1
|
Farrokhi Yekta R, Farahani M, Koushki M, Amiri-Dashatan N. Deciphering the potential role of post-translational modifications of histones in gastrointestinal cancers: a proteomics-based review with therapeutic challenges and opportunities. Front Oncol 2024; 14:1481426. [PMID: 39497715 PMCID: PMC11532047 DOI: 10.3389/fonc.2024.1481426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Oncogenesis is a complex and multi-step process, controlled by several factors including epigenetic modifications. It is considered that histone modifications are critical components in the regulation of gene expression, protein functions, and molecular interactions. Dysregulated post-translationally modified histones and the related enzymatic systems are key players in the control of cell proliferation and differentiation, which are associated with the onset and progression of cancers. The most of traditional investigations on cancer have focused on mutations of oncogenes and tumor suppressor genes. However, increasing evidence indicates that epigenetics, especially histone post-translational modifications (PTMs) play important roles in various cancer types. Mass spectrometry-based proteomic approaches have demonstrated tremendous potential in PTMs profiling and quantitation in different biological systems. In this paper, we have made a proteomics-based review on the role of histone modifications involved in gastrointestinal cancers (GCs) tumorigenesis processes. These alterations function not only as diagnostic or prognostic biomarkers for GCs, but a deeper comprehension of the epigenetic regulation of GCs could facilitate the treatment of this prevalent malignancy through the creation of more effective targeted therapies.
Collapse
Affiliation(s)
- Reyhaneh Farrokhi Yekta
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Koushki
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Duncan HF, Smith AJ, Fleming GJP, Partridge NC, Shimizu E, Moran GP, Cooper PR. The Histone-Deacetylase-Inhibitor Suberoylanilide Hydroxamic Acid Promotes Dental Pulp Repair Mechanisms Through Modulation of Matrix Metalloproteinase-13 Activity. J Cell Physiol 2017; 231:798-816. [PMID: 26264761 DOI: 10.1002/jcp.25128] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 12/23/2022]
Abstract
Direct application of histone-deacetylase-inhibitors (HDACis) to dental pulp cells (DPCs) induces chromatin changes, promoting gene expression and cellular-reparative events. We have previously demonstrated that HDACis (valproic acid, trichostatin A) increase mineralization in dental papillae-derived cell-lines and primary DPCs by stimulation of dentinogenic gene expression. Here, we investigated novel genes regulated by the HDACi, suberoylanilide hydroxamic acid (SAHA), to identify new pathways contributing to DPC differentiation. SAHA significantly compromised DPC viability only at relatively high concentrations (5 μM); while low concentrations (1 μM) SAHA did not increase apoptosis. HDACi-exposure for 24 h induced mineralization-per-cell dose-dependently after 2 weeks; however, constant 14d SAHA-exposure inhibited mineralization. Microarray analysis (24 h and 14 days) of SAHA exposed cultures highlighted that 764 transcripts showed a significant >2.0-fold change at 24 h, which reduced to 36 genes at 14 days. 59% of genes were down-regulated at 24 h and 36% at 14 days, respectively. Pathway analysis indicated SAHA increased expression of members of the matrix metalloproteinase (MMP) family. Furthermore, SAHA-supplementation increased MMP-13 protein expression (7 d, 14 days) and enzyme activity (48 h, 14 days). Selective MMP-13-inhibition (MMP-13i) dose-dependently accelerated mineralization in both SAHA-treated and non-treated cultures. MMP-13i-supplementation promoted expression of several mineralization-associated markers, however, HDACi-induced cell migration and wound healing were impaired. Data demonstrate that short-term low-dose SAHA-exposure promotes mineralization in DPCs by modulating gene pathways and tissue proteases. MMP-13i further increased mineralization-associated events, but decreased HDACi cell migration indicating a specific role for MMP-13 in pulpal repair processes. Pharmacological inhibition of HDAC and MMP may provide novel insights into pulpal repair processes with significant translational benefit. J. Cell. Physiol. 231: 798-816, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Henry F Duncan
- Division of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - Anthony J Smith
- Oral Biology, School of Dentistry, University of Birmingham, Birmingham, UK
| | - Garry J P Fleming
- Material Science Unit, Dublin Dental University Hospital, Trinity College Dublin, Ireland
| | - Nicola C Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York
| | - Emi Shimizu
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York
| | - Gary P Moran
- Division of Oral Biosciences, Dublin Dental University Hospital, Trinity College Dublin, Ireland
| | - Paul R Cooper
- Oral Biology, School of Dentistry, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Ye K, Wu Y, Sun Y, Lin J, Xu J. TLR4 siRNA inhibits proliferation and invasion in colorectal cancer cells by downregulating ACAT1 expression. Life Sci 2016; 155:133-9. [DOI: 10.1016/j.lfs.2016.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/28/2016] [Accepted: 05/07/2016] [Indexed: 12/20/2022]
|
4
|
Bianchi L, Bruzzese F, Leone A, Gagliardi A, Puglia M, Di Gennaro E, Rocco M, Gimigliano A, Pucci B, Armini A, Bini L, Budillon A. Proteomic analysis identifies differentially expressed proteins after HDAC vorinostat and EGFR inhibitor gefitinib treatments in Hep-2 cancer cells. Proteomics 2012; 11:3725-42. [PMID: 21761561 DOI: 10.1002/pmic.201100092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several solid tumors are characterized by poor prognosis and few effective treatment options, other than palliative chemotherapy in the recurrent/metastatic setting. Epidermal growth factor receptor (EGFR) has been considered an important anticancer target because it is involved in the development and progression of several solid tumors; however, only a subset of patients show a clinically meaningful response to EGFR inhibition, particularly to EGFR tyrosine kinase inhibitors such as gefitinib. We have recently demonstrated synergistic antitumor effect of the histone deacetylase inhibitor vorinostat combined with gefitinib. To further characterize the interaction between these two agents, cellular extracts from Hep-2 cancer cells that were untreated or treated for 24 h with either vorinostat or gefitinib alone or with a vorinostat/gefitinib combination were analyzed using 2-D DIGE. Software analysis using DeCyder was performed, and numerous differentially expressed protein spots were visualized between the four examined settings. Using MALDI-TOF MS and ESI-Ion trap MS/MS, several differentially expressed proteins were identified; some of these were validated by Western blotting. Finally, a pathway analysis of experimental data performed using MetaCore highlighted a relevant relationship between the identified proteins and additional potential effectors. In conclusion, we performed a comprehensive analysis of proteins regulated by vorinostat and gefitinib, alone and in combination, providing a useful insight into their mechanisms of action as well as their synergistic interaction.
Collapse
Affiliation(s)
- Laura Bianchi
- Functional Proteomics Laboratory, Department of Molecular Biology, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Leong S, McKay MJ, Christopherson RI, Baxter RC. Biomarkers of breast cancer apoptosis induced by chemotherapy and TRAIL. J Proteome Res 2011; 11:1240-50. [PMID: 22133146 DOI: 10.1021/pr200935y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Treatment of breast cancer is complex and challenging due to the heterogeneity of the disease. To avoid significant toxicity and adverse side-effects of chemotherapy in patients who respond poorly, biomarkers predicting therapeutic response are essential. This study has utilized a proteomic approach integrating 2D-DIGE, LC-MS/MS, and bioinformatics to analyze the proteome of breast cancer (ZR-75-1 and MDA-MB-231) and breast epithelial (MCF-10A) cell lines induced to undergo apoptosis using a combination of doxorubicin and TRAIL administered in sequence (Dox-TRAIL). Apoptosis induction was confirmed using a caspase-3 activity assay. Comparative proteomic analysis between whole cell lysates of Dox-TRAIL and control samples revealed 56 differentially expressed spots (≥2-fold change and p < 0.05) common to at least two cell lines. Of these, 19 proteins were identified yielding 11 unique protein identities: CFL1, EIF5A, HNRNPK, KRT8, KRT18, LMNA, MYH9, NACA, RPLP0, RPLP2, and RAD23B. A subset of the identified proteins was validated by selected reaction monitoring (SRM) and Western blotting. Pathway analysis revealed that the differentially abundant proteins were associated with cell death, cellular organization, integrin-linked kinase signaling, and actin cytoskeleton signaling pathways. The 2D-DIGE analysis has yielded candidate biomarkers of response to treatment in breast cancer cell models. Their clinical utility will depend on validation using patient breast biopsies pre- and post-treatment with anticancer drugs.
Collapse
Affiliation(s)
- Sharon Leong
- Kolling Institute of Medical Research, The University of Sydney , Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | | | | | | |
Collapse
|
6
|
Synergistic antitumor effects of novel HDAC inhibitors and paclitaxel in vitro and in vivo. PLoS One 2011; 6:e29085. [PMID: 22194993 PMCID: PMC3241602 DOI: 10.1371/journal.pone.0029085] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/21/2011] [Indexed: 12/01/2022] Open
Abstract
Preclinical studies support the therapeutic potential of histone deacetylases inhibitors (HDACi) in combination with taxanes. The efficacy of combination has been mainly ascribed to a cooperative effect on microtubule stabilization following tubulin acetylation. In the present study we investigated the effect of paclitaxel in combination with two novel HDACi, ST2782 or ST3595, able to induce p53 and tubulin hyperacetylation. A synergistic effect of the paclitaxel/ST2782 (or ST3595) combination was found in wild-type p53 ovarian carcinoma cells, but not in a p53 mutant subline, in spite of a marked tubulin acetylation. Such a synergistic interaction was confirmed in additional human solid tumor cell lines harboring wild-type p53 but not in those expressing mutant or null p53. In addition, a synergistic cytotoxic effect was found when ST2782 was combined with the depolymerising agent vinorelbine. In contrast to SAHA, which was substantially less effective in sensitizing cells to paclitaxel-induced apoptosis, ST2782 prevented up-regulation of p21WAF1/Cip1 by paclitaxel, which has a protective role in response to taxanes, and caused p53 down-regulation, acetylation and mitochondrial localization of acetylated p53. The synergistic antitumor effects of the paclitaxel/ST3595 combination were confirmed in two tumor xenograft models. Our results support the relevance of p53 modulation as a major determinant of the synergistic interaction observed between paclitaxel and novel HDACi and emphasize the therapeutic interest of this combination.
Collapse
|
7
|
Perego P, Zuco V, Gatti L, Zunino F. Sensitization of tumor cells by targeting histone deacetylases. Biochem Pharmacol 2011; 83:987-94. [PMID: 22120677 DOI: 10.1016/j.bcp.2011.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 01/05/2023]
Abstract
Epigenetic mechanisms may contribute to drug resistance by interfering with tumor growth regulatory pathways and pro-apoptotic programs. Since gene expression is regulated by acetylation status of histones, a large variety of histone deacetylase (HDAC) inhibitors have been studied as antitumor agents. On the basis of their pro-apoptotic activity, HDAC inhibitors have been combined with conventional antitumor agents or novel target-specific agents to increase susceptibility to apoptosis and drug sensitivity of cancer cells. Several combination strategies including HDAC inhibitors have been explored in preclinical studies. Promising therapeutic effects have been reported in combination with DNA damaging agents, taxanes, targeted agents, death receptor agonists and hormonal therapies. Some histone deacetylases, such as HDAC6, can also modulate the function of non-histone proteins involved in critical regulatory processes which may be relevant as therapeutic targets. Given the pleiotropic effects of most of the available inhibitors, the mechanisms of the sensitization are not completely elucidated. A better understanding of the involved mechanisms will provide a rational basis to improve the therapeutic outcome of the available antitumor agents.
Collapse
Affiliation(s)
- Paola Perego
- Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.
| | | | | | | |
Collapse
|
8
|
Fujii K, Suzuki N, Ikeda K, Hamada T, Yamamoto T, Kondo T, Iwatsuki K. Proteomic study identified HSP 70 kDa protein 1A as a possible therapeutic target, in combination with histone deacetylase inhibitors, for lymphoid neoplasms. J Proteomics 2011; 75:1401-10. [PMID: 22123078 DOI: 10.1016/j.jprot.2011.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 11/09/2011] [Accepted: 11/13/2011] [Indexed: 01/07/2023]
Abstract
Histone deacetylase inhibitors (HDACi) demonstrate possible anticancer activities in various malignancies including lymphoid neoplasms. However, the anticancer effects of HDACi are often limited, and combination therapy with other drugs has been undertaken to improve the outcome of patients. Here we conducted proteomic investigation of 33 lymphoid cell lines to identify novel therapeutic targets for enhancing the effects of HDACi. Using the proteomic data in our published 2D-DIGE database, we examined the proteins associated with resistance to valproic acid (VPA). The lymphoid neoplasm cell lines in the database were grouped according to their sensitivity to VPA treatment. A comparative proteomic study of the cell line groups resulted in the identification of 10 protein spots, whose intensity was associated with chemosensitivity. Among the identified proteins, HSPA1A showed higher expression in cell lines with resistance to VPA, and the results were validated by Western blotting. In vitro experiments demonstrated that treatment with KNK-437, an inhibitor of HSPA1A, enhanced the cytotoxic effects of VPA, as well as vorinostat, in the lymphoid neoplasm cell line. Treatment with KNK-437 facilitated the apoptotic effects of VPA. In conclusion, we identified HSPA1A as a possible therapeutic target, in combination with HDACi, for lymphoid neoplasms.
Collapse
Affiliation(s)
- Kazuyasu Fujii
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry Pharmaceutical Sciences,Okayama 700-0815, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Milli A, Perego P, Beretta GL, Corvo A, Righetti PG, Carenini N, Corna E, Zuco V, Zunino F, Cecconi D. Proteomic Analysis of Cellular Response to Novel Proapoptotic Agents Related to Atypical Retinoids in Human IGROV-1 Ovarian Carcinoma Cells. J Proteome Res 2010; 10:1191-207. [DOI: 10.1021/pr100963n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Alberto Milli
- Dipartimento di Biotecnologie, Laboratorio di Proteomica e Spettrometria di Massa, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Paola Perego
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Giovanni L. Beretta
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Alice Corvo
- Dipartimento di Biotecnologie, Laboratorio di Proteomica e Spettrometria di Massa, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Pier Giorgio Righetti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
| | - Nives Carenini
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Elisabetta Corna
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Valentina Zuco
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Franco Zunino
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Daniela Cecconi
- Dipartimento di Biotecnologie, Laboratorio di Proteomica e Spettrometria di Massa, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
10
|
Relationship between proteome changes of Longissimus muscle and intramuscular fat content in finishing pigs fed conjugated linoleic acid. Br J Nutr 2010; 105:1-9. [DOI: 10.1017/s0007114510003181] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present experiment was conducted to determine proteome changes in Longissimus muscle of finishing pigs fed conjugated linoleic acid (CLA), in association with alteration of intramuscular fat content. Previously, seventy-two Duroc × Landrace × Large White gilts (approximately 60 kg) had been fed maize–soyabean meal-based diets with 0, 12·5 and 25 g CLA/kg diet. The CLA contained 369·1 mg/g cis-9, trans-11 CLA, 374·6 mg/g trans-10, cis-12 CLA and 53·7 mg/g other isomers. Six pigs per treatment were slaughtered when they reached a body weight of approximately 100 kg. Data published from a previous experiment demonstrated that supplementation with 12·5 or 25 g CLA/kg diet increased intramuscular fat content (P < 0·05). The present study investigated the proteome changes in Longissimus muscle of control and pigs supplemented with 25 g CLA/kg diet. CLA significantly influenced the abundance of proteins related to energy metabolism, fatty acid oxidation and synthesis, amino acid metabolism, defence, transport and other miscellaneous processes (P < 0·05). The increase in intramuscular fat content was positively correlated with the increased abundance of carbonic anhydrase 3 and aspartate aminotransferase (P < 0·05). We suggest that the proteome changes in Longissimus muscle contributed to greater intramuscular lipid content in CLA-supplemented pigs.
Collapse
|
11
|
The anti-cancer activity of dihydroartemisinin is associated with induction of iron-dependent endoplasmic reticulum stress in colorectal carcinoma HCT116 cells. Invest New Drugs 2010; 29:1276-83. [PMID: 20607588 DOI: 10.1007/s10637-010-9481-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 06/15/2010] [Indexed: 12/23/2022]
Abstract
Dihydroartemisinin (DHA), the main active metabolite of artemisinin derivatives, is among the artemisinin derivatives possessing potent anti-malarial and anti-cancer activities. In the present study, we found that DHA displayed significant anti-proliferative activity in human colorectal carcinoma HCT116 cells, which may be attributed to its induction of G1 phase arrest and apoptosis. To further elucidate the mechanism of action of DHA, a proteomic study employed two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was performed. Glucose-regulated protein 78 (GRP78), which is related with endoplasmic reticulum stress (ER stress), was identified to be significantly up-regulated after DHA treatment. Further study demonstrated that DHA enhanced expression of GRP78 as well as growth arrest and DNA-damage-inducible gene 153 (GADD153, another ER stress-associated molecule) at both mRNA and protein levels. DHA treatment also led to accumulation of GADD153 in cell nucleus. Moreover, pretreatment of HCT116 cells with the iron chelator deferoxamine mesylate salt (DFO) abrogated induction of GRP78 and GADD153 upon DHA treatment, indicating iron is required for DHA-induced ER stress. This result is consistent with the fact that the anti-proliferative activity of DHA is also mediated by iron. We thus suggest the unbalance of redox may result in DHA-induced ER stress, which may contribute, at least in part, to its anti-cancer activity.
Collapse
|
12
|
Butler GS, Overall CM. Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat Rev Drug Discov 2009; 8:935-48. [PMID: 19949400 DOI: 10.1038/nrd2945] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proteomics has revealed that many proteins are present in unexpected cellular locations. Moreover, it is increasingly recognized that proteins can translocate between intracellular and extracellular compartments in non-conventional ways. This increases gene pleiotrophy as the diverse functions of the protein that the gene encodes are dependent on the cellular location. Given that trafficking drug targets may exist in various forms--often with completely different functions--in multiple cellular compartments, careful interpretation of proteomics data is needed for an accurate understanding of gene function. This Perspective is intended to inspire the investigation of unusual protein localizations, rather than assuming that they are due to mislocalization or artefacts. Given a fair chance, proteomics could reveal novel and unforeseen biology with important ramifications for target validation in drug discovery.
Collapse
Affiliation(s)
- Georgina S Butler
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, VT6 1Z3, Canada.
| | | |
Collapse
|
13
|
Proteomics studies reveal important information on small molecule therapeutics: a case study on plasma proteins. Drug Discov Today 2008; 13:1042-51. [PMID: 18973825 PMCID: PMC7185545 DOI: 10.1016/j.drudis.2008.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 09/11/2008] [Accepted: 09/30/2008] [Indexed: 12/21/2022]
Abstract
The most abundant proteins in serum, such as albumin and IgG, act as molecular sponges that bind and transport low molecular weight proteins/peptides and drugs. In the near future, pharmacoproteomics, the use of proteomic technologies in the field of drug discovery and development, and interactomics, the branch of proteomics which is concerned with identifying interactions between proteins, will allow researchers to (i) know the specific protein changes that occur in biological compartments in response to drug administration; (ii) design small novel therapeutic molecules that can have extended half-lives if carried by plasma protein in the blood stream. Advances in these fields will open new avenues of tailor-made molecular therapy, reducing present limitations on treatment arising from toxicity and inefficiency. In this short review we report and discuss the most recent developments arising from the use of proteomic tools in blood plasma protein research, looking at the identification of proteins found in plasma as well as their interactions with small molecules such as drugs, peptides, organic chemicals and metals. We believe this research demonstrates that proteomic technologies, and in particular pharmacoproteomics, interactomics and post-translational modification analysis, could be instrumental in the design of new tailor-made drugs leading to substantial improvements in molecular therapy.
Collapse
|