1
|
Li Y, Gong Y, Zhou Y, Xiao Y, Huang W, Zhou Q, Tu Y, Zhao Y, Zhang S, Dai L, Sun Q. STK19 is a DNA/RNA-binding protein critical for DNA damage repair and cell proliferation. J Cell Biol 2024; 223:e202301090. [PMID: 38252411 PMCID: PMC10806857 DOI: 10.1083/jcb.202301090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/15/2023] [Accepted: 11/10/2023] [Indexed: 01/23/2024] Open
Abstract
STK19 was originally identified as a manganese-dependent serine/threonine-specific protein kinase, but its function has been highly debated. Here, the crystal structure of STK19 revealed that it does not contain a kinase domain, but three intimately packed winged helix (WH) domains. The third WH domain mediated homodimerization and double-stranded DNA binding, both being important for its nuclear localization. STK19 participated in the nucleotide excision repair (NER) and mismatch repair (MMR) pathways by recruiting damage repair factors such as RPA2 and PCNA. STK19 also bound double-stranded RNA through the DNA-binding interface and regulated the expression levels of many mRNAs. Furthermore, STK19 knockdown cells exhibited very slow cell proliferation, which cannot be rescued by dimerization or DNA-binding mutants. Therefore, this work concludes that STK19 is highly unlikely to be a kinase but a DNA/RNA-binding protein critical for DNA damage repair (DDR) and cell proliferation. To prevent further confusions, we renamed this protein as TWH19 (Tandem Winged Helix protein formerly known as STK19).
Collapse
Affiliation(s)
- Yuling Li
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yue Zhou
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuzhou Xiao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenxin Huang
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qiao Zhou
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyu Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
2
|
Karati D, Saha A, Roy S, Mukherjee S. PIM Kinase Inhibitors as Novel Promising Therapeutic Scaffolds in Cancer Therapy. Curr Top Med Chem 2024; 24:2489-2508. [PMID: 39297470 DOI: 10.2174/0115680266321659240906114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 11/21/2024]
Abstract
Cancer involves the uncontrolled, abnormal growth of cells and affects other tissues. Kinase has an impact on proliferating the cells and causing cancer. For the purpose of treating cancer, PIM kinase is a potential target. The pro-viral Integration site for moloney murine leukaemia virus (PIM) kinases is responsible for the tumorigenesis, by phosphorylating the proteins that control the cell cycle and cell proliferation. PIM-1, PIM-2, and PIM-3 are the three distinct isoforms of PIM kinases. The JAK/STAT pathway is essential for controlling how PIM genes are expressed. PIM kinase is also linked withPI3K/AKT/mTOR pathway in various types of cancers. The overexpression of PIM kinase will cause cancer. Currently, there are significant efforts being made in medication design and development to target its inhibition. A few small chemical inhibitors (E.g., SGI-1776, AZD1208, LGH447) that specifically target the PIM proteins' adenosine triphosphate (ATP)-binding domain have been identified. PIM kinase antagonists have a remarkable effect on different types of cancer. Despite conducting clinical trials on SGI-1776, the first PIM inhibitory agent, was prematurely withdrawn, making it unable to generate concept evidence. On the other hand, in recent years, it has aided in hastening the identification of multiple new PIM inhibitors. Cyanopyridines and Pyrazolo[1,5-a]pyrimidinecan act as potent PIM kinase inhibitors for cancer therapy. We explore the involvement of oncogenic transcription factor c-Mycandmi-RNA in relation to PIM kinase. In this article, we highlight the oncogenic effects, and structural insights into PIM kinase inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata 700091, West Bengal, India
| | - Ankur Saha
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata 700091, West Bengal, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata 700053, West Bengal, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata 700053, West Bengal, India
| |
Collapse
|
3
|
Shao Y, Li T, Jiang M, Xu J, Huang Y, Li X, Zheng R, Liu L. A very rare case report of glycogen storage disease type IXc with novel PHKG2 variants. BMC Pediatr 2022; 22:267. [PMID: 35549678 PMCID: PMC9097106 DOI: 10.1186/s12887-021-03055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/05/2021] [Indexed: 12/02/2022] Open
Abstract
Background Pathogenic mutations in the PHKG2 are associated with a very rare disease—glycogen storage disease IXc (GSD-IXc)—and are characterized by severe liver disease. Case presentation Here, we report a patient with jaundice, hypoglycaemia, growth retardation, progressive increase in liver transaminase and prominent hepatomegaly from the neonatal period. Genetic testing revealed two novel, previously unreported PHKG2 mutations (F233S and R320DfsX5). Functional experiments indicated that both F223S and R320DfsX5 lead to a decrease in key phosphorylase b kinase enzyme activity. With raw cornstarch therapy, hypoglycaemia and lactic acidosis were ameliorated and serum aminotransferases decreased. Conclusion These findings expand the gene spectrum and contribute to the interpretation of clinical presentations of these two novel PHKG2 mutations. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-03055-7.
Collapse
Affiliation(s)
- Yongxian Shao
- Department of Pediatric Endocrinology and Genetic Metabolism, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Taolin Li
- Department of Pediatric Endocrinology and Genetic Metabolism, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Minyan Jiang
- Department of Pediatric Endocrinology and Genetic Metabolism, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jianan Xu
- Department of Pediatric Endocrinology and Genetic Metabolism, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yonglan Huang
- Department of Pediatric Endocrinology and Genetic Metabolism, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiuzhen Li
- Department of Pediatric Endocrinology and Genetic Metabolism, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ruidan Zheng
- Department of Pediatric Endocrinology and Genetic Metabolism, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Liu
- Department of Pediatric Endocrinology and Genetic Metabolism, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Navarro-Carrasco E, Lazo PA. VRK1 Depletion Facilitates the Synthetic Lethality of Temozolomide and Olaparib in Glioblastoma Cells. Front Cell Dev Biol 2021; 9:683038. [PMID: 34195200 PMCID: PMC8237761 DOI: 10.3389/fcell.2021.683038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Background Glioblastomas treated with temozolomide frequently develop resistance to pharmacological treatments. Therefore, there is a need to find alternative drug targets to reduce treatment resistance based on tumor dependencies. A possibility is to target simultaneously two proteins from different DNA-damage repair pathways to facilitate tumor cell death. Therefore, we tested whether targeting the human chromatin kinase VRK1 by RNA interference can identify this protein as a novel molecular target to reduce the dependence on temozolomide in combination with olaparib, based on synthetic lethality. Materials and Methods Depletion of VRK1, an enzyme that regulates chromatin dynamic reorganization and facilitates resistance to DNA damage, was performed in glioblastoma cells treated with temozolomide, an alkylating agent used for GBM treatment; and olaparib, an inhibitor of PARP-1, used as sensitizer. Two genetically different human glioblastoma cell lines, LN-18 and LN-229, were used for these experiments. The effect on the DNA-damage response was followed by determination of sequential steps in this process: H4K16ac, γH2AX, H4K20me2, and 53BP1. Results The combination of temozolomide and olaparib increased DNA damage detected by labeling free DNA ends, and chromatin relaxation detected by H4K16ac. The combination of both drugs, at lower doses, resulted in an increase in the DNA damage response detected by the formation of γH2AX and 53BP1 foci. VRK1 depletion did not prevent the generation of DNA damage in TUNEL assays, but significantly impaired the DNA damage response induced by temozolomide and olaparib, and mediated by γH2AX, H4K20me2, and 53BP1. The combination of these drugs in VRK1 depleted cells resulted in an increase of glioblastoma cell death detected by annexin V and the processing of PARP-1 and caspase-3. Conclusion Depletion of the chromatin kinase VRK1 promotes tumor cell death at lower doses of a combination of temozolomide and olaparib treatments, and can be a novel alternative target for therapies based on synthetic lethality.
Collapse
Affiliation(s)
- Elena Navarro-Carrasco
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
5
|
Gaji RY, Sharp AK, Brown AM. Protein kinases in Toxoplasma gondii. Int J Parasitol 2021; 51:415-429. [PMID: 33581139 PMCID: PMC11065138 DOI: 10.1016/j.ijpara.2020.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023]
Abstract
Toxoplasma gondii is an obligatory intracellular pathogen that causes life threatening illness in immunodeficient individuals, miscarriage in pregnant woman, and blindness in newborn children. Similar to any other eukaryotic cell, protein kinases play critical and essential roles in the Toxoplasma life cycle. Accordingly, many studies have focused on identifying and defining the mechanism of function of these signalling proteins with a long-term goal to develop anti-Toxoplasma therapeutics. In this review, we briefly discuss classification and key components of the catalytic domain which are critical for functioning of kinases, with a focus on domains, families, and groups of kinases within Toxoplasma. More importantly, this article provides a comprehensive, current overview of research on kinase groups in Toxoplasma including the established eukaryotic AGC, CAMK, CK1, CMGC, STE, TKL families and the apicomplexan-specific FIKK, ROPK and WNG family of kinases. This work provides an overview and discusses current knowledge on Toxoplasma kinases including their localization, function, signalling network and role in acute and chronic pathogenesis, with a view towards the future in probing kinases as viable drug targets.
Collapse
Affiliation(s)
- Rajshekhar Y Gaji
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech University, Blacksburg, VA, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Amanda K Sharp
- Interdisciplinary Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Anne M Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; University Libraries, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
6
|
Knox J, Joly N, Linossi EM, Carmona-Negrón JA, Jura N, Pintard L, Zuercher W, Roy PJ. A survey of the kinome pharmacopeia reveals multiple scaffolds and targets for the development of novel anthelmintics. Sci Rep 2021; 11:9161. [PMID: 33911106 PMCID: PMC8080662 DOI: 10.1038/s41598-021-88150-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/08/2021] [Indexed: 11/10/2022] Open
Abstract
Over one billion people are currently infected with a parasitic nematode. Symptoms can include anemia, malnutrition, developmental delay, and in severe cases, death. Resistance is emerging to the anthelmintics currently used to treat nematode infection, prompting the need to develop new anthelmintics. Towards this end, we identified a set of kinases that may be targeted in a nematode-selective manner. We first screened 2040 inhibitors of vertebrate kinases for those that impair the model nematode Caenorhabditis elegans. By determining whether the terminal phenotype induced by each kinase inhibitor matched that of the predicted target mutant in C. elegans, we identified 17 druggable nematode kinase targets. Of these, we found that nematode EGFR, MEK1, and PLK1 kinases have diverged from vertebrates within their drug-binding pocket. For each of these targets, we identified small molecule scaffolds that may be further modified to develop nematode-selective inhibitors. Nematode EGFR, MEK1, and PLK1 therefore represent key targets for the development of new anthelmintic medicines.
Collapse
Affiliation(s)
- Jessica Knox
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Nicolas Joly
- Programme Équipe Labellisée Ligue Contre Le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - Edmond M Linossi
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - José A Carmona-Negrón
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Lionel Pintard
- Programme Équipe Labellisée Ligue Contre Le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - William Zuercher
- School of Pharmacy, UNC Eshelman, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Peter J Roy
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
7
|
Boczek EE, Luo Q, Dehling M, Röpke M, Mader SL, Seidl A, Kaila VRI, Buchner J. Autophosphorylation activates c-Src kinase through global structural rearrangements. J Biol Chem 2019; 294:13186-13197. [PMID: 31331936 DOI: 10.1074/jbc.ra119.008199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/15/2019] [Indexed: 11/06/2022] Open
Abstract
The prototypical kinase c-Src plays an important role in numerous signal transduction pathways, where its activity is tightly regulated by two phosphorylation events. Phosphorylation at a specific tyrosine by C-terminal Src kinase inactivates c-Src, whereas autophosphorylation is essential for the c-Src activation process. However, the structural consequences of the autophosphorylation process still remain elusive. Here we investigate how the structural landscape of c-Src is shaped by nucleotide binding and phosphorylation of Tyr416 using biochemical experiments, hydrogen/deuterium exchange MS, and atomistic molecular simulations. We show that the initial steps of kinase activation involve large rearrangements in domain orientation. The kinase domain is highly dynamic and has strong cross-talk with the regulatory domains, which are displaced by autophosphorylation. Although the regulatory domains become more flexible and detach from the kinase domain because of autophosphorylation, the kinase domain gains rigidity, leading to stabilization of the ATP binding site and a 4-fold increase in enzymatic activity. Our combined results provide a molecular framework of the central steps in c-Src kinase regulation process with possible implications for understanding general kinase activation mechanisms.
Collapse
Affiliation(s)
- Edgar E Boczek
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, 85748 Garching, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Qi Luo
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, 85748 Garching, Germany; Soft Matter Research Center and Department of Chemistry, Zhejiang University, Zhejiang Sheng 310027, China
| | - Marco Dehling
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, 85748 Garching, Germany; Novartis Biologics Technical Development and Manufacturing, Sandoz Biopharmaceuticals, Hexal AG, 82041 Oberhaching, Germany
| | - Michael Röpke
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, 85748 Garching, Germany
| | - Sophie L Mader
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, 85748 Garching, Germany
| | - Andreas Seidl
- Novartis Biologics Technical Development and Manufacturing, Sandoz Biopharmaceuticals, Hexal AG, 82041 Oberhaching, Germany
| | - Ville R I Kaila
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, 85748 Garching, Germany.
| | - Johannes Buchner
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, 85748 Garching, Germany.
| |
Collapse
|
8
|
Sturm N, Tinivella A, Rastelli G. Exploration and Comparison of the Geometrical and Physicochemical Properties of an αC Allosteric Pocket in the Structural Kinome. J Chem Inf Model 2018; 58:1094-1103. [DOI: 10.1021/acs.jcim.7b00735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Noé Sturm
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Annachiara Tinivella
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
9
|
Walter NM, Wentsch HK, Bührmann M, Bauer SM, Döring E, Mayer-Wrangowski S, Sievers-Engler A, Willemsen-Seegers N, Zaman G, Buijsman R, Lämmerhofer M, Rauh D, Laufer SA. Design, Synthesis, and Biological Evaluation of Novel Type I 1/ 2 p38α MAP Kinase Inhibitors with Excellent Selectivity, High Potency, and Prolonged Target Residence Time by Interfering with the R-Spine. J Med Chem 2017; 60:8027-8054. [PMID: 28834431 DOI: 10.1021/acs.jmedchem.7b00745] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We recently reported 1a (skepinone-L) as a type I p38α MAP kinase inhibitor with high potency and excellent selectivity in vitro and in vivo. However, as a type I inhibitor, it is entirely ATP-competitive and shows just a moderate residence time. Thus, the scope was to develop a new class of advanced compounds maintaining the structural binding features of skepinone-L scaffold like inducing a glycine flip at the hinge region and occupying both hydrophobic regions I and II. Extending this scaffold with suitable residues resulted in an interference with the kinase's R-Spine. By synthesizing 69 compounds, we could significantly prolong the target residence time with one example to 3663 s, along with an excellent selectivity score of 0.006 and an outstanding potency of 1.0 nM. This new binding mode was validated by cocrystallization, showing all binding interactions typifying type I1/2 binding. Moreover, microsomal studies showed convenient metabolic stability of the most potent, herein reported representatives.
Collapse
Affiliation(s)
- Niklas M Walter
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Heike K Wentsch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Mike Bührmann
- Faculty of Chemistry and Chemical Biology, Technische Universitaet Dortmund , Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Silke M Bauer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Eva Döring
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Svenja Mayer-Wrangowski
- Faculty of Chemistry and Chemical Biology, Technische Universitaet Dortmund , Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Adrian Sievers-Engler
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Nicole Willemsen-Seegers
- Netherlands Translational Research Center B.V. (NTRC) , Pivot Park, RE1210, Molenstraat 110, 5342 CC Oss, The Netherlands
| | - Guido Zaman
- Netherlands Translational Research Center B.V. (NTRC) , Pivot Park, RE1210, Molenstraat 110, 5342 CC Oss, The Netherlands
| | - Rogier Buijsman
- Netherlands Translational Research Center B.V. (NTRC) , Pivot Park, RE1210, Molenstraat 110, 5342 CC Oss, The Netherlands
| | - Michael Lämmerhofer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, Technische Universitaet Dortmund , Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
10
|
Baßler J, Ahmed YL, Kallas M, Kornprobst M, Calviño FR, Gnädig M, Thoms M, Stier G, Ismail S, Kharde S, Castillo N, Griesel S, Bastuck S, Bradatsch B, Thomson E, Flemming D, Sinning I, Hurt E. Interaction network of the ribosome assembly machinery from a eukaryotic thermophile. Protein Sci 2017; 26:327-342. [PMID: 27863450 DOI: 10.1002/pro.3085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/24/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022]
Abstract
Ribosome biogenesis in eukaryotic cells is a highly dynamic and complex process innately linked to cell proliferation. The assembly of ribosomes is driven by a myriad of biogenesis factors that shape pre-ribosomal particles by processing and folding the ribosomal RNA and incorporating ribosomal proteins. Biochemical approaches allowed the isolation and characterization of pre-ribosomal particles from Saccharomyces cerevisiae, which lead to a spatiotemporal map of biogenesis intermediates along the path from the nucleolus to the cytoplasm. Here, we cloned almost the entire set (∼180) of ribosome biogenesis factors from the thermophilic fungus Chaetomium thermophilum in order to perform an in-depth analysis of their protein-protein interaction network as well as exploring the suitability of these thermostable proteins for structural studies. First, we performed a systematic screen, testing about 80 factors for crystallization and structure determination. Next, we performed a yeast 2-hybrid analysis and tested about 32,000 binary combinations, which identified more than 1000 protein-protein contacts between the thermophilic ribosome assembly factors. To exemplary verify several of these interactions, we performed biochemical reconstitution with the focus on the interaction network between 90S pre-ribosome factors forming the ctUTP-A and ctUTP-B modules, and the Brix-domain containing assembly factors of the pre-60S subunit. Our work provides a rich resource for biochemical reconstitution and structural analyses of the conserved ribosome assembly machinery from a eukaryotic thermophile.
Collapse
Affiliation(s)
- Jochen Baßler
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Yasar Luqman Ahmed
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Martina Kallas
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Markus Kornprobst
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Fabiola R Calviño
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Marén Gnädig
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Matthias Thoms
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Gunter Stier
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Sherif Ismail
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Satyavati Kharde
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Nestor Castillo
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Sabine Griesel
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Sonja Bastuck
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Bettina Bradatsch
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Emma Thomson
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Dirk Flemming
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Irmgard Sinning
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Ed Hurt
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| |
Collapse
|
11
|
Pérez-Gallegos A, Garcia-Viloca M, González-Lafont À, Lluch JM. Understanding how cAMP-dependent protein kinase can catalyze phosphoryl transfer in the presence of Ca2+and Sr2+: a QM/MM study. Phys Chem Chem Phys 2017; 19:10377-10394. [DOI: 10.1039/c7cp00666g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Theoretical results demonstrate for the first time at the molecular level that the overall PKAc-catalyzed phosphoryl-transfer reaction is plausible with Ca2+and Sr2+, alkaline earth metal ions other than Mg2+, which is in good agreement with experiments.
Collapse
Affiliation(s)
- Ayax Pérez-Gallegos
- Institut de Biotecnologia i de Biomedicina and Departament de Química, Universitat Autònoma de Barcelona
- 08193 Bellaterra (Barcelona)
- Spain
| | - Mireia Garcia-Viloca
- Institut de Biotecnologia i de Biomedicina and Departament de Química, Universitat Autònoma de Barcelona
- 08193 Bellaterra (Barcelona)
- Spain
| | - Àngels González-Lafont
- Institut de Biotecnologia i de Biomedicina and Departament de Química, Universitat Autònoma de Barcelona
- 08193 Bellaterra (Barcelona)
- Spain
| | - José M. Lluch
- Institut de Biotecnologia i de Biomedicina and Departament de Química, Universitat Autònoma de Barcelona
- 08193 Bellaterra (Barcelona)
- Spain
| |
Collapse
|
12
|
Sarvagalla S, Coumar MS. Protein-Protein Interactions (PPIs) as an Alternative to Targeting the ATP Binding Site of Kinase. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Most of the developed kinase inhibitor drugs are ATP competitive and suffer from drawbacks such as off-target kinase activity, development of resistance due to mutation in the ATP binding pocket and unfavorable intellectual property situations. Besides the ATP binding pocket, protein kinases have binding sites that are involved in Protein-Protein Interactions (PPIs); these PPIs directly or indirectly regulate the protein kinase activity. Of recent, small molecule inhibitors of PPIs are emerging as an alternative to ATP competitive agents. Rational design of inhibitors for kinase PPIs could be carried out using molecular modeling techniques. In silico tools available for the prediction of hot spot residues and cavities at the PPI sites and the means to utilize this information for the identification of inhibitors are discussed. Moreover, in silico studies to target the Aurora B-INCENP PPI sites are discussed in context. Overall, this chapter provides detailed in silico strategies that are available to the researchers for carrying out structure-based drug design of PPI inhibitors.
Collapse
|
13
|
Rüben K, Wurzlbauer A, Walte A, Sippl W, Bracher F, Becker W. Selectivity Profiling and Biological Activity of Novel β-Carbolines as Potent and Selective DYRK1 Kinase Inhibitors. PLoS One 2015; 10:e0132453. [PMID: 26192590 PMCID: PMC4508061 DOI: 10.1371/journal.pone.0132453] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/15/2015] [Indexed: 12/26/2022] Open
Abstract
DYRK1A is a pleiotropic protein kinase with diverse functions in cellular regulation, including cell cycle control, neuronal differentiation, and synaptic transmission. Enhanced activity and overexpression of DYRK1A have been linked to altered brain development and function in Down syndrome and neurodegenerative diseases such as Alzheimer's disease. The β-carboline alkaloid harmine is a high affinity inhibitor of DYRK1A but suffers from the drawback of inhibiting monoamine oxidase A (MAO-A) with even higher potency. Here we characterized a series of novel harmine analogs with minimal or absent MAO-A inhibitory activity. We identified several inhibitors with submicromolar potencies for DYRK1A and selectivity for DYRK1A and DYRK1B over the related kinases DYRK2 and HIPK2. An optimized inhibitor, AnnH75, inhibited CLK1, CLK4, and haspin/GSG2 as the only off-targets in a panel of 300 protein kinases. In cellular assays, AnnH75 dose-dependently reduced the phosphorylation of three known DYRK1A substrates (SF3B1, SEPT4, and tau) without negative effects on cell viability. AnnH75 inhibited the cotranslational tyrosine autophosphorylation of DYRK1A and threonine phosphorylation of an exogenous substrate protein with similar potency. In conclusion, we have characterized an optimized β-carboline inhibitor as a highly selective chemical probe that complies with desirable properties of drug-like molecules and is suitable to interrogate the function of DYRK1A in biological studies.
Collapse
Affiliation(s)
- Katharina Rüben
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Anne Wurzlbauer
- Department of Pharmacy—Center for Drug Research, Ludwig Maximilian University, Munich, Germany
| | - Agnes Walte
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Franz Bracher
- Department of Pharmacy—Center for Drug Research, Ludwig Maximilian University, Munich, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Hui R, El Bakkouri M, Sibley LD. Designing selective inhibitors for calcium-dependent protein kinases in apicomplexans. Trends Pharmacol Sci 2015; 36:452-60. [PMID: 26002073 DOI: 10.1016/j.tips.2015.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 12/21/2022]
Abstract
Apicomplexan parasites cause some of the most severe human diseases, including malaria (caused by Plasmodium), toxoplasmosis, and cryptosporidiosis. Treatments are limited by the lack of effective drugs and development of resistance to available agents. By exploiting novel features of protein kinases in these parasites, it may be possible to develop new treatments. We summarize here recent advances in identifying small molecule inhibitors against a novel family of plant-like, calcium-dependent kinases that are uniquely expanded in apicomplexan parasites. Analysis of the 3D structure, activation mechanism, and sensitivity to small molecules had identified several attractive chemical scaffolds that are potent and selective inhibitors of these parasite kinases. Further optimization of these leads may yield promising new drugs for treatment of these parasitic infections.
Collapse
Affiliation(s)
- Raymond Hui
- Structural Genomics Consortium, University of Toronto, MaRS South Tower, 101 College St, Toronto, ON, M5G 1L7, Canada; Toronto General Hospital Research Institute, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Majida El Bakkouri
- Structural Genomics Consortium, University of Toronto, MaRS South Tower, 101 College St, Toronto, ON, M5G 1L7, Canada
| | - L David Sibley
- Department of Molecular Microbiology, 660 S. Euclid Ave., Washington University School of Medicine, St Louis, MO 63130, USA.
| |
Collapse
|
15
|
Pin1: Intimate involvement with the regulatory protein kinase networks in the global phosphorylation landscape. Biochim Biophys Acta Gen Subj 2015; 1850:2077-86. [PMID: 25766872 DOI: 10.1016/j.bbagen.2015.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Protein phosphorylation is a universal regulatory mechanism that involves an extensive network of protein kinases. The discovery of the phosphorylation-dependent peptidyl-prolyl isomerase Pin1 added an additional layer of complexity to these regulatory networks. SCOPE OF REVIEW We have evaluated interactions between Pin1 and the regulatory kinome and proline-dependent phosphoproteome taking into consideration findings from targeted studies as well as data that has emerged from systematic phosphoproteomic workflows and from curated protein interaction databases. MAJOR CONCLUSIONS The relationship between Pin1 and the regulatory protein kinase networks is not restricted simply to the recognition of proteins that are substrates for proline-directed kinases. In this respect, Pin1 itself is phosphorylated in cells by protein kinases that modulate its functional properties. Furthermore, the phosphorylation-dependent targets of Pin1 include a number of protein kinases as well as other enzymes such as phosphatases and regulatory subunits of kinases that modulate the actions of protein kinases. GENERAL SIGNIFICANCE As a result of its interactions with numerous protein kinases and their substrates, as well as itself being a target for phosphorylation, Pin1 has an intricate relationship with the regulatory protein kinase and phosphoproteomic networks that orchestrate complex cellular processes and respond to environmental cues. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
|
16
|
Hantschel O. Unexpected off-targets and paradoxical pathway activation by kinase inhibitors. ACS Chem Biol 2015; 10:234-45. [PMID: 25531586 DOI: 10.1021/cb500886n] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein kinase inhibitors are an increasingly important class of targeted anticancer therapeutics. More than two dozen new drugs of this class have entered routine clinical use over the past decade. This review article focuses on how the development of methods to study the kinome- and proteome-wide selectivity of kinase inhibitors, in conjunction with advances in the structural understanding of kinase inhibitor binding modes, has resulted in a better appreciation of the mechanism of action of clinical kinase inhibitors. I provide examples of how this has led to the discovery of unexpected off-target effects, intriguing cases in which kinase inhibitors may cause pathway activation, and new mechanisms responsible for resistance to kinase inhibitors. Finally, I illustrate that although certain kinase targets may be pharmacologically easily tractable, a better understanding of the regulation and biology of the targets is required to generate drugs that are efficacious in cancer patients.
Collapse
Affiliation(s)
- Oliver Hantschel
- Swiss Institute
for Experimental
Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Novel approaches for targeting kinases: allosteric inhibition, allosteric activation and pseudokinases. Future Med Chem 2014; 6:541-61. [PMID: 24649957 DOI: 10.4155/fmc.13.216] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein kinases are involved in many essential cellular processes and their deregulation can lead to a variety of diseases, including cancer. The pharmaceutical industry has invested heavily in the identification of kinase inhibitors to modulate these disease-promoting pathways, resulting in several successful drugs. However, the field is challenging as it is difficult to identify novel selective inhibitors with good pharmacokinetic/pharmacodynamic properties. In addition, resistance to kinase inhibitor treatment frequently arises. The identification of non-ATP site targeting ('allosteric') inhibitors, the identification of kinase activators and the expansion of kinase target space to include the less studied members of the family, including atypical- and pseudo-kinases, are potential avenues to overcome these challenges. In this perspective, the opportunities and challenges of following these approaches and others will be discussed.
Collapse
|
18
|
Sobolev BN, Veselovsky AV, Poroikov VV. Prediction of protein post-translational modifications: main trends and methods. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v083n02abeh004377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Modugno M. New resistance mechanisms for small molecule kinase inhibitors of Abl kinase. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 11:5-10. [PMID: 24847647 DOI: 10.1016/j.ddtec.2013.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mutations in the kinase domain of Bcr-Abl are the most common cause of resistance to therapy with Imatinib in patients with chronic myelogenous leukaemia (CML). Second generation Bcr-Abl inhibitors, such as Nilotinib and Dasatinib, are able to overcome most Imatinib- resistant mutants, with the exception of the T315I substitution. Structural studies of Abl wild-type and T315I mutant have provided better understanding of how this mutation leads to resistance and have been used to support the drug design process for the development of inhibitors able to target the T315I substitution.
Collapse
|
20
|
Bali DS, Goldstein JL, Fredrickson K, Rehder C, Boney A, Austin S, Weinstein DA, Lutz R, Boneh A, Kishnani PS. Variability of disease spectrum in children with liver phosphorylase kinase deficiency caused by mutations in the PHKG2 gene. Mol Genet Metab 2014; 111:309-313. [PMID: 24389071 PMCID: PMC3952947 DOI: 10.1016/j.ymgme.2013.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 11/23/2022]
Abstract
Liver phosphorylase b kinase (PhK) deficiency (glycogen storage disease type IX), one of the most common causes of glycogen storage disease, is caused by mutations in the PHKA2, PHKB, and PHKG2 genes. Presenting symptoms include hepatomegaly, ketotic hypoglycemia, and growth delay. Clinical severity varies widely. Autosomal recessive mutations in the PHKG2 gene, which cause about 10-15% of cases, have been associated with severe symptoms including increased risk of liver cirrhosis in childhood. We have summarized the molecular, biochemical, and clinical findings in five patients, age 5-16 years, diagnosed with liver PhK deficiency caused by PHKG2 gene mutations. We have identified five novel and two previously reported mutations in the PHKG2 gene in these five patients. Clinical severity was variable among these patients. Histopathological studies were performed for four of the patients on liver biopsy samples, all of which showed signs of fibrosis but not cirrhosis. One of the patients (aged 9 years) developed a liver adenoma which later resolved. All patients are currently doing well. Their clinical symptoms have improved with age and treatment. These cases add to the current knowledge of clinical variability in patients with PHKG2 mutations. Long term studies, involving follow-up of these patients into adulthood, are needed.
Collapse
Affiliation(s)
- Deeksha S Bali
- Department of Pediatrics, Box 103856, Duke University Health System, Durham, NC 27710, USA.
| | - Jennifer L Goldstein
- Department of Pediatrics, Box 103856, Duke University Health System, Durham, NC 27710, USA.
| | - Keri Fredrickson
- Department of Pediatrics, Box 103856, Duke University Health System, Durham, NC 27710, USA.
| | - Catherine Rehder
- Clinical Molecular Diagnostic Laboratory, 4425 Ben Franklin Blvd, Duke University Health System, Durham, NC 27704, USA.
| | - Anne Boney
- Department of Pediatrics, Box 103856, Duke University Health System, Durham, NC 27710, USA.
| | - Stephanie Austin
- Department of Pediatrics, Box 103856, Duke University Health System, Durham, NC 27710, USA.
| | - David A Weinstein
- Glycogen Storage Disease Program, PO Box 100296, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | - Richard Lutz
- University of Nebraska Medical Center, Munroe-Meyer Institute for Genetics & Rehabilitation, 985440 Nebraska Medical Center, USA.
| | - Avihu Boneh
- Metabolic Genetics, Victorian Clinical Genetics Services, The Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Department of Paediatrics, University of Melbourne, Flemington Road, Parkville 3052, Australia.
| | - Priya S Kishnani
- Department of Pediatrics, Box 103856, Duke University Health System, Durham, NC 27710, USA.
| |
Collapse
|
21
|
Herzog FA, Vogel V. Multiple steps to activate FAK's kinase domain: adaptation to confined environments? Biophys J 2014; 104:2521-9. [PMID: 23746525 DOI: 10.1016/j.bpj.2013.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/27/2013] [Accepted: 04/05/2013] [Indexed: 10/26/2022] Open
Abstract
Protein kinases regulate cell signaling by phosphorylating their substrates in response to environment-specific stimuli. Using molecular dynamics, we studied the catalytically active and inactive conformations of the kinase domain of the focal adhesion kinase (FAK), which are distinguished by displaying a structured or unstructured activation loop, respectively. Upon removal of an ATP analog, we show that the nucleotide-binding pocket in the catalytically active conformation is structurally unstable and fluctuates between an open and closed configuration. In contrast, the pocket remains open in the catalytically inactive form upon removal of an inhibitor from the pocket. Because temporal pocket closures will slow the ATP on-rate, these simulations suggest a multistep process in which the kinase domain is more likely to bind ATP in the catalytically inactive than in the active form. Transient closures of the ATP-binding pocket might allow FAK to slow down its catalytic cycle. These short cat naps could be adaptions to crowded or confined environments by giving the substrate sufficient time to diffuse away. The simulations show further how either the phosphorylation of the activation loop or the activating mutations of the so-called SuperFAK influence the electrostatic switch that controls kinase activity.
Collapse
Affiliation(s)
- Florian A Herzog
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
22
|
Walte A, Rüben K, Birner-Gruenberger R, Preisinger C, Bamberg-Lemper S, Hilz N, Bracher F, Becker W. Mechanism of dual specificity kinase activity of DYRK1A. FEBS J 2013; 280:4495-511. [PMID: 23809146 DOI: 10.1111/febs.12411] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/06/2013] [Accepted: 06/25/2013] [Indexed: 11/28/2022]
Abstract
The function of many protein kinases is controlled by the phosphorylation of a critical tyrosine residue in the activation loop. Dual specificity tyrosine-phosphorylation-regulated kinases (DYRKs) autophosphorylate on this tyrosine residue but phosphorylate substrates on aliphatic amino acids. This study addresses the mechanism of dual specificity kinase activity in DYRK1A and related kinases. Tyrosine autophosphorylation of DYRK1A occurred rapidly during in vitro translation and did not depend on the non-catalytic domains or other proteins. Expression in bacteria as well as in mammalian cells revealed that tyrosine kinase activity of DYRK1A is not restricted to the co-translational autophosphorylation in the activation loop. Moreover, mature DYRK1A was still capable of tyrosine autophosphorylation. Point mutants of DYRK1A and DYRK2 lacking the activation loop tyrosine showed enhanced tyrosine kinase activity. A series of structurally diverse DYRK1A inhibitors was used to pharmacologically distinguish different conformational states of the catalytic domain that are hypothesized to account for the dual specificity kinase activity. All tested compounds inhibited substrate phosphorylation with higher potency than autophosphorylation but none of the tested inhibitors differentially inhibited threonine and tyrosine kinase activity. Finally, the related cyclin-dependent kinase-like kinases (CLKs), which lack the activation loop tyrosine, autophosphorylated on tyrosine both in vitro and in living cells. We propose a model of DYRK autoactivation in which tyrosine autophosphorylation in the activation loop stabilizes a conformation of the catalytic domain with enhanced serine/threonine kinase activity without disabling tyrosine phosphorylation. The mechanism of dual specificity kinase activity probably applies to related serine/threonine kinases that depend on tyrosine autophosphorylation for maturation.
Collapse
Affiliation(s)
- Agnes Walte
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Temmerman K, Simon B, Wilmanns M. Structural and functional diversity in the activity and regulation of DAPK-related protein kinases. FEBS J 2013; 280:5533-50. [PMID: 23745726 DOI: 10.1111/febs.12384] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 11/30/2022]
Abstract
Within the large group of calcium/calmodulin-dependent protein kinases (CAMKs) of the human kinome, there is a distinct branch of highly related kinases that includes three families: death-associated protein-related kinases, myosin light-chain-related kinases and triple functional domain protein-related kinases. In this review, we refer to these collectively as DMT kinases. There are several functional features that span the three families, such as a broad involvement in apoptotic processes, cytoskeletal association and cellular plasticity. Other CAMKs contain a highly conserved HRD motif, which is a prerequisite for kinase regulation through activation-loop phosphorylation, but in all 16 members of the DMT branch, this is replaced by an HF/LD motif. This DMT kinase signature motif substitutes phosphorylation-dependent active-site interactions with a local hydrophobic core that maintains an active kinase conformation. Only about half of the DMT kinases have an additional autoregulatory domain, C-terminal to the kinase domain that binds calcium/calmodulin in order to regulate kinase activity. Protein substrates have been identified for some of the DMT kinases, but little is known about the mechanism of recognition. Substrate conformation could be an equally important parameter in substrate recognition as specific preferences in sequence position. Taking the data together, this kinase branch encapsulates a treasure trove of features that renders it distinct from many other protein kinases and calls for future research activities in this field.
Collapse
|
24
|
Urich R, Wishart G, Kiczun M, Richters A, Tidten-Luksch N, Rauh D, Sherborne B, Wyatt PG, Brenk R. De novo design of protein kinase inhibitors by in silico identification of hinge region-binding fragments. ACS Chem Biol 2013; 8:1044-52. [PMID: 23534475 PMCID: PMC3833278 DOI: 10.1021/cb300729y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Protein kinases constitute an attractive
family of enzyme targets
with high relevance to cell and disease biology. Small molecule inhibitors
are powerful tools to dissect and elucidate the function of kinases
in chemical biology research and to serve as potential starting points
for drug discovery. However, the discovery and development of novel
inhibitors remains challenging. Here, we describe a structure-based de novo design approach that generates novel, hinge-binding
fragments that are synthetically feasible and can be elaborated to
small molecule libraries. Starting from commercially available compounds,
core fragments were extracted, filtered for pharmacophoric properties
compatible with hinge-region binding, and docked into a panel of protein
kinases. Fragments with a high consensus score were subsequently short-listed
for synthesis. Application of this strategy led to a number of core
fragments with no previously reported activity against kinases. Small
libraries around the core fragments were synthesized, and representative
compounds were tested against a large panel of protein kinases and
subjected to co-crystallization experiments. Each of the tested compounds
was active against at least one kinase, but not all kinases in the
panel were inhibited. A number of compounds showed high ligand efficiencies
for therapeutically relevant kinases; among them were MAPKAP-K3, SRPK1,
SGK1, TAK1, and GCK for which only few inhibitors are reported in
the literature.
Collapse
Affiliation(s)
- Robert Urich
- Drug Discovery Unit (DDU), Division
of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, DD1 5EH,
U.K
| | - Grant Wishart
- Department of Chemistry, MSD, Newhouse, Lanarkshire, ML1 5SH, U.K
| | - Michael Kiczun
- Department of Chemistry, MSD, Newhouse, Lanarkshire, ML1 5SH, U.K
| | - André Richters
- Fakultät Chemie - Chemische
Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Naomi Tidten-Luksch
- Drug Discovery Unit (DDU), Division
of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, DD1 5EH,
U.K
| | - Daniel Rauh
- Fakultät Chemie - Chemische
Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Brad Sherborne
- Department of Chemistry, MSD, Newhouse, Lanarkshire, ML1 5SH, U.K
| | - Paul G. Wyatt
- Drug Discovery Unit (DDU), Division
of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, DD1 5EH,
U.K
| | - Ruth Brenk
- Institut für Pharmazie
und Biochemie, Johannes Gutenberg-Universität Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| |
Collapse
|
25
|
Palmieri L, Rastelli G. αC helix displacement as a general approach for allosteric modulation of protein kinases. Drug Discov Today 2013. [DOI: 10.1016/j.drudis.2012.11.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Ngoei KRW, Ng DCH, Gooley PR, Fairlie DP, Stoermer MJ, Bogoyevitch MA. Identification and characterization of bi-thiazole-2,2'-diamines as kinase inhibitory scaffolds. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1077-88. [PMID: 23410953 DOI: 10.1016/j.bbapap.2013.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/30/2013] [Accepted: 02/03/2013] [Indexed: 11/18/2022]
Abstract
Based on bioinformatics interrogation of the genome, >500 mammalian protein kinases can be clustered within seven different groups. Of these kinases, the mitogen-activated protein kinase (MAPK) family forms part of the CMGC group of serine/threonine kinases that includes extracellular signal regulated kinases (ERKs), cJun N-terminal kinases (JNKs), and p38 MAPKs. With the JNKs considered attractive targets in the treatment of pathologies including diabetes and stroke, efforts have been directed to the discovery of new JNK inhibitory molecules that can be further developed as new therapeutics. Capitalizing on our biochemical understanding of JNK, we performed in silico screens of commercially available chemical databases to identify JNK1-interacting compounds and tested their in vitro JNK inhibitory activity. With in vitro and cell culture studies, we showed that the compound, 4'-methyl-N(2)-3-pyridinyl-4,5'-bi-1,3-thiazole-2,2'-diamine (JNK Docking (JD) compound 123, but not the related compound (4'-methyl-N~2~-(6-methyl-2-pyridinyl)-4,5'-bi-1,3-thiazole-2,2'-diamine (JD124), inhibited JNK1 activity towards a range of substrates. Molecular docking, saturation transfer difference NMR experiments and enzyme kinetic analyses revealed both ATP- and substrate-competitive inhibition of JNK by JD123. In characterizing JD123 further, we noted its ATP-competitive inhibition of the related p38-γ MAPK, but not ERK1, ERK2, or p38-α, p38-β or p38-δ. Further screening of a broad panel of kinases using 10μM JD123, identified inhibition of kinases including protein kinase Bβ (PKBβ/Aktβ). Appropriately modified thiazole diamines, as typified by JD123, thus provide a new chemical scaffold for development of inhibitors for the JNK and p38-γ MAPKs as well as other kinases that are also potential therapeutic targets such as PKBβ/Aktβ.
Collapse
Affiliation(s)
- Kevin R W Ngoei
- Department of Biochemistry and Molecular Biology, University of Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Zheng J, Yates SP, Jia Z. Structural and mechanistic insights into the bifunctional enzyme isocitrate dehydrogenase kinase/phosphatase AceK. Philos Trans R Soc Lond B Biol Sci 2012; 367:2656-68. [PMID: 22889914 DOI: 10.1098/rstb.2011.0426] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The switch between the Krebs cycle and the glyoxylate bypass is controlled by isocitrate dehydrogenase kinase/phosphatase (AceK). AceK, a bifunctional enzyme, phosphorylates and dephosphorylates isocitrate dehydrogenase (IDH) with its unique active site that harbours both the kinase and ATP/ADP-dependent phosphatase activities. AceK was the first example of prokaryotic phosphorylation identified, and the recent characterization of the structures of AceK and its complex with its protein substrate, IDH, now offers a new understanding of both previous and future endeavours. AceK is structurally similar to the eukaryotic protein kinase superfamily, sharing many of the familiar catalytic and regulatory motifs, demonstrating a close evolutionary relationship. Although the active site is shared by both the kinase and phosphatase functions, the catalytic residues needed for phosphatase function are readily seen when compared with the DXDX(T/V) family of phosphatases, despite the fact that the phosphatase function of AceK is strictly ATP/ADP-dependent. Structural analysis has also allowed a detailed look at regulation and its stringent requirements for interacting with IDH.
Collapse
Affiliation(s)
- Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | | | | |
Collapse
|
28
|
Ranjitkar P, Perera BGK, Swaney DL, Swaney DL, Hari SB, Larson ET, Krishnamurty R, Merritt EA, Villén J, Maly DJ. Affinity-based probes based on type II kinase inhibitors. J Am Chem Soc 2012; 134:19017-25. [PMID: 23088519 DOI: 10.1021/ja306035v] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein kinases are key components of most mammalian signal transduction networks and are therapeutically relevant drug targets. Efforts to study protein kinase function would benefit from new technologies that are able to profile kinases in complex proteomes. Here, we describe active site-directed probes for profiling kinases in whole cell extracts and live cells. These probes contain general ligands that stabilize a specific inactive conformation of the ATP-binding sites of protein kinases, as well as trifluoromethylphenyl diazirine and alkyne moieties that allow covalent modification and enrichment of kinases, respectively. A diverse group of serine/threonine and tyrosine kinases were identified as specific targets of these probes in whole cell extracts. In addition, a number of kinase targets were selectively labeled in live cells. Our chemical proteomics approach should be valuable for interrogating protein kinase active sites in physiologically relevant environments.
Collapse
Affiliation(s)
- Pratistha Ranjitkar
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hashimoto K, Rogozin IB, Panchenko AR. Oncogenic potential is related to activating effect of cancer single and double somatic mutations in receptor tyrosine kinases. Hum Mutat 2012; 33:1566-75. [PMID: 22753356 PMCID: PMC3465464 DOI: 10.1002/humu.22145] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/29/2012] [Indexed: 01/16/2023]
Abstract
Aberrant activation of receptor tyrosine kinases (RTKs) is a common feature of many cancer cells. It was previously suggested that the mechanisms of kinase activation in cancer might be linked to transitions between active and inactive states. Here, we estimate the effects of single and double cancer mutations on the stability of active and inactive states of the kinase domains from different RTKs. We show that singleton cancer mutations destabilize active and inactive states; however, inactive states are destabilized more than the active ones, leading to kinase activation. We show that there exists a relationship between the estimate of oncogenic potential of cancer mutation and kinase activation. Namely, more frequent mutations have a higher activating effect, which might allow us to predict the activating effect of the mutations from the mutation spectra. Independent evolutionary analysis of mutation spectra complements this observation and finds the same frequency threshold defining mutation hotspots. We analyze double mutations and report a positive epistasis and additional advantage of doublets with respect to cancer cell fitness. The activation mechanisms of double mutations differ from those of single mutations and double mutation spectrum is found to be dissimilar to the mutation spectrum of singletons.
Collapse
Affiliation(s)
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Anna R. Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
30
|
Endicott JA, Noble MEM, Johnson LN. The structural basis for control of eukaryotic protein kinases. Annu Rev Biochem 2012; 81:587-613. [PMID: 22482904 DOI: 10.1146/annurev-biochem-052410-090317] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic protein kinases are key regulators of cell processes. Comparison of the structures of protein kinase domains, both alone and in complexes, allows generalizations to be made about the mechanisms that regulate protein kinase activation. Protein kinases in the active state adopt a catalytically competent conformation upon binding of both the ATP and peptide substrates that has led to an understanding of the catalytic mechanism. Docking sites remote from the catalytic site are a key feature of several substrate recognition complexes. Mechanisms for kinase activation through phosphorylation, additional domains or subunits, by scaffolding proteins and by kinase dimerization are discussed.
Collapse
Affiliation(s)
- Jane A Endicott
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | |
Collapse
|
31
|
Yang J, Wu J, Steichen JM, Kornev AP, Deal MS, Li S, Sankaran B, Woods VL, Taylor SS. A conserved Glu-Arg salt bridge connects coevolved motifs that define the eukaryotic protein kinase fold. J Mol Biol 2011; 415:666-79. [PMID: 22138346 DOI: 10.1016/j.jmb.2011.11.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 12/12/2022]
Abstract
Eukaryotic protein kinases (EPKs) feature two coevolved structural segments, the Activation segment, which starts with the Asp-Phe-Gly (DFG) and ends with the Ala-Pro-Glu (APE) motifs, and the helical GHI subdomain that comprises αG-αH-αI helices. Eukaryotic-like kinases have a much shorter Activation segment and lack the GHI subdomain. They thus lack the conserved salt bridge interaction between the APE Glu and an Arg from the GHI subdomain, a hallmark signature of EPKs. Although the conservation of this salt bridge in EPKs is well known and its implication in diseases has been illustrated by polymorphism analysis, its function has not been carefully studied. In this work, we use murine cAMP-dependent protein kinase (protein kinase A) as the model enzyme (Glu208 and Arg280) to examine the role of these two residues. We showed that Ala replacement of either residue caused a 40- to 120-fold decrease in catalytic efficiency of the enzyme due to an increase in K(m)(ATP) and a decrease in k(cat). Crystal structures, as well as solution studies, also demonstrate that this ion pair contributes to the hydrophobic network and stability of the enzyme. We show that mutation of either Glu or Arg to Ala renders both mutant proteins less effective substrates for upstream kinase phosphoinositide-dependent kinase 1. We propose that the Glu208-Arg280 pair serves as a center hub of connectivity between these two structurally conserved elements in EPKs. Mutations of either residue disrupt communication not only between the two segments but also within the rest of the molecule, leading to altered catalytic activity and enzyme regulation.
Collapse
Affiliation(s)
- Jie Yang
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Keates T, Cooper CD, Savitsky P, Allerston CK, Phillips C, Hammarström M, Daga N, Berridge G, Mahajan P, Burgess-Brown NA, Müller S, Gräslund S, Gileadi O. Expressing the human proteome for affinity proteomics: optimising expression of soluble protein domains and in vivo biotinylation. N Biotechnol 2011; 29:515-25. [PMID: 22027370 PMCID: PMC3383991 DOI: 10.1016/j.nbt.2011.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 11/17/2022]
Abstract
The generation of affinity reagents to large numbers of human proteins depends on the ability to express the target proteins as high-quality antigens. The Structural Genomics Consortium (SGC) focuses on the production and structure determination of human proteins. In a 7-year period, the SGC has deposited crystal structures of >800 human protein domains, and has additionally expressed and purified a similar number of protein domains that have not yet been crystallised. The targets include a diversity of protein domains, with an attempt to provide high coverage of protein families. The family approach provides an excellent basis for characterising the selectivity of affinity reagents. We present a summary of the approaches used to generate purified human proteins or protein domains, a test case demonstrating the ability to rapidly generate new proteins, and an optimisation study on the modification of >70 proteins by biotinylation in vivo. These results provide a unique synergy between large-scale structural projects and the recent efforts to produce a wide coverage of affinity reagents to the human proteome.
Collapse
Affiliation(s)
- Tracy Keates
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Christopher D.O. Cooper
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Pavel Savitsky
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Charles K. Allerston
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Claire Phillips
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Martin Hammarström
- The Structural Genomics Consortium, Department of Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Neha Daga
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Georgina Berridge
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Pravin Mahajan
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Nicola A. Burgess-Brown
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Susanne Müller
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Susanne Gräslund
- The Structural Genomics Consortium, Department of Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Opher Gileadi
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Corresponding author:
| |
Collapse
|
33
|
Vázquez-Cedeira M, Barcia-Sanjurjo I, Sanz-García M, Barcia R, Lazo PA. Differential inhibitor sensitivity between human kinases VRK1 and VRK2. PLoS One 2011; 6:e23235. [PMID: 21829721 PMCID: PMC3150407 DOI: 10.1371/journal.pone.0023235] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/10/2011] [Indexed: 01/13/2023] Open
Abstract
Human vaccinia-related kinases (VRK1 and VRK2) are atypical active Ser-Thr kinases implicated in control of cell cycle entry, apoptosis and autophagy, and affect signalling by mitogen activated protein kinases (MAPK). The specific structural differences in VRK catalytic sites make them suitable candidates for development of specific inhibitors. In this work we have determined the sensitivity of VRK1 and VRK2 to kinase inhibitors, currently used in biological assays or in preclinical studies, in order to discriminate between the two proteins as well as with respect to the vaccinia virus B1R kinase. Both VRK proteins and vaccinia B1R are poorly inhibited by inhibitors of different types targeting Src, MEK1, B-Raf, JNK, p38, CK1, ATM, CHK1/2 and DNA-PK, and most of them have no effect even at 100 µM. Despite their low sensitivity, some of these inhibitors in the low micromolar range are able to discriminate between VRK1, VRK2 and B1R. VRK1 is more sensitive to staurosporine, RO-31-8220 and TDZD8. VRK2 is more sensitive to roscovitine, RO 31–8220, Cdk1 inhibitor, AZD7762, and IC261. Vaccinia virus B1R is more sensitive to staurosporine, KU55933, and RO 31–8220, but not to IC261. Thus, the three kinases present a different pattern of sensitivity to kinase inhibitors. This differential response to known inhibitors can provide a structural framework for VRK1 or VRK2 specific inhibitors with low or no cross-inhibition. The development of highly specific VRK1 inhibitors might be of potential clinical use in those cancers where these kinases identify a clinical subtype with a poorer prognosis, as is the case of VRK1 in breast cancer.
Collapse
Affiliation(s)
- Marta Vázquez-Cedeira
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Iria Barcia-Sanjurjo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Marta Sanz-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Ramiro Barcia
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Pedro A. Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
34
|
Schwartz PA, Murray BW. Protein kinase biochemistry and drug discovery. Bioorg Chem 2011; 39:192-210. [PMID: 21872901 DOI: 10.1016/j.bioorg.2011.07.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 12/19/2022]
Abstract
Protein kinases are fascinating biological catalysts with a rapidly expanding knowledge base, a growing appreciation in cell regulatory control, and an ascendant role in successful therapeutic intervention. To better understand protein kinases, the molecular underpinnings of phosphoryl group transfer, protein phosphorylation, and inhibitor interactions are examined. This analysis begins with a survey of phosphate group and phosphoprotein properties which provide context to the evolutionary selection of phosphorylation as a central mechanism for biological regulation of most cellular processes. Next, the kinetic and catalytic mechanisms of protein kinases are examined with respect to model aqueous systems to define the elements of catalysis. A brief structural biology overview further delves into the molecular basis of catalysis and regulation of catalytic activity. Concomitant with a prominent role in normal physiology, protein kinases have important roles in the disease state. To facilitate effective kinase drug discovery, classic and emerging approaches for characterizing kinase inhibitors are evaluated including biochemical assay design, inhibitor mechanism of action analysis, and proper kinetic treatment of irreversible inhibitors. As the resulting protein kinase inhibitors can modulate intended and unintended targets, profiling methods are discussed which can illuminate a more complete range of an inhibitor's biological activities to enable more meaningful cellular studies and more effective clinical studies. Taken as a whole, a wealth of protein kinase biochemistry knowledge is available, yet it is clear that a substantial extent of our understanding in this field remains to be discovered which should yield many new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Phillip A Schwartz
- Pfizer Worldwide Research and Development, La Jolla, Pfizer Inc., San Diego, CA 92121, United States
| | | |
Collapse
|
35
|
Abstract
Most signaling pathways in cells involve numerous phosphorylation reactions. Some of the rules for kinase-substrate specificity are known, but a complete description of all substrates is missing. Research published in Science Signaling addresses the process of mitosis and asks how the relevant kinases recognize substrate sequence motifs and, in the cellular context, what substrates are phosphorylated and where. The results increase our molecular understanding of how individual events are coordinated during the process of cell division and show the importance of both sequence epitopes for kinase specificity and the notion of a sense of place through localization in subcellular compartments.
Collapse
Affiliation(s)
- Louise N Johnson
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX13QU, UK.
| |
Collapse
|
36
|
Jura N, Zhang X, Endres NF, Seeliger MA, Schindler T, Kuriyan J. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Mol Cell 2011; 42:9-22. [PMID: 21474065 DOI: 10.1016/j.molcel.2011.03.004] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 12/23/2022]
Abstract
In contrast to the active conformations of protein kinases, which are essentially the same for all kinases, inactive kinase conformations are structurally diverse. Some inactive conformations are, however, observed repeatedly in different kinases, perhaps reflecting an important role in catalysis. In this review, we analyze one of these recurring conformations, first identified in CDK and Src kinases, which turned out to be central to understanding of how kinase domain of the EGF receptor is activated. This mechanism, which involves the stabilization of the active conformation of an α helix, has features in common with mechanisms operative in several other kinases.
Collapse
Affiliation(s)
- Natalia Jura
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
37
|
Oliveira TM, Ahmad R, Engh RA. VX680 Binding in Aurora A: π−π Interactions Involving the Conserved Aromatic Amino Acid of the Flexible Glycine-Rich Loop. J Phys Chem A 2011; 115:3895-904. [DOI: 10.1021/jp108286r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Taianá M. Oliveira
- NORSTRUCT, Department of Chemistry, University of Tromsø, 9037 Tromsø, Norway
| | - Rafi Ahmad
- NORSTRUCT, Department of Chemistry, University of Tromsø, 9037 Tromsø, Norway
| | - Richard A. Engh
- NORSTRUCT, Department of Chemistry, University of Tromsø, 9037 Tromsø, Norway
| |
Collapse
|
38
|
Patel RY, Doerksen RJ. Protein kinase-inhibitor database: structural variability of and inhibitor interactions with the protein kinase P-loop. J Proteome Res 2011; 9:4433-42. [PMID: 20681595 DOI: 10.1021/pr100662s] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Structure-based drug design of protein-kinase inhibitors has been facilitated by availability of an enormous number of structures in the Protein Databank (PDB), systematic analyses of which can provide insight into the factors that govern ligand-protein kinase interactions and into the conformational variability of the protein kinases. In this study, a nonredundant database containing 755 unique, curated, and annotated PDB protein kinase-inhibitor complexes (each consisting of a single protein kinase chain, a ligand, and water molecules around the ligand) was created. With this dataset, analyses were performed of protein conformational variability and interactions of ligands with 11 P-loop residues. Analysis of ligand-protein interactions included ligand atom preference, ligand-protein hydrogen bonds, and the number and position of crystallographic water molecules around important P-loop residues. Analysis of variability in the conformation of the P-loop considered backbone and side-chain dihedral angles, and solvent accessible surface area (SASA). A distorted conformation of the P-loop was observed for some of the protein kinase structures. Lower SASA was observed for the hydrophobic residue in beta1 of several members of the AGC family of protein kinases. Our systematic studies were performed amino acid-by-amino acid, which is unusual for analyses of protein kinase-inhibitor complexes.
Collapse
Affiliation(s)
- Ronak Y Patel
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, Mississippi 38677-1848, USA
| | | |
Collapse
|