1
|
Hoose A, Vellacott R, Storch M, Freemont PS, Ryadnov MG. DNA synthesis technologies to close the gene writing gap. Nat Rev Chem 2023; 7:144-161. [PMID: 36714378 PMCID: PMC9869848 DOI: 10.1038/s41570-022-00456-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/24/2023]
Abstract
Synthetic DNA is of increasing demand across many sectors of research and commercial activities. Engineering biology, therapy, data storage and nanotechnology are set for rapid developments if DNA can be provided at scale and low cost. Stimulated by successes in next generation sequencing and gene editing technologies, DNA synthesis is already a burgeoning industry. However, the synthesis of >200 bp sequences remains unaffordable. To overcome these limitations and start writing DNA as effectively as it is read, alternative technologies have been developed including molecular assembly and cloning methods, template-independent enzymatic synthesis, microarray and rolling circle amplification techniques. Here, we review the progress in developing and commercializing these technologies, which are exemplified by innovations from leading companies. We discuss pros and cons of each technology, the need for oversight and regulatory policies for DNA synthesis as a whole and give an overview of DNA synthesis business models.
Collapse
Affiliation(s)
- Alex Hoose
- National Physical Laboratory, Teddington, Middlesex UK
| | | | - Marko Storch
- London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Paul S. Freemont
- London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
2
|
Fordham JM, Piacentini P, Santagostino M. Pd-Catalyzed Ring-Opening/Arylation/Cyclization of 2-Aminothiazole Derivatives Provides Modular Access to Isocytosine Analogues. J Org Chem 2022; 87:12688-12697. [PMID: 36075053 DOI: 10.1021/acs.joc.2c01200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a Pd-catalyzed ring-opening/arylation/cyclization reaction sequence between 2-aminothiazoles and aryl (pseudo)halides that provides modular access to isocytosine analogues. The scope of the reaction is broad with respect to both coupling partners and a robustness test demonstrated the functional group tolerance of the methodology. Visual kinetic analysis revealed that the product may inhibit catalyst turnover for some substrates.
Collapse
Affiliation(s)
- James M Fordham
- Chemical Development Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Paolo Piacentini
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Marco Santagostino
- Chemical Development Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| |
Collapse
|
3
|
Biswas S, Dey S, Nath P, Nath S. Cipher Constrained Encoding for constraint optimization in Extended Nucleic Acid Memory. Comput Biol Chem 2022; 99:107696. [DOI: 10.1016/j.compbiolchem.2022.107696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022]
|
4
|
Haratipour P, Minard C, Nakhjiri M, Negahbani A, Chamberlain BT, Osuna J, Upton TG, Zhao M, Kashemirov BA, McKenna CE. Completing the β,γ-CXY-dNTP Stereochemical Probe Toolkit: Synthetic Access to the dCTP Diastereomers and 31P and 19F NMR Correlations with Absolute Configurations. J Org Chem 2020; 85:14592-14609. [PMID: 33125847 DOI: 10.1021/acs.joc.0c01204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleoside 5'-triphosphate (dNTP) analogues in which the β,γ-oxygen is mimicked by a CXY group (β,γ-CXY-dNTPs) have provided information about DNA polymerase catalysis and fidelity. Definition of CXY stereochemistry is important to elucidate precise binding modes. We previously reported the (R)- and (S)-β,γ-CHX-dGTP diastereomers (X = F, Cl), prepared via P,C-dimorpholinamide CHCl (6a, 6b) and CHF (7a, 7b) bisphosphonates (BPs) equipped with an (R)-mandelic acid as a chiral auxiliary, with final deprotection using H2/Pd. This method also affords the β,γ-CHCl-dTTP (11a, 11b), β,γ-CHF (12a, 12b), and β,γ-CHCl (13a, 13b) dATP diastereomers as documented here, but the reductive deprotection step is not compatible with dCTP or the bromo substituent in β,γ-CHBr-dNTP analogues. To complete assembly of the toolkit, we describe an alternative synthetic strategy featuring ethylbenzylamine or phenylglycine-derived chiral BP synthons incorporating a photolabile protecting group. After acid-catalyzed removal of the (R)-(+)-α-ethylbenzylamine auxiliary, coupling with activated dCMP and photochemical deprotection, the individual diastereomers of β,γ-CHBr- (33a, 33b), β,γ-CHCl- (34a, 34b), β,γ-CHF-dCTP (35a, 35b) were obtained. The β,γ-CH(CH3)-dATPs (44a, 44b) were obtained using a methyl (R)-(-)-phenylglycinate auxiliary. 31P and 19F NMR Δδ values are correlated with CXY stereochemistry and pKa2-4 values for 13 CXY-bisphosphonic acids and imidodiphosphonic acid are tabulated.
Collapse
Affiliation(s)
- Pouya Haratipour
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Corinne Minard
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Maryam Nakhjiri
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Amirsoheil Negahbani
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Brian T Chamberlain
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Jorge Osuna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Thomas G Upton
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Michelle Zhao
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Boris A Kashemirov
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| |
Collapse
|
5
|
Chemical Modification of Aptamers for Increased Binding Affinity in Diagnostic Applications: Current Status and Future Prospects. Int J Mol Sci 2020; 21:ijms21124522. [PMID: 32630547 PMCID: PMC7350236 DOI: 10.3390/ijms21124522] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Aptamers are short single stranded DNA or RNA oligonucleotides that can recognize analytes with extraordinary target selectivity and affinity. Despite their promising properties and diagnostic potential, the number of commercial applications remains scarce. In order to endow them with novel recognition motifs and enhanced properties, chemical modification of aptamers has been pursued. This review focuses on chemical modifications, aimed at increasing the binding affinity for the aptamer's target either in a non-covalent or covalent fashion, hereby improving their application potential in a diagnostic context. An overview of current methodologies will be given, thereby distinguishing between pre- and post-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) modifications.
Collapse
|
6
|
Potapov V, Fu X, Dai N, Corrêa IR, Tanner NA, Ong JL. Base modifications affecting RNA polymerase and reverse transcriptase fidelity. Nucleic Acids Res 2019; 46:5753-5763. [PMID: 29750267 PMCID: PMC6009661 DOI: 10.1093/nar/gky341] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/18/2018] [Indexed: 01/28/2023] Open
Abstract
Ribonucleic acid (RNA) is capable of hosting a variety of chemically diverse modifications, in both naturally-occurring post-transcriptional modifications and artificial chemical modifications used to expand the functionality of RNA. However, few studies have addressed how base modifications affect RNA polymerase and reverse transcriptase activity and fidelity. Here, we describe the fidelity of RNA synthesis and reverse transcription of modified ribonucleotides using an assay based on Pacific Biosciences Single Molecule Real-Time sequencing. Several modified bases, including methylated (m6A, m5C and m5U), hydroxymethylated (hm5U) and isomeric bases (pseudouridine), were examined. By comparing each modified base to the equivalent unmodified RNA base, we can determine how the modification affected cumulative RNA polymerase and reverse transcriptase fidelity. 5-hydroxymethyluridine and N6-methyladenosine both increased the combined error rate of T7 RNA polymerase and reverse transcriptases, while pseudouridine specifically increased the error rate of RNA synthesis by T7 RNA polymerase. In addition, we examined the frequency, mutational spectrum and sequence context of reverse transcription errors on DNA templates from an analysis of second strand DNA synthesis.
Collapse
Affiliation(s)
| | - Xiaoqing Fu
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
- Dalian University of Technology, School of Life Science and Biotechnology, Dalian, Liaoning 116021, China
| | - Nan Dai
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
| | - Ivan R Corrêa
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
| | - Nathan A Tanner
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
| | - Jennifer L Ong
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
- To whom correspondence should be addressed. Tel: +1 978 380 7448; Fax: +1 978 921 1350;
| |
Collapse
|
7
|
Chawla M, Minenkov Y, Vu KB, Oliva R, Cavallo L. Structural and Energetic Impact of Non-natural 7-Deaza-8-azaguanine, 7-Deaza-8-azaisoguanine, and Their 7-Substituted Derivatives on Hydrogen-Bond Pairing with Cytosine and Isocytosine. Chembiochem 2019; 20:2262-2270. [PMID: 30983115 DOI: 10.1002/cbic.201900245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Indexed: 12/12/2022]
Abstract
The impact of 7-deaza-8-azaguanine (DAG) and 7-deaza-8-azaisoguanine (DAiG) modifications on the geometry and stability of the G:C Watson-Crick (cWW) base pair and the G:iC and iG:C reverse Watson-Crick (tWW) base pairs has been characterized theoretically. In addition, the effect on the same base pairs of seven C7-substituted DAG and DAiG derivatives, some of which have been previously experimentally characterized, has been investigated. Calculations indicate that all of these modifications have a negligible impact on the geometry of the above base pairs, and that modification of the heterocycle skeleton has a small impact on the base-pair interaction energies. Instead, base-pair interaction energies are dependent on the nature of the C7 substituent. For the 7-substituted DAG-C cWW systems, a linear correlation between the base-pair interaction energy and the Hammett constant of the 7-substituent is found, with higher interaction energies corresponding to more electron-withdrawing substituents. Therefore, the explored modifications are expected to be accommodated in both parallel and antiparallel nucleic acid duplexes without perturbing their geometry, while the strength of a base pair (and duplex) featuring a DAG modification can, in principle, be tuned by incorporating different substituents at the C7 position.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900, Saudi Arabia
| | - Yury Minenkov
- Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region, 141700, Russia
| | - Khanh B Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ho Chi Minh City, Vietnam
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, 80143, Naples, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Wang Y, Kim E, Lin Y, Kim N, Kit-Anan W, Gopal S, Agarwal S, Howes PD, Stevens MM. Rolling Circle Transcription-Amplified Hierarchically Structured Organic-Inorganic Hybrid RNA Flowers for Enzyme Immobilization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22932-22940. [PMID: 31252470 PMCID: PMC6613047 DOI: 10.1021/acsami.9b04663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/03/2019] [Indexed: 05/07/2023]
Abstract
Programmable nucleic acids have emerged as powerful building blocks for the bottom-up fabrication of two- or three-dimensional nano- and microsized constructs. Here we describe the construction of organic-inorganic hybrid RNA flowers (hRNFs) via rolling circle transcription (RCT), an enzyme-catalyzed nucleic acid amplification reaction. These hRNFs are highly adaptive structures with controlled sizes, specific nucleic acid sequences, and a highly porous nature. We demonstrated that hRNFs are applicable as potential biological platforms, where the hRNF scaffold can be engineered for versatile surface functionalization and the inorganic component (magnesium ions) can serve as an enzyme cofactor. For surface functionalization, we proposed robust and straightforward approaches including in situ synthesis of functional hRNFs and postfunctionalization of hRNFs that enable facile conjugation with various biomolecules and nanomaterials (i.e., proteins, enzymes, organic dyes, inorganic nanoparticles) using selective chemistries (i.e., avidin-biotin interaction, copper-free click reaction). In particular, we showed that hRNFs can serve as soft scaffolds for β-galactosidase immobilization and greatly enhance enzymatic activity and stability. Therefore, the proposed concepts and methodologies are not only fundamentally interesting when designing RNA scaffolds or RNA bionanomaterials assembled with enzymes but also have significant implications on their future utilization in biomedical applications ranging from enzyme cascades to biosensing and drug delivery.
Collapse
Affiliation(s)
| | | | - Yiyang Lin
- Department of Materials, Department of Bioengineering,
and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Nayoung Kim
- Department of Materials, Department of Bioengineering,
and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Worrapong Kit-Anan
- Department of Materials, Department of Bioengineering,
and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sahana Gopal
- Department of Materials, Department of Bioengineering,
and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Shweta Agarwal
- Department of Materials, Department of Bioengineering,
and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Molly M. Stevens
- Department of Materials, Department of Bioengineering,
and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Vichier-Guerre S, Dugué L, Pochet S. 2'-Deoxyribonucleoside 5'-triphosphates bearing 4-phenyl and 4-pyrimidinyl imidazoles as DNA polymerase substrates. Org Biomol Chem 2019; 17:290-301. [PMID: 30543241 DOI: 10.1039/c8ob02464b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We developed a versatile access to a series of 4-substituted imidazole 2'-deoxynucleoside triphosphate bearing functionalized phenyl or pyrimidinyl rings. 4-Iodo-1H-imidazole was enzymatically converted into the corresponding 2'-deoxynucleoside, which was then chemically derived into its 5'-triphosphate, followed by 4-arylation via Suzuki-Miyaura coupling using (hetero)arylboronic acids. Both KF (exo-) and Deep Vent (exo-) DNA polymerases incorporated these modified nucleotides in primer-extension assays, adenine being the preferred pairing partner in the template. The 4-(3-aminophenyl)imidazole derivative (3APh) was the most efficiently inserted opposite A by KF (exo-) with only a 37-fold lower efficiency (Vmax/KM) than that of the correct dTTP. No further extension occurred after the incorporation of a single aryl-imidazole nucleotide. Interestingly, the aryl-imidazole dNTPs were found to undergo successive incorporation by calf thymus terminal deoxynucleotidyl transferase with different tailing efficiencies among this series and with a marked preference for 2APyr polymerization.
Collapse
Affiliation(s)
- Sophie Vichier-Guerre
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS, UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
10
|
Mass-spectrometry analysis of modifications at DNA termini induced by DNA polymerases. Sci Rep 2017; 7:6674. [PMID: 28751641 PMCID: PMC5532294 DOI: 10.1038/s41598-017-06136-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/01/2017] [Indexed: 12/27/2022] Open
Abstract
Non-natural nucleotide substrates are widely used in the enzymatic synthesis of modified DNA. The terminal activity of polymerases in the presence of modified nucleotides is an important, but poorly characterized, aspect of enzymatic DNA synthesis. Here, we studied different types of polymerase activity at sequence ends using extendable and non-extendable synthetic models in the presence of the Cy5-dUTP analog Y. In primer extension reactions with selected exonuclease-deficient polymerases, nucleotide Y appeared to be a preferential substrate for non-templated 3'-tailing, as determined by MALDI mass-spectrometry and gel-electrophoresis. This result was further confirmed by the 3'-tailing of a non-extendable hairpin oligonucleotide model. Additionally, DNA polymerases induce an exchange of the 3' terminal thymidine for a non-natural nucleotide via pyrophosphorolysis in the presence of inorganic pyrophosphate. In primer extension reactions, the proofreading polymerases Vent, Pfu, and Phusion did not support the synthesis of Y-modified primer strand. Nevertheless, Pfu and Phusion polymerases were shown to initiate terminal nucleotide exchange at the template. Unlike non-proofreading polymerases, these two enzymes recruit 3'-5' exonuclease functions to cleave the 3' terminal thymidine in the absence of pyrophosphate.
Collapse
|
11
|
Capua M, Perrone S, Bona F, Salomone A, Troisi L. A Direct Synthesis of Isocytosine Analogues by Carbonylative Coupling of α-Chloro Ketones and Guanidines. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Martina Capua
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; University of Salento; 73100 Lecce Prov.le Lecce-Monteroni Italy
| | - Serena Perrone
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; University of Salento; 73100 Lecce Prov.le Lecce-Monteroni Italy
| | - Fabio Bona
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; University of Salento; 73100 Lecce Prov.le Lecce-Monteroni Italy
| | - Antonio Salomone
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; University of Salento; 73100 Lecce Prov.le Lecce-Monteroni Italy
| | - Luigino Troisi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; University of Salento; 73100 Lecce Prov.le Lecce-Monteroni Italy
| |
Collapse
|
12
|
Abstract
Aptamers are nucleic acid-based scaffolds that can bind with high affinity to a variety of biological targets. Aptamers are identified from large DNA or RNA libraries through a process of directed molecular evolution (SELEX). Chemical modification of nucleic acids considerably increases the functional and structural diversity of aptamer libraries and substantially increases the affinity of the aptamers. Additionally, modified aptamers exhibit much greater resistance to biodegradation. The evolutionary selection of modified aptamers is conditioned by the possibility of the enzymatic synthesis and replication of non-natural nucleic acids. Wild-type or mutant polymerases and their non-natural nucleotide substrates that can support SELEX are highlighted in the present review. A focus is made on the efforts to find the most suitable type of nucleotide modifications and the engineering of new polymerases. Post-SELEX modification as a complementary method will be briefly considered as well.
Collapse
Affiliation(s)
- Sergey A Lapa
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Edward N Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
C(α) torsion angles as a flexible criterion to extract secrets from a molecular dynamics simulation. J Mol Model 2014; 20:2196. [PMID: 24728650 DOI: 10.1007/s00894-014-2196-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/02/2014] [Indexed: 02/02/2023]
Abstract
Given the increasing complexity of simulated molecular systems, and the fact that simulation times have now reached milliseconds to seconds, immense amounts of data (in the gigabyte to terabyte range) are produced in current molecular dynamics simulations. Manual analysis of these data is a very time-consuming task, and important events that lead from one intermediate structure to another can become occluded in the noise resulting from random thermal fluctuations. To overcome these problems and facilitate a semi-automated data analysis, we introduce in this work a measure based on C(α) torsion angles: torsion angles formed by four consecutive C(α) atoms. This measure describes changes in the backbones of large systems on a residual length scale (i.e., a small number of residues at a time). Cluster analysis of individual C(α) torsion angles and its fuzzification led to continuous time patches representing (meta)stable conformations and to the identification of events acting as transitions between these conformations. The importance of a change in torsion angle to structural integrity is assessed by comparing this change to the average fluctuations in the same torsion angle over the complete simulation. Using this novel measure in combination with other measures such as the root mean square deviation (RMSD) and time series of distance measures, we performed an in-depth analysis of a simulation of the open form of DNA polymerase I. The times at which major conformational changes occur and the most important parts of the molecule and their interrelations were pinpointed in this analysis. The simultaneous determination of the time points and localizations of major events is a significant advantage of the new bottom-up approach presented here, as compared to many other (top-down) approaches in which only the similarity of the complete structure is analyzed.
Collapse
|
14
|
Berdis AJ. DNA Polymerases That Perform Template-Independent DNA Synthesis. NUCLEIC ACID POLYMERASES 2014. [DOI: 10.1007/978-3-642-39796-7_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Nakano SI, Uotani Y, Sato Y, Oka H, Fujii M, Sugimoto N. Conformational changes of the phenyl and naphthyl isocyanate-DNA adducts during DNA replication and by minor groove binding molecules. Nucleic Acids Res 2013; 41:8581-90. [PMID: 23873956 PMCID: PMC3794578 DOI: 10.1093/nar/gkt608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
DNA lesions produced by aromatic isocyanates have an extra bulky group on the nucleotide bases, with the capability of forming stacking interaction within a DNA helix. In this work, we investigated the conformation of the 2′-deoxyadenosine and 2′-deoxycytidine derivatives tethering a phenyl or naphthyl group, introduced in a DNA duplex. The chemical modification experiments using KMnO4 and 1-cyclohexyl-3 -(2-morpholinoethyl) carbodiimide metho-p-toluenesulfonate have shown that the 2′-deoxycytidine lesions form the base pair with guanine while the 2′-deoxyadenosine lesions have less ability of forming the base pair with thymine in solution. Nevertheless, the kinetic analysis shows that these DNA lesions are compatible with DNA ligase and DNA polymerase reactions, as much as natural DNA bases. We suggest that the adduct lesions have a capability of adopting dual conformations, depending on the difference in their interaction energies between stacking of the attached aromatic group and base pairing through hydrogen bonds. It is also presented that the attached aromatic groups change their orientation by interacting with the minor groove binding netropsin, distamycin and synthetic polyamide. The nucleotide derivatives would be useful for enhancing the phenotypic diversity of DNA molecules and for exploring new non-natural nucleotides.
Collapse
Affiliation(s)
- Shu-ichi Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan, Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan, Department of Chemistry, Faculty of Science and Engineering, Konan University, 8-9-1, Okamoto, Higashinada-ku, Kobe, 658-8501, Japan, Molecular Engineering Institute (MEI), Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka, 820-8555, Japan and Department of Environmental and Biological Chemistry, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka, 820-8555, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Gahlon HL, Schweizer WB, Sturla SJ. Tolerance of base pair size and shape in postlesion DNA synthesis. J Am Chem Soc 2013; 135:6384-7. [PMID: 23560524 DOI: 10.1021/ja311434s] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The influence of base pair size and shape on the fidelity of DNA polymerase-mediated extension past lesion-containing mispairs was examined. Primer extension analysis was performed with synthetic nucleosides paired opposite the pro-mutagenic DNA lesion O(6)-benzylguanine (O(6)-BnG). These data indicate that the error-prone DNA polymerase IV (Dpo4) inefficiently extended past the larger Peri:O(6)-BnG base pair, and in contrast, error-free extension was observed for the smaller BIM:O(6)-BnG base pair. Steady-state kinetic analysis revealed that Dpo4 catalytic efficiency was strongly influenced by the primer:template base pair. Compared to the C:G pair, a 1.9- and 79,000-fold reduction in Dpo4 efficiency was observed for terminal C:O(6)-BnG and BIM:G base pairs respectively. These results demonstrate the impact of geometrical size and shape on polymerase-mediated mispair extension.
Collapse
Affiliation(s)
- Hailey L Gahlon
- Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | | | | |
Collapse
|
17
|
Hanami T, Oyama R, Itoh M, Yasunishi-Koyama A, Hayashizaki Y. New pyrosequencing method to analyze the function of the Klenow fragment (EXO-) for unnatural nucleic acids: pyrophosphorolysis and incorporation efficiency. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2013; 31:608-15. [PMID: 22908951 DOI: 10.1080/15257770.2012.714516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The incorporation of deoxynucleoside triphosphates (dNTPs) catalyzed by polymerases is conventionally examined using gel electrophoresis autoradiography. Here, we studied an alternative method, pyrosequencing, to verify the incorporation of dNTPs containing unnatural nucleotides by polymerases. We found that the pyrosequencing method more rapidly and easily confirmed the incorporation of dNTPs than the conventional method, especially in the presence of low-efficiency dNTP polymerases. Furthermore, the method can detect the pyrophosphorolysis reaction just before the position of the unnatural nucleic acid, and the efficiency of incorporation just after it.
Collapse
Affiliation(s)
- Takeshi Hanami
- Omics Science Center, RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Japan
| | | | | | | | | |
Collapse
|
18
|
Egli M. The steric hypothesis for DNA replication and fluorine hydrogen bonding revisited in light of structural data. Acc Chem Res 2012; 45:1237-46. [PMID: 22524491 DOI: 10.1021/ar200303k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In DNA, bases pair in a molecular interaction that is both highly predictable and exquisitely specific. Therefore researchers have generally believed that the insertion of the matching nucleotide opposite a template base by DNA polymerases (pols) required Watson-Crick (W-C) hydrogen bond formation. However pioneering work by Kool and co-workers using hydrophobic base analogs such as the thymine (T) isostere 2,4-difluorotoluene (F) showed that shape rather than H-bonding served as the primary source of specificity in DNA replication by certain pols. This steric hypothesis for DNA replication has gained popularity, perhaps discouraging further experimental studies to address potential limitations of this new idea. The idea that shape trumps H-bonding in terms of pol selectivity largely hinges on the belief that fluorine is a poor H-bond acceptor. However, the shape complementarity model was embraced in the absence of any detailed structural data for match (F:A) and mismatch pairs (F:G, F:C, F:T) in DNA duplexes or at active sites of pols. Although the F and T nucleosides are roughly isosteric, it is unclear whether F:A and T:A pairs exhibit similar geometries. If the F:A pair is devoid of H-bonding, it will be notably wider than a T:A pair. Because shape and size and H-bonding are intimately related, it may not be possible to separate these two properties. Thus the geometries of an isolated F:A pair in water may differ considerably from an F:A pair embedded in a stretch of duplex DNA, at the tight active site of an A-family replicative pol, or within the spacious active site of a Y-family translesion pol. The shape complementarity model may have more significance for pol accuracy than efficiency: this model appears to be most relevant for replicative pols that use specific residues to probe the identity of the nascent base pair from the minor groove side. However, researchers have not fully considered the importance of such interactions that include H-bonds compared with W-C H-bonds in terms of pol fidelity and the shape complementarity model. This Account revisits the steric hypothesis for DNA replication in light of recent structural data and discusses the role of fluorine as an H-bond acceptor. Over the last 5 years, crystal structures have emerged for nucleic acid duplexes with F paired opposite to natural bases or located at the active sites of DNA pols. These data permit a more nuanced understanding of the role of shape in DNA replication and the capacity of fluorine to form H-bonds. These studies and additional research involving RNA or other fluorine-containing nucleoside analogs within duplexes indicate that fluorine engages in H-bonding in many cases. Although T and F are isosteric at the nucleoside level, replacement of a natural base by F in pairs often changes their shapes and sizes, and dF in DNA behaves differently from rF in RNA. Similarly, the pairing geometries observed for F and T opposite dATP, dGTP, dTTP, or dCTP and their H-bonding patterns at the active site of a replicative pol differ considerably.
Collapse
Affiliation(s)
- Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
19
|
Walsh JM, Beuning PJ. Synthetic nucleotides as probes of DNA polymerase specificity. J Nucleic Acids 2012; 2012:530963. [PMID: 22720133 PMCID: PMC3377560 DOI: 10.1155/2012/530963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/21/2012] [Indexed: 12/17/2022] Open
Abstract
The genetic code is continuously expanding with new nucleobases designed to suit specific research needs. These synthetic nucleotides are used to study DNA polymerase dynamics and specificity and may even inhibit DNA polymerase activity. The availability of an increasing chemical diversity of nucleotides allows questions of utilization by different DNA polymerases to be addressed. Much of the work in this area deals with the A family DNA polymerases, for example, Escherichia coli DNA polymerase I, which are DNA polymerases involved in replication and whose fidelity is relatively high, but more recent work includes other families of polymerases, including the Y family, whose members are known to be error prone. This paper focuses on the ability of DNA polymerases to utilize nonnatural nucleotides in DNA templates or as the incoming nucleoside triphosphates. Beyond the utility of nonnatural nucleotides as probes of DNA polymerase specificity, such entities can also provide insight into the functions of DNA polymerases when encountering DNA that is damaged by natural agents. Thus, synthetic nucleotides provide insight into how polymerases deal with nonnatural nucleotides as well as into the mutagenic potential of nonnatural nucleotides.
Collapse
Affiliation(s)
- Jason M. Walsh
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, MA 02115, USA
| | - Penny J. Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, MA 02115, USA
- Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
20
|
Rutledge LR, Wetmore SD. A computational proposal for the experimentally observed discriminatory behavior of hypoxanthine, a weak universal nucleobase. Phys Chem Chem Phys 2012; 14:2743-53. [PMID: 22270716 DOI: 10.1039/c2cp23600a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A computational model composed of six nucleobases was used to investigate why hypoxanthine does not yield duplexes of equal stability when paired opposite each of the natural DNA nucleobases. The magnitudes of all nearest-neighbor interactions in a DNA helix were calculated, including hydrogen-bonding, intra- and interstrand stacking interactions, as well as 1-3 intrastrand stacking interactions. Although the stacking interactions in DNA relevant arrangements are significant and account for at least one third of the total stabilization energy in our nucleobase complexes, the trends in the magnitude of the stacking interactions cannot explain the relative experimental melting temperatures previously reported in the literature. Furthermore, although the total hydrogen-bonding interactions explain why hypoxanthine preferentially pairs with cytosine, the experimental trend for the remaining nucleobases (A, T, G) is not explained. In fact, the calculated pairing preference of hypoxanthine matches that determined experimentally only when the sum of all types of nearest-neighbor interactions is considered. This finding highlights a strong correlation between the relative magnitude of the total nucleobase-nucleobase interactions and measured melting temperatures for DNA strands containing hypoxanthine despite the potential role of other factors (including hydration, temperature, sugar-phosphate backbone). By considering a large range of sequence combinations, we reveal that the binding preference of hypoxanthine is strongly dependent on the nucleobase sequence, which may explain the varied ability of hypoxanthine to universally bind to the natural bases. As a result, we propose that future work should closely examine the interplay between the dominant nucleobase-nucleobase interactions and the overall strand stability to fully understand how sequence context affects the universal binding properties of modified bases and to aid the design of new molecules with ambiguous pairing properties.
Collapse
Affiliation(s)
- Lesley R Rutledge
- Department of Chemistry & Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
| | | |
Collapse
|
21
|
Kuchta RD. Nucleotide Analogues as Probes for DNA and RNA Polymerases. CURRENT PROTOCOLS IN CHEMICAL BIOLOGY 2010; 2:111-124. [PMID: 21822500 PMCID: PMC3149870 DOI: 10.1002/9780470559277.ch090203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nucleotide analogues represent a major class of anti-cancer and anti-viral drugs, and provide an extremely powerful tool for dissecting the mechanisms of DNA and RNA polymerases. While the basic assays themselves are relatively straight-forward, a key issue is to appropriately design the studies to answer the mechanistic question of interest. This article addresses the major issues involved in designing these studies, and some of the potential difficulties that arise in interpreting the data. Examples are given both of the type of analogues typically used, the experimental approaches with different polymerases, and issues with data interpretation.
Collapse
Affiliation(s)
- Robert D Kuchta
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| |
Collapse
|