1
|
Liu S, Chen Y, Du T, Zhao W, Liu X, Zhang H, Yuan Q, Gao L, Dong Y, Gao X, Gong Y, Cao P. A dimer-monomer transition captured by the crystal structures of cyanobacterial apo flavodoxin. Biochem Biophys Res Commun 2023; 639:134-141. [PMID: 36493556 DOI: 10.1016/j.bbrc.2022.11.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
In cyanobacteria and algae (but not plants), flavodoxin (Fld) replaces ferredoxin (Fd) under stress conditions to transfer electrons from photosystem I (PSI) to ferredoxin-NADP+ reductase (FNR) during photosynthesis. Fld constitutes a small electron carrier noncovalently bound to flavin mononucleotide (FMN), and also an ideal model for revealing the protein/flavin-binding mechanism because of its relative simplicity compared to other flavoproteins. Here, we report two crystal structures of apo-Fld from Synechococcus sp. PCC 7942, one dimeric structure of 2.09 Å and one monomeric structure of 1.84 Å resolution. Analytical ultracentrifugation showed that in solution, apo-Fld exists both as monomers and dimers. Our dimer structure contains two ligand-binding pockets separated by a distance of 45 Å, much longer than the previous structures of FMN-bound dimers. These results suggested a potential dimer-monomer transition mechanism of cyanobacterial apo-Fld. We further propose that the dimer represents the "standby" state to stabilize itself, while the monomer constitutes the "ready" state to bind FMN. Furthermore, we generated a new docking model of cyanobacterial Fld-FNR complex based on the recently reported cryo-EM structures, and mapped the special interactions between Fld and FNR in detail.
Collapse
Affiliation(s)
- Shuwen Liu
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Yuanyuan Chen
- The Research Platform for Protein Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Tianming Du
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Wencong Zhao
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Xuejing Liu
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Heng Zhang
- Center for Multidisciplinary Research, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing, 100049, China
| | - Qing Yuan
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Liang Gao
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Yuhui Dong
- Center for Multidisciplinary Research, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing, 100049, China
| | - Xueyun Gao
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| | - Yong Gong
- Center for Multidisciplinary Research, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing, 100049, China.
| | - Peng Cao
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| |
Collapse
|
2
|
Abstract
Redox titration of flavoproteins allows to detect and analyze (1) the determinants of the stabilization of individual redox forms of the flavin by the protein; (2) the binding of the redox-active cofactor to the protein; (3) the effects of other components of the systems (such as micro- or macromolecular interactors) on parameters 1 and 2; (4) the pattern of electron flow to and from the flavin cofactor to other redox-active chemical species, including those present in the protein itself or in its physiological partners. This overview presents and discusses the fundamentals of the methodological approaches most commonly used for these purposes, and illustrates how data may be obtained in a reliable way, and how they can be read and interpreted.
Collapse
Affiliation(s)
- Francesco Bonomi
- Section of Chemical and Biomolecular Sciences, DeFENS, University of Milan, Milan, Italy.
| | - Stefania Iametti
- Section of Chemical and Biomolecular Sciences, DeFENS, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Gudim I, Lofstad M, van Beek W, Hersleth HP. High-resolution crystal structures reveal a mixture of conformers of the Gly61-Asp62 peptide bond in an oxidized flavodoxin from Bacillus cereus. Protein Sci 2019; 27:1439-1449. [PMID: 29722453 PMCID: PMC6153408 DOI: 10.1002/pro.3436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 02/03/2023]
Abstract
Flavodoxins (Flds) are small proteins that shuttle electrons in a range of reactions in microorganisms. Flds contain a redox‐active cofactor, a flavin mononucleotide (FMN), and it is well established that when Flds are reduced by one electron, a peptide bond close to the FMN isoalloxazine ring flips to form a new hydrogen bond with the FMN N5H, stabilizing the one‐electron reduced state. Here, we present high‐resolution crystal structures of Flavodoxin 1 from Bacillus cereus in both the oxidized (ox) and one‐electron reduced (semiquinone, sq) state. We observe a mixture of conformers in the oxidized state; a 50:50 distribution between the established oxidized conformation where the peptide bond is pointing away from the flavin, and a conformation where the peptide bond is pointing toward the flavin, approximating the conformation in the semiquinone state. We use single‐crystal spectroscopy to demonstrate that the mixture of conformers is not caused by radiation damage to the crystal. This is the first time that such a mixture of conformers is reported in a wild‐type Fld. We therefore carried out a survey of published Fld structures, which show that several proteins have a pronounced conformational flexibility of this peptide bond. The degree of flexibility seems to be modulated by the presence, or absence, of stabilizing interactions between the peptide bond carbonyl and its surrounding amino acids. We hypothesize that the degree of conformational flexibility will affect the Fld ox/sq redox potential.
Collapse
Affiliation(s)
- Ingvild Gudim
- Department of Biosciences, Section for Biochemistry and Molecular Biology, Department of Biosciences should be before Section for Biochemistry and Molecular Biology, University of Oslo, Oslo, Norway
| | - Marie Lofstad
- Department of Biosciences, Section for Biochemistry and Molecular Biology, Department of Biosciences should be before Section for Biochemistry and Molecular Biology, University of Oslo, Oslo, Norway
| | - Wouter van Beek
- Swiss-Norwegian Beam Lines, European Synchrotron Radiation Facility, Grenoble, France
| | - Hans-Petter Hersleth
- Department of Biosciences, Section for Biochemistry and Molecular Biology, Department of Biosciences should be before Section for Biochemistry and Molecular Biology, University of Oslo, Oslo, Norway.,Department of Chemistry, Section for Chemical Life Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Hsieh YC, Chia TS, Fun HK, Chen CJ. Crystal structure of dimeric flavodoxin from Desulfovibrio gigas suggests a potential binding region for the electron-transferring partner. Int J Mol Sci 2013; 14:1667-83. [PMID: 23322018 PMCID: PMC3565340 DOI: 10.3390/ijms14011667] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/03/2012] [Accepted: 12/25/2012] [Indexed: 11/16/2022] Open
Abstract
Flavodoxins, which exist widely in microorganisms, have been found in various pathways with multiple physiological functions. The flavodoxin (Fld) containing the cofactor flavin mononucleotide (FMN) from sulfur-reducing bacteria Desulfovibrio gigas (D. gigas) is a short-chain enzyme that comprises 146 residues with a molecular mass of 15 kDa and plays important roles in the electron-transfer chain. To investigate its structure, we purified this Fld directly from anaerobically grown D. gigas cells. The crystal structure of Fld, determined at resolution 1.3 Å, is a dimer with two FMN packing in an orientation head to head at a distance of 17 Å, which generates a long and connected negatively charged region. Two loops, Thr59-Asp63 and Asp95-Tyr100, are located in the negatively charged region and between two FMN, and are structurally dynamic. An analysis of each monomer shows that the structure of Fld is in a semiquinone state; the positions of FMN and the surrounding residues in the active site deviate. The crystal structure of Fld from D. gigas agrees with a dimeric form in the solution state. The dimerization area, dynamic characteristics and structure variations between monomers enable us to identify a possible binding area for its functional partners.
Collapse
Affiliation(s)
- Yin-Cheng Hsieh
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan; E-Mail:
| | - Tze Shyang Chia
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; E-Mails: (T.S.C.); (H.-K.F.)
| | - Hoong-Kun Fun
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; E-Mails: (T.S.C.); (H.-K.F.)
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; E-Mail:
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan; E-Mail:
- Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan
- Institute of Biotechnology, National Cheng Kung University, Tainan City 70101, Taiwan
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan City 70101, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-3-5780281 (ext. 7330); Fax: +886-3-5783813
| |
Collapse
|