1
|
Tomkinson B. Tripeptidyl-peptidase II: Update on an oldie that still counts. Biochimie 2019; 166:27-37. [DOI: 10.1016/j.biochi.2019.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
|
2
|
Eklund S, Dogan J, Jemth P, Kalbacher H, Tomkinson B. Characterization of the endopeptidase activity of tripeptidyl-peptidase II. Biochem Biophys Res Commun 2012; 424:503-7. [PMID: 22771804 DOI: 10.1016/j.bbrc.2012.06.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/26/2012] [Indexed: 11/18/2022]
Abstract
Tripeptidyl-peptidase II (TPP II) is a giant cytosolic peptidase with a proposed role in cellular protein degradation and protection against apoptosis. Beside its well-characterised exopeptidase activity, TPP II also has an endopeptidase activity. Little is known about this activity, and since it could be important for the physiological role of TPP II, we have investigated it in more detail. Two peptides, Nef(69-87) and LL37, were incubated with wild-type murine TPP II and variants thereof as well as TPP II from human and Drosophila melanogaster. Two intrinsically disordered proteins were also included in the study. We conclude that the endopeptidase activity is more promiscuous than previously reported. It is also clear that TPP II can attack longer disordered peptides up to 75 amino acid residues. Using a novel FRET substrate, the catalytic efficiency of the endopeptidase activity could be determined to be 5 orders of magnitude lower than for the exopeptidase activity.
Collapse
Affiliation(s)
- Sandra Eklund
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 751 23 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
3
|
Eklund S, Lindås AC, Hamnevik E, Widersten M, Tomkinson B. Exploring the active site of tripeptidyl-peptidase II through studies of pH dependence of reaction kinetics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:561-70. [DOI: 10.1016/j.bbapap.2012.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/03/2012] [Accepted: 01/03/2012] [Indexed: 11/16/2022]
|
4
|
Peters J, Schönegge AM, Rockel B, Baumeister W. Molecular ruler of tripeptidylpeptidase II: mechanistic principle of exopeptidase selectivity. Biochem Biophys Res Commun 2011; 414:209-14. [PMID: 21946061 DOI: 10.1016/j.bbrc.2011.09.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 09/11/2011] [Indexed: 11/28/2022]
Abstract
The structure of tripeptidylpeptidase II (TPPII) has shown that it belongs to the group of exopeptidases which use a double-Glu motif to convey aminopeptidase activity. TPPII has been implicated in vital biological processes. At least one of these, antigen processing, requires the involvement of its endopeptidase activity. In order to understand the extent and molecular basis of this unusual functional promiscuity we have performed a systematic kinetic analysis of wild type Drosophila melanogaster TPPII and five point mutants of the double-Glu-motif (E312/E343) involving natural substrates. Unlike the known double-Glu motives of other exopeptidases, the double-Glu motif of TPPII is distinctly asymmetrical: E312 is the crucial determinant of the aminotripeptidolytic ruler mechanism. It both blocks the active-site cleft at substrate position P4 and forms a salt bridge with the N-terminus of the substrate. In contrast, E343 forms a much weaker salt bridge than E312 and it does not have a blocking role. An endopeptidase substrate can bind at relatively high affinity if the length of the substrate permits binding to several S' sites. However, the lacking alignment of the substrate by the double-Glu motif causes the endopeptidolytic K(cat)/K(M) of TPPII to be very low.
Collapse
Affiliation(s)
- Jürgen Peters
- Max-Planck-Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | | | | | |
Collapse
|
5
|
Transcription profiling of Prss16 (Tssp) can be used to find additional peptidase genes that are candidates for self-peptide generation in the thymus. Mol Biol Rep 2011; 39:4051-8. [DOI: 10.1007/s11033-011-1186-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 07/07/2011] [Indexed: 11/25/2022]
|
6
|
Rockel B, Kopec KO, Lupas AN, Baumeister W. Structure and function of tripeptidyl peptidase II, a giant cytosolic protease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:237-45. [PMID: 21771670 DOI: 10.1016/j.bbapap.2011.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/29/2011] [Accepted: 07/01/2011] [Indexed: 01/25/2023]
Abstract
Tripeptidyl peptidase II is the largest known eukaryotic peptidase. It has been described as a multi-purpose peptidase, which, in addition to its house-keeping function in intracellular protein degradation, plays a role in several vital cellular processes such as antigen processing, apoptosis, or cell division, and is involved in diseases like muscle wasting, obesity, and in cancer. Biochemical studies and bioinformatics have identified TPPII as a subtilase, but its structure is very unusual: it forms a large homooligomeric complex (6 MDa) with a spindle-like shape. Recently, the high-resolution structure of TPPII homodimers (300 kDa) was solved and a hybrid structure of the holocomplex built of 20 dimers was obtained by docking it into the EM-density. Here, we summarize our current knowledge about TPPII with a focus on structural aspects. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Beate Rockel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | | | | | | |
Collapse
|
7
|
Chuang CK, Rockel B, Seyit G, Walian PJ, Schönegge A, Peters J, Zwart PH, Baumeister W, Jap BK. Hybrid molecular structure of the giant protease tripeptidyl peptidase II. Nat Struct Mol Biol 2010; 17:990-6. [PMID: 20676100 PMCID: PMC2939011 DOI: 10.1038/nsmb.1870] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/28/2010] [Indexed: 01/07/2023]
Abstract
Tripeptidyl peptidase II (TPP II) is the largest known eukaryotic protease (6 MDa). It is believed to act downstream of the 26S proteasome, cleaving tripeptides from the N termini of longer peptides, and it is implicated in numerous cellular processes. Here we report the structure of Drosophila TPP II determined by a hybrid approach. We solved the structure of the dimer by X-ray crystallography and docked it into the three-dimensional map of the holocomplex, which we obtained by single-particle cryo-electron microscopy. The resulting structure reveals the compartmentalization of the active sites inside a system of chambers and suggests the existence of a molecular ruler determining the size of the cleavage products. Furthermore, the structure suggests a model for activation of TPP II involving the relocation of a flexible loop and a repositioning of the active-site serine, coupling it to holocomplex assembly and active-site sequestration.
Collapse
Affiliation(s)
- Crystal K. Chuang
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA, Graduate Group in Comparative Biochemistry, University of California, Berkeley, California 94720, USA
| | - Beate Rockel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, D–82152 Martinsried, Germany
| | - Gönül Seyit
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, D–82152 Martinsried, Germany
| | - Peter J. Walian
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
| | - Anne–Marie Schönegge
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, D–82152 Martinsried, Germany
| | - Jürgen Peters
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, D–82152 Martinsried, Germany
| | - Petrus H. Zwart
- Advanced Light Source, Lawrence Berkeley National Laboratory
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, D–82152 Martinsried, Germany,To whom correspondence should be addressed., ;
| | - Bing K. Jap
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA, Graduate Group in Comparative Biochemistry, University of California, Berkeley, California 94720, USA,To whom correspondence should be addressed., ;
| |
Collapse
|
8
|
Preta G, de Klark R, Glas R. A role for nuclear translocation of tripeptidyl-peptidase II in reactive oxygen species-dependent DNA damage responses. Biochem Biophys Res Commun 2009; 389:575-9. [DOI: 10.1016/j.bbrc.2009.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/04/2009] [Indexed: 10/20/2022]
|
9
|
Eriksson S, Gutiérrez OA, Bjerling P, Tomkinson B. Development, evaluation and application of tripeptidyl-peptidase II sequence signatures. Arch Biochem Biophys 2009; 484:39-45. [PMID: 19467630 DOI: 10.1016/j.abb.2009.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 01/07/2009] [Indexed: 11/24/2022]
Abstract
Tripeptidyl-peptidase II (TPP II) is a cytosolic peptidase that has been implicated in fat formation and cancer, apparently independent of the enzymatic activity. In search for alternative functional regions, conserved motifs were identified and eleven signatures were constructed. Seven of the signatures covered previously investigated residues, whereas the functional importance of the other motifs is unknown. This provides directions for future investigations of alternative activities of TPP II. The obtained signatures provide an efficient bioinformatic tool for the identification of TPP II homologues. Hence, a TPP II sequence homologue from fission yeast, Schizosaccharomyces pombe, was identified and demonstrated to encode the TPP II-like protein previously reported as multicorn. Furthermore, an homologous protein was found in the prokaryote Blastopirellula marina, albeit the TPP II function was apparently not conserved. This gene is probably the result of a rare gene transfer from eukaryote to prokaryote.
Collapse
Affiliation(s)
- Sandra Eriksson
- Department of Biochemistry and Organic Chemistry, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|