1
|
Rösner HI, Caldarini M, Potel G, Malmodin D, Vanoni MA, Aliverti A, Broglia RA, Kragelund BB, Tiana G. The denatured state of HIV-1 protease under native conditions. Proteins 2021; 90:96-109. [PMID: 34312913 PMCID: PMC9290662 DOI: 10.1002/prot.26189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/01/2022]
Abstract
The denatured state of several proteins has been shown to display transient structures that are relevant for folding, stability, and aggregation. To detect them by nuclear magnetic resonance (NMR) spectroscopy, the denatured state must be stabilized by chemical agents or changes in temperature. This makes the environment different from that experienced in biologically relevant processes. Using high‐resolution heteronuclear NMR spectroscopy, we have characterized several denatured states of a monomeric variant of HIV‐1 protease, which is natively structured in water, induced by different concentrations of urea, guanidinium chloride, and acetic acid. We have extrapolated the chemical shifts and the relaxation parameters to the denaturant‐free denatured state at native conditions, showing that they converge to the same values. Subsequently, we characterized the conformational properties of this biologically relevant denatured state under native conditions by advanced molecular dynamics simulations and validated the results by comparison to experimental data. We show that the denatured state of HIV‐1 protease under native conditions displays rich patterns of transient native and non‐native structures, which could be of relevance to its guidance through a complex folding process.
Collapse
Affiliation(s)
- Heike I Rösner
- BRIC, University of Copenhagen, Copenhagen N, Denmark.,Structural Biology and NMR Laboratory (SBiNlab), Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Martina Caldarini
- Department of Physics, Università degli Studi di Milano and INFN, Milan, Italy
| | - Gregory Potel
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Daniel Malmodin
- Structural Biology and NMR Laboratory (SBiNlab), Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Maria A Vanoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | | - Ricardo A Broglia
- Department of Physics, Università degli Studi di Milano and INFN, Milan, Italy.,Niels Bohr Institutet, University of Copenhagen, Copenhagen Ø, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory (SBiNlab), Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Guido Tiana
- Department of Physics, Università degli Studi di Milano and INFN, Milan, Italy.,Center for Complexity and Biosystems, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Uversky VN. Under-folded proteins: Conformational ensembles and their roles in protein folding, function, and pathogenesis. Biopolymers 2016; 99:870-87. [PMID: 23754493 PMCID: PMC7161862 DOI: 10.1002/bip.22298] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 11/16/2022]
Abstract
For decades, protein function was intimately linked to the presence of a unique, aperiodic crystal‐like structure in a functional protein. The two only places for conformational ensembles of under‐folded (or partially folded) protein forms in this picture were either the end points of the protein denaturation processes or transiently populated folding intermediates. Recent years witnessed dramatic change in this perception and conformational ensembles, which the under‐folded proteins are, have moved from the shadow. Accumulated to date data suggest that a protein can exist in at least three global forms–functional and folded, functional and intrinsically disordered (nonfolded), and nonfunctional and misfolded/aggregated. Under‐folded protein states are crucial for each of these forms, serving as important folding intermediates of ordered proteins, or as functional states of intrinsically disordered proteins (IDPs) and IDP regions (IDPRs), or as pathology triggers of misfolded proteins. Based on these observations, conformational ensembles of under‐folded proteins can be classified as transient (folding and misfolding intermediates) and permanent (IDPs and stable misfolded proteins). Permanently under‐folded proteins can further be split into intentionally designed (IDPs and IDPRs) and unintentionally designed (misfolded proteins). Although intrinsic flexibility, dynamics, and pliability are crucial for all under‐folded proteins, the different categories of under‐foldedness are differently encoded in protein amino acid sequences. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 870–887, 2013.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, 142292, Moscow Region, Russia
| |
Collapse
|
3
|
Matsumura Y, Shinjo M, Matsui T, Ichimura K, Song J, Kihara H. Structural study of hNck2 SH3 domain protein in solution by circular dichroism and X-ray solution scattering. Biophys Chem 2013; 175-176:39-46. [PMID: 23524290 DOI: 10.1016/j.bpc.2013.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/15/2013] [Accepted: 02/16/2013] [Indexed: 11/19/2022]
Abstract
We have done conformational study of hNck2 SH3 domain by means of far-ultraviolet (far-UV) circular dichroism (CD) and X-ray solution scattering (XSS). The results indicated that the following: (1) hNck2 SH3 domain protein exhibited concentration dependent monomer-dimer transition at neutral pH, while the secondary structure of this protein was independent of the protein concentration. (2) The hNck2 SH3 domain also exhibited pH dependent monomer-dimer transition. This monomer-dimer transition was accompanied with helix-β transition of the secondary structural change. Moreover, the acid-induced conformation, which was previously studied by Liu and Song by CD and nuclear magnetic resonance (NMR), was found to be not compact, but the conformation of the protein at acidic pH was similar to the cold denatured state (C-state) reported by Yamada et al. for equine β-lactoglobulin. We calculated that a structure of the equilibrium helix-rich intermediate of the hNck2 SH3 domain by DAMMIF program.
Collapse
Affiliation(s)
- Yoshitaka Matsumura
- Department of Physics, Kansai Medical University, 18-89 Uyama-Higashi, Hirakata 573-1136, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Smoum R, Rubinstein A, Dembitsky VM, Srebnik M. Boron containing compounds as protease inhibitors. Chem Rev 2012; 112:4156-220. [PMID: 22519511 DOI: 10.1021/cr608202m] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Reem Smoum
- The School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel.
| | | | | | | |
Collapse
|
5
|
Bonomi M, Barducci A, Gervasio FL, Parrinello M. Multiple routes and milestones in the folding of HIV-1 protease monomer. PLoS One 2010; 5:e13208. [PMID: 20967249 PMCID: PMC2954147 DOI: 10.1371/journal.pone.0013208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/11/2010] [Indexed: 11/25/2022] Open
Abstract
Proteins fold on a time scale incompatible with a mechanism of random search in conformational space thus indicating that somehow they are guided to the native state through a funneled energetic landscape. At the same time the heterogeneous kinetics suggests the existence of several different folding routes. Here we propose a scenario for the folding mechanism of the monomer of HIV–1 protease in which multiple pathways and milestone events coexist. A variety of computational approaches supports this picture. These include very long all-atom molecular dynamics simulations in explicit solvent, an analysis of the network of clusters found in multiple high-temperature unfolding simulations and a complete characterization of free-energy surfaces carried out using a structure-based potential at atomistic resolution and a combination of metadynamics and parallel tempering. Our results confirm that the monomer in solution is stable toward unfolding and show that at least two unfolding pathways exist. In our scenario, the formation of a hydrophobic core is a milestone in the folding process which must occur along all the routes that lead this protein towards its native state. Furthermore, the ensemble of folding pathways proposed here substantiates a rational drug design strategy based on inhibiting the folding of HIV–1 protease.
Collapse
Affiliation(s)
- Massimiliano Bonomi
- Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, Lugano, Switzerland.
| | | | | | | |
Collapse
|