly associated with tumor recurrence and prognosis in rectal cancer patients. Our data suggest that stromal CD26 plays an important role and is a potential therapeutic target in tumor relapse.
Collapse
|
49
|
Bai YP, Shang K, Chen H, Ding F, Wang Z, Liang C, Xu Y, Sun MH, Li YY. FGF-1/-3/FGFR4 signaling in cancer-associated fibroblasts promotes tumor progression in colon cancer through Erk and MMP-7. Cancer Sci 2015; 106:1278-87. [PMID: 26183471 PMCID: PMC4637995 DOI: 10.1111/cas.12745] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/21/2015] [Accepted: 07/07/2015] [Indexed: 01/22/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), as the activated fibroblasts in the tumor stroma, are important modifiers of tumour progression. In the present study, we observed that azoxymethane and dextran sodium sulfate treatments induced increasingly severe colorectal mucosal inflammation and the intratumoural accumulation of CAFs. Fibroblast growth factor (FGF)-1 and FGF-3 were detected in infiltrating cells, and FGFR4, the specific receptor for FGF-1 and FGF-3, was detected in colon cancer tissues. The phosphorylation of FGFR4 enhanced the production of metalloproteinase (MMP)-7 and mitogen-activated protein kinase kinase (Mek)/extracellular signal-regulated kinase (Erk), which was accompanied by excessive vessel generation and cell proliferation. Moreover, we separated CAFs, pericarcinoma fibroblasts (PFs), and normal fibroblasts (NFs) from human colon tissue specimens to characterize the function of CAFs. We observed that CAFs secrete more FGF-1/-3 than NFs and PFs and promote cancer cell growth and angiogenesis through the activation of FGFR4, which is followed by the activation of Mek/Erk and the modulation of MMP-7 expression. The administration of FGF-1/-3-neutralizing antibodies or the treatment of cells with FGFR4 siRNA or the FGFR4 inhibitor PD173074 markedly suppressed colon cancer cell proliferation and neovascularization. These observations suggest a crucial role for CAFs and FGF signaling in the initiation and progression of colorectal cancer. The inhibition of the FGF signaling pathway may be a useful strategy for the treatment of colon cancer.
Collapse
Affiliation(s)
- Yu-Pan Bai
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kun Shang
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huan Chen
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Fei Ding
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhen Wang
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Liang
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Xu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Meng-Hong Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ying-Yi Li
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via Cancer-Associated Fibroblast Activation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506262] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|