1
|
Mrnjavac N, Vazdar M, Bertoša B. Molecular dynamics study of functionally relevant interdomain and active site interactions in the autotransporter esterase EstA from Pseudomonas aeruginosa. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1770750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Natalia Mrnjavac
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Maršavelski A, Sabljić I, Sugimori D, Kojić-Prodić B. The substrate selectivity of the two homologous SGNH hydrolases from Streptomyces bacteria: Molecular dynamics and experimental study. Int J Biol Macromol 2020; 158:222-230. [PMID: 32348859 DOI: 10.1016/j.ijbiomac.2020.04.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/24/2022]
Abstract
Two extracellular enzymes of the SGNH hydrolase superfamily reveal highly homologous 3D structures, but act on different substrates; one is a true phospholipase A1 from Streptomyces albidoflavus (SaPLA1, EC: 3.1.1.32, PDB code: 4HYQ), whereas the promiscuous enzyme from Streptomyces rimosus (SrLip, EC: 3.1.1.3, PDB code: 5MAL) exhibits lipase, phospholipase, esterase, thioesterase, and Tweenase activities. To get insight into binding modes of phospholipid and triglyceride substrates in both enzymes and understand their chain-length preferences, we opted for computational approach based on in silico prepared enzyme-substrate complexes. Docking procedure and molecular dynamics simulations at microsecond time scale were applied. The modelled complexes of SaPLA1 and SrLip enzymes revealed substrate accommodation: a) the acyl-chain attached to sn-1 position fits into the hydrophobic pocket, b) the acyl-chain attached to sn-2 position fits in the hydrophobic cleft, whereas c) the sn-3 bound acyl chain of the triglyceride or polar head of the glycerophospholipid fits into the binding groove. Moreover, our results pinpointed subtle amino acid differences in the hydrophobic pockets of these two enzymes which accommodate the acyl chain attached to sn-1 position of glycerol to be responsible for the chain length preference. Slight differences in the binding grooves of SaPLA1 and SrLip, which accommodate the acyl chain attached to sn-3 position are responsible for exclusive phospholipase and both phospholipase/lipase activities of these two enzymes, respectively. The results of modelling correlate with the experimentally obtained kinetic parameters given in the literature and are important for protein engineering that aims to obtain a variant of enzyme, which would preferably act on the substrate of interest.
Collapse
Affiliation(s)
| | - Igor Sabljić
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala SE-75651, Sweden; Ruđer Bošković Institute, Zagreb, Croatia
| | - Daisuke Sugimori
- Department of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| | | |
Collapse
|
3
|
Microbial Production of Fatty Acid via Metabolic Engineering and Synthetic Biology. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0374-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
Rege NK, Wickramasinghe NP, Tustan AN, Phillips NFB, Yee VC, Ismail-Beigi F, Weiss MA. Structure-based stabilization of insulin as a therapeutic protein assembly via enhanced aromatic-aromatic interactions. J Biol Chem 2018; 293:10895-10910. [PMID: 29880646 PMCID: PMC6052209 DOI: 10.1074/jbc.ra118.003650] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/30/2018] [Indexed: 12/18/2022] Open
Abstract
Key contributions to protein structure and stability are provided by weakly polar interactions, which arise from asymmetric electronic distributions within amino acids and peptide bonds. Of particular interest are aromatic side chains whose directional π-systems commonly stabilize protein interiors and interfaces. Here, we consider aromatic-aromatic interactions within a model protein assembly: the dimer interface of insulin. Semi-classical simulations of aromatic-aromatic interactions at this interface suggested that substitution of residue TyrB26 by Trp would preserve native structure while enhancing dimerization (and hence hexamer stability). The crystal structure of a [TrpB26]insulin analog (determined as a T3Rf3 zinc hexamer at a resolution of 2.25 Å) was observed to be essentially identical to that of WT insulin. Remarkably and yet in general accordance with theoretical expectations, spectroscopic studies demonstrated a 150-fold increase in the in vitro lifetime of the variant hexamer, a critical pharmacokinetic parameter influencing design of long-acting formulations. Functional studies in diabetic rats indeed revealed prolonged action following subcutaneous injection. The potency of the TrpB26-modified analog was equal to or greater than an unmodified control. Thus, exploiting a general quantum-chemical feature of protein structure and stability, our results exemplify a mechanism-based approach to the optimization of a therapeutic protein assembly.
Collapse
Affiliation(s)
| | | | - Alisar N Tustan
- Medicine, Case Western Reserve University, Cleveland, Ohio 44106 and
| | | | | | | | - Michael A Weiss
- From the Departments of Biochemistry and
- the Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
5
|
Chownk M, Kaur J, Singh K, Kaur J. mbtJ: an iron stress-induced acetyl hydrolase/esterase of Mycobacterium tuberculosis helps bacteria to survive during iron stress. Future Microbiol 2018. [PMID: 29519132 DOI: 10.2217/fmb-2017-0194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM mbtJ from Mycobacterium tuberculosis H37Rv is a member of mbt A-J operon required for mycobactin biogenesis. MATERIALS & METHODS The esterase/acetyl-hydrolase activity of mbtJ was determined by pNP-esters/native-PAGE and expression under iron stress by quantitative-PCR. Effect of gene on growth/survival of Mycobacterium was studied using antisense. Its effect on morphology, growth/infection was studied in Mycobacterium smegmatis. RESULTS It showed acetyl hydrolase/esterase activity at pH 8.0 and 50°C with pNP-butyrate. Its expression was upregulated under iron stress. The antisense inhibited the survival of bacterium during iron stress. Expression of mbtJ changed colony morphology and enhanced the growth/infection in M. smegmatis. CONCLUSION mbtJ, an acetyl-hydrolase/esterase, enhanced the survival of M. tuberculosis under iron stress, affected the growth/infection efficiency in M. smegmatis, suggesting its pivotal role in the intracellular survival of bacterium.
Collapse
Affiliation(s)
- Manisha Chownk
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Jashandeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
6
|
Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase. Sci Rep 2018; 8:1719. [PMID: 29379013 PMCID: PMC5789057 DOI: 10.1038/s41598-017-19135-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
An understanding of how conformational dynamics modulates function and catalysis of human monoacylglycerol lipase (hMGL), an important pharmaceutical target, can facilitate the development of novel ligands with potential therapeutic value. Here, we report the discovery and characterization of an allosteric, regulatory hMGL site comprised of residues Trp-289 and Leu-232 that reside over 18 Å away from the catalytic triad. These residues were identified as critical mediators of long-range communication and as important contributors to the integrity of the hMGL structure. Nonconservative replacements of Trp-289 or Leu-232 triggered concerted motions of structurally distinct regions with a significant conformational shift toward inactive states and dramatic loss in catalytic efficiency of the enzyme. Using a multimethod approach, we show that the dynamically relevant Trp-289 and Leu-232 residues serve as communication hubs within an allosteric protein network that controls signal propagation to the active site, and thus, regulates active-inactive interconversion of hMGL. Our findings provide new insights into the mechanism of allosteric regulation of lipase activity, in general, and may provide alternative drug design possibilities.
Collapse
|
7
|
Jadeja D, Dogra N, Arya S, Singh G, Singh G, Kaur J. Characterization of LipN (Rv2970c) of Mycobacterium Tuberculosis H37Rv and its Probable Role in Xenobiotic Degradation. J Cell Biochem 2016. [PMID: 26212120 DOI: 10.1002/jcb.25285] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
LipN (Rv2970c) belongs to the Lip family of M. tuberculosis H37Rv and is homologous to the human Hormone Sensitive Lipase. The enzyme demonstrated preference for short carbon chain substrates with optimal activity at 45°C/pH 8.0 and stability between pH 6.0-9.0. The specific activity of the enzyme was 217 U/mg protein with pNP-butyrate as substrate. It hydrolyzed tributyrin to di- and monobutyrin. The active-site residues of the enzyme were confirmed to be Ser216, Asp316, and His346. Tetrahydrolipstatin, RHC-80267 and N-bromosuccinimide inhibited LipN enzyme activity completely. Interestingly, Trp145, a non active-site residue, demonstrated functional role to retain enzyme activity. The enzyme was localized in cytosolic fraction of M. tuberculosis H37Rv. The enzyme was able to synthesize ester of butyric acid, methyl butyrate, in presence of methanol. LipN was able to hydrolyze 4-hydroxyphenylacetate to hydroquinone. The gene was not expressed in in-vitro growth conditions while the expression of rv2970c gene was observed post 6h of macrophage infection by M. tuberculosis H37Ra. Under individual in-vitro stress conditions, the gene was expressed during acidic stress condition only. These findings suggested that LipN is a cytosolic, acid inducible carboxylesterase with no positional specificity in demonstrating activity with short carbon chain substrates. It requires Trp145, a non active site residue, for it's enzyme activity.
Collapse
Affiliation(s)
| | - Nandita Dogra
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Stuti Arya
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gurpreet Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gurdyal Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
8
|
Shin KS, Kim S, Lee SK. Improvement of free fatty acid production using a mutant acyl-CoA thioesterase I with high specific activity in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:208. [PMID: 27761152 PMCID: PMC5053343 DOI: 10.1186/s13068-016-0622-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/24/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Microbial production of oleochemicals has been actively studied in the last decade. Free fatty acids (FFAs) could be converted into a variety of molecules such as industrial products, consumer products, and fuels. FFAs have been produced in metabolically engineered Escherichia coli cells expressing a signal sequence-deficient acyl-CoA thioesterase I ('TesA). Nonetheless, increasing the expression level of 'TesA seems not to be an appropriate approach to scale up FFA production because a certain ratio of each component including fatty acid synthase and 'TesA is required for optimal production of FFAs. Thus, the catalytic activity of 'TesA should be rationally engineered instead of merely increasing the enzyme expression level to enhance the production of FFAs. RESULTS In this study, we constructed a sensing system with a fusion protein of tetracycline resistance protein and red fluorescent protein (RFP) under the control of a FadR-responsive promoter to select the desired mutants. Fatty acid-dependent growth and RFP expression allowed for selection of FFA-overproducing cells. A 'TesA mutant that produces a twofold greater amount of FFAs was isolated from an error-prone PCR mutant library of E. coli 'TesA. Its kinetic analysis revealed that substitution of Arg64 with Cys64 in the enzyme causes an approximately twofold increase in catalytic activity. CONCLUSIONS Because the expression of 'TesA in E. coli for the production of oleochemicals is almost an indispensable process, the proposed engineering approach has a potential to enhance the production of oleochemicals. The use of the catalytically active mutant 'TesAR64C should accelerate the manufacture of FFA-derived chemicals and fuels.
Collapse
Affiliation(s)
- Kwang Soo Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Sangwoo Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Sung Kuk Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| |
Collapse
|
9
|
Ngo TD, Ryu BH, Ju H, Jang EJ, Kim KK, Kim TD. Crystallographic analysis and biochemical applications of a novel penicillin-binding protein/β-lactamase homologue from a metagenomic library. ACTA ACUST UNITED AC 2014; 70:2455-66. [PMID: 25195758 DOI: 10.1107/s1399004714015272] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/29/2014] [Indexed: 11/10/2022]
Abstract
Interest in penicillin-binding proteins and β-lactamases (the PBP-βL family) is increasing owing to their biological and clinical significance. In this study, the crystal structure of Est-Y29, a metagenomic homologue of the PBP-βL family, was determined at 1.7 Å resolution. In addition, complex structures of Est-Y29 with 4-nitrophenyl phosphate (4NP) and with diethyl phosphonate (DEP) at 2.0 Å resolution were also elucidated. Structural analyses showed that Est-Y29 is composed of two domains: a β-lactamase fold and an insertion domain. A deep hydrophobic patch between these domains defines a wide active site, and a nucleophilic serine (Ser58) residue is located in a groove defined primarily by hydrophobic residues between the two domains. In addition, three hydrophobic motifs, which make up the substrate-binding site, allow this enzyme to hydrolyze a wide variety of hydrophobic compounds, including fish and olive oils. Furthermore, cross-linked Est-Y29 aggregates (CLEA-Est-Y29) significantly increase the stability of the enzyme as well as its potential for extensive reuse in various deactivating conditions. The structural features of Est-Y29, together with biochemical and biophysical studies, could provide a molecular basis for understanding the properties and regulatory mechanisms of the PBP-βL family and their potential for use in industrial biocatalysts.
Collapse
Affiliation(s)
- Tri Duc Ngo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Bum Han Ryu
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-749, Republic of Korea
| | - Hansol Ju
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-749, Republic of Korea
| | - Eun Jin Jang
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-749, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - T Doohun Kim
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-749, Republic of Korea
| |
Collapse
|
10
|
Isolation and characterization of a metagenome-derived thermoalkaliphilic esterase with high stability over a broad pH range. Extremophiles 2013; 17:1013-21. [DOI: 10.1007/s00792-013-0583-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 08/26/2013] [Indexed: 12/12/2022]
|
11
|
Huang Y, Lu Z, Ma M, Liu N, Chen Y. Functional roles of Tryptophan residues in diketoreductase from Acinetobacter baylyi. BMB Rep 2012; 45:452-7. [DOI: 10.5483/bmbrep.2012.45.8.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Multifunctional enzyme thioesterase I/protease I/lysophospholipase L1 of Escherichia coli shows exquisite structure for its substrate preferences. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2012. [DOI: 10.1016/j.bcab.2012.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|