1
|
Ducoli L, Zarnegar BJ, Porter DF, Meyers RM, Miao W, Riley NM, Srinivasan S, Jackrazi LV, Yang YY, Li Z, Wang Y, Bertozzi CR, Flynn RA, Khavari PA. irCLIP-RNP and Re-CLIP reveal patterns of dynamic protein associations on RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615518. [PMID: 39386644 PMCID: PMC11463378 DOI: 10.1101/2024.09.27.615518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
RNA binding proteins ( RBPs ) control varied processes, including RNA splicing, stability, transport, and translation 1-3 . Dysfunctional RNA-RBP interactions contribute to the pathogenesis of human disease 1,4,5 , however, characterizing the nature and dynamics of multiprotein assemblies on RNA has been challenging. To address this, non-isotopic ligation-based ultraviolet crosslinking immunoprecipitation 6 was combined with mass spectrometry ( irCLIP-RNP ) to identify RNA-dependent associated proteins ( RDAPs ) co-bound to RNA with any RBP of interest. irCLIP-RNP defined landscapes of multimeric protein assemblies on RNA, uncovering previously unknown patterns of RBP-RNA associations, including cell-type-selective combinatorial relationships between RDAPs and primary RBPs. irCLIP-RNP also defined dynamic RDAP remodeling in response to epidermal growth factor ( EGF ), uncovering EGF-induced recruitment of UPF1 adjacent to HNRNPC to effect splicing surveillance of cell proliferation mRNAs. To identify the RNAs simultaneously co-bound by multiple studied RBPs, a sequential immunoprecipitation irCLIP ( Re-CLIP ) method was also developed. Re-CLIP confirmed binding relationships seen in irCLIP-RNP and detected simultaneous HNRNPC and UPF1 co-binding on RND3 and DDX3X mRNAs. irCLIP-RNP and Re-CLIP provide a framework to identify and characterize dynamic RNA-protein assemblies in living cells.
Collapse
|
2
|
De Luca T, Stratford RE, Edwards ME, Ferreira CR, Benson EA. Novel Quantification of Extracellular Vesicles with Unaltered Surface Membranes Using an Internalized Oligonucleotide Tracer and Applied Pharmacokinetic Multiple Compartment Modeling. Pharm Res 2021; 38:1677-1695. [PMID: 34671921 PMCID: PMC8602176 DOI: 10.1007/s11095-021-03102-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE We developed an accessible method for labeling small extracellular vesicles (sEVs) without disrupting endogenous ligands. Using labeled sEVs administered to conscious rats, we developed a multiple compartment pharmacokinetic model to identify potential differences in the disposition of sEVs from three different cell types. METHODS Crude sEVs were labeled with a non-homologous oligonucleotide and isolated from cell culture media using a commercial reagent. Jugular vein catheters were used to introduce EVs to conscious rats (n = 30) and to collect blood samples. Digital PCR was leveraged to allow for quantification over a wide dynamic range. Non-linear mixed effects analysis with first order conditional estimation - extended least squares (FOCE ELS) was used to estimate population-level parameters with associated intra-animal variability. RESULTS 86.5% ± 1.5% (mean ± S.E.) of EV particles were in the 45-195 nm size range and demonstrated protein and lipid markers of endosomal origin. Incorporated oligonucleotide was stable in blood and detectable over five half-lives. Data were best described by a three-compartment model with one elimination from the central compartment. We performed an observation-based simulated posterior predictive evaluation with prediction-corrected visual predictive check. Covariate and bootstrap analyses identified cell type having an influence on peripheral volumes (V2 and V3) and clearance (Cl3). CONCLUSIONS Our method relies upon established laboratory techniques, can be tailored to a variety of biological questions regarding the pharmacokinetic disposition of extracellular vesicles, and will provide a complementary approach for the of study EV ligand-receptor interactions in the context of EV uptake and targeted therapeutics.
Collapse
Affiliation(s)
- Thomas De Luca
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Robert E Stratford
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Madison E Edwards
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Christina R Ferreira
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Eric A Benson
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA.
- Eli Lilly and Company, Indianapolis, Indiana, 46225, USA.
| |
Collapse
|
3
|
Thibault PA, Ganesan A, Kalyaanamoorthy S, Clarke JPWE, Salapa HE, Levin MC. hnRNP A/B Proteins: An Encyclopedic Assessment of Their Roles in Homeostasis and Disease. BIOLOGY 2021; 10:biology10080712. [PMID: 34439945 PMCID: PMC8389229 DOI: 10.3390/biology10080712] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
The hnRNP A/B family of proteins is canonically central to cellular RNA metabolism, but due to their highly conserved nature, the functional differences between hnRNP A1, A2/B1, A0, and A3 are often overlooked. In this review, we explore and identify the shared and disparate homeostatic and disease-related functions of the hnRNP A/B family proteins, highlighting areas where the proteins have not been clearly differentiated. Herein, we provide a comprehensive assembly of the literature on these proteins. We find that there are critical gaps in our grasp of A/B proteins' alternative splice isoforms, structures, regulation, and tissue and cell-type-specific functions, and propose that future mechanistic research integrating multiple A/B proteins will significantly improve our understanding of how this essential protein family contributes to cell homeostasis and disease.
Collapse
Affiliation(s)
- Patricia A. Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Aravindhan Ganesan
- ArGan’s Lab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Subha Kalyaanamoorthy
- Department of Chemistry, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Joseph-Patrick W. E. Clarke
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Hannah E. Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Michael C. Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence:
| |
Collapse
|
4
|
Wang H, Tri Anggraini F, Chen X, DeGracia DJ. Embryonic lethal abnormal vision proteins and adenine and uridine-rich element mRNAs after global cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab 2017; 37:1494-1507. [PMID: 27381823 PMCID: PMC5453468 DOI: 10.1177/0271678x16657572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Prolonged translation arrest correlates with delayed neuronal death of hippocampal CA1 neurons following global cerebral ischemia and reperfusion. Many previous studies investigated ribosome molecular biology, but mRNA regulatory mechanisms after brain ischemia have been less studied. Here we investigated the embryonic lethal abnormal vision/Hu isoforms HuR, HuB, HuC, and HuD, as well as expression of mRNAs containing adenine and rich uridine elements following global ischemia in rat brain. Proteomics of embryonic lethal abnormal vision immunoprecipitations or polysomes isolated from rat hippocampal CA1 and CA3 from controls or following 10 min ischemia plus 8 h of reperfusion showed distinct sets of mRNA-binding proteins, suggesting differential mRNA regulation in each condition. Notably, HuB, HuC, and HuD were undetectable in NIC CA1. At 8 h reperfusion, polysome-associated mRNAs contained 46.1% of ischemia-upregulated mRNAs containing adenine and rich uridine elements in CA3, but only 18.7% in CA1. Since mRNAs containing adenine and rich uridine elements regulation are important to several cellular stress responses, our results suggest CA1 is disadvantaged compared to CA3 in coping with ischemic stress, and this is expected to be an important contributing factor to CA1 selective vulnerability. (Data are available via ProteomeXchange identifier PXD004078 and GEO Series accession number GSE82146).
Collapse
Affiliation(s)
- Haihui Wang
- 1 Department of Physiology, Wayne State University, Detroit, USA
| | | | - Xuequn Chen
- 1 Department of Physiology, Wayne State University, Detroit, USA
| | - Donald J DeGracia
- 1 Department of Physiology, Wayne State University, Detroit, USA.,2 Center for Molecular Medicine and Genetics, Wayne State University, Detroit, USA
| |
Collapse
|
5
|
Sagnol S, Marchal S, Yang Y, Allemand F, de Santa Barbara P. Epithelial Splicing Regulatory Protein 1 (ESRP1) is a new regulator of stomach smooth muscle development and plasticity. Dev Biol 2016; 414:207-18. [PMID: 27108394 DOI: 10.1016/j.ydbio.2016.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/08/2016] [Accepted: 04/19/2016] [Indexed: 12/22/2022]
Abstract
In vertebrates, stomach smooth muscle development is a complex process that involves the tight transcriptional or post-transcriptional regulation of different signalling pathways. Here, we identified the RNA-binding protein Epithelial Splicing Regulatory Protein 1 (ESRP1) as an early marker of developing and undifferentiated stomach mesenchyme. Using a gain-of-function approach, we found that in chicken embryos, sustained expression of ESRP1 impairs stomach smooth muscle cell (SMC) differentiation and FGFR2 splicing profile. ESRP1 overexpression in primary differentiated stomach SMCs induced their dedifferentiation, promoted specific-FGFR2b splicing and decreased FGFR2c-dependent activity. Moreover, co-expression of ESRP1 and RBPMS2, another RNA-binding protein that regulates SMC plasticity and Bone Morphogenetic Protein (BMP) pathway inhibition, synergistically promoted SMC dedifferentiation. Finally, we also demonstrated that ESRP1 interacts with RBPMS2 and that RBPMS2-mediated SMC dedifferentiation requires ESRP1. Altogether, these results show that ESRP1 is expressed also in undifferentiated stomach mesenchyme and demonstrate its role in SMC development and plasticity.
Collapse
Affiliation(s)
- Sébastien Sagnol
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, 34295 Montpellier cedex 5, France
| | - Stéphane Marchal
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, 34295 Montpellier cedex 5, France
| | - Yinshan Yang
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, University of Montpellier, 34295 Montpellier cedex 5, France
| | - Frédéric Allemand
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, University of Montpellier, 34295 Montpellier cedex 5, France
| | - Pascal de Santa Barbara
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, 34295 Montpellier cedex 5, France.
| |
Collapse
|
6
|
Cascajo MV, Abdelmohsen K, Noh JH, Fernández-Ayala DJM, Willers IM, Brea G, López-Lluch G, Valenzuela-Villatoro M, Cuezva JM, Gorospe M, Siendones E, Navas P. RNA-binding proteins regulate cell respiration and coenzyme Q biosynthesis by post-transcriptional regulation of COQ7. RNA Biol 2015; 13:622-34. [PMID: 26690054 PMCID: PMC7609068 DOI: 10.1080/15476286.2015.1119366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3′-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis.
Collapse
Affiliation(s)
- María V Cascajo
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Kotb Abdelmohsen
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Ji Heon Noh
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Daniel J M Fernández-Ayala
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Imke M Willers
- c Departamento de Biología Molecular , Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM) and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Madrid , Spain
| | - Gloria Brea
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Guillermo López-Lluch
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Marina Valenzuela-Villatoro
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - José M Cuezva
- c Departamento de Biología Molecular , Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM) and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Madrid , Spain
| | - Myriam Gorospe
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Emilio Siendones
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Plácido Navas
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| |
Collapse
|
7
|
Kim HR, Kim H, Jung BJ, You GE, Jang S, Chung DK. Lipoteichoic acid isolated from Lactobacillus plantarum inhibits melanogenesis in B16F10 mouse melanoma cells. Mol Cells 2015; 38:163-70. [PMID: 26021887 PMCID: PMC4332035 DOI: 10.14348/molcells.2015.2263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/05/2014] [Accepted: 11/18/2014] [Indexed: 11/27/2022] Open
Abstract
Lipoteichoic acid (LTA) is a major component of the cell wall of Gram-positive bacteria. Its effects on living organisms are different from those of lipopolysaccharide (LPS) found in Gram-negative bacteria. LTA contributes to immune regulatory effects including anti-aging. In this study, we showed that LTA isolated from Lactobacillus plantarum (pLTA) inhibited melanogenesis in B16F10 mouse melanoma cells. pLTA reduced the cellular activity of tyrosinase and the expression of tyrosinase family members in a dose-dependent manner. The expression of microphthalmia-associated transcription factor (MITF), a key factor in the synthesis of melanin, was also decreased by pLTA. Further, we showed that pLTA activated melanogenesis signaling, such as extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinse (PI3K)/AKT. In addition, the expression of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and HuR, which are important RNA-binding proteins (RBPs), was reduced. pLTA likely degrades MITF via regulation of melanogenic signaling and RNA stability of melanogenic proteins, resulting in the reduction of melanin. Thus, our data suggest that pLTA has therapeutic potential for treating hyperpigmentation disorders and can also be used as a cosmetic whitening agent.
Collapse
Affiliation(s)
- Hye Rim Kim
- School of Biotechnology and Institute of Life Science and Resources, Yongin 449-701, Korea
| | - Hangeun Kim
- School of Biotechnology and Institute of Life Science and Resources, Yongin 449-701, Korea
- RNA Inc., College of Life Science, Kyung Hee University, Yongin 449-701, Korea
| | - Bong Jun Jung
- School of Biotechnology and Institute of Life Science and Resources, Yongin 449-701, Korea
| | - Ga Eun You
- School of Biotechnology and Institute of Life Science and Resources, Yongin 449-701, Korea
| | - Soojin Jang
- Institute Pasteur Korea, Seongnam 463-400, Korea
| | - Dae Kyun Chung
- School of Biotechnology and Institute of Life Science and Resources, Yongin 449-701, Korea
- RNA Inc., College of Life Science, Kyung Hee University, Yongin 449-701, Korea
- Skin Biotechnology Center, Gyeonggi Biocenter, Suwon 443-766, Korea
| |
Collapse
|
8
|
Zuccotti P, Colombrita C, Moncini S, Barbieri A, Lunghi M, Gelfi C, De Palma S, Nicolin A, Ratti A, Venturin M, Riva P. hnRNPA2/B1 and nELAV proteins bind to a specific U-rich element in CDK5R1 3'-UTR and oppositely regulate its expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:506-16. [PMID: 24792867 DOI: 10.1016/j.bbagrm.2014.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 04/09/2014] [Accepted: 04/23/2014] [Indexed: 01/27/2023]
Abstract
Cyclin-dependent kinase 5 regulatory subunit 1 (CDK5R1) encodes p35, a specific activator of cyclin-dependent kinase 5 (CDK5). CDK5 and p35 have a fundamental role in neuronal migration and differentiation during CNS development. Both the CDK5R1 3'-UTR's remarkable size and its conservation during evolution strongly indicate an important role in post-transcriptional regulation. We previously validated different regulatory elements in the 3'-UTR of CDK5R1, which affect transcript stability, p35 levels and cellular migration through the binding with nELAV proteins and miR-103/7 miRNAs. Interestingly, a 138 bp-long region, named C2.1, was identified as the most mRNA destabilizing portion within CDK5R1 3'-UTR. This feature was maintained by a shorter region of 73 bp, characterized by two poly-U stretches. UV-CL experiments showed that this region interacts with protein factors. UV-CLIP assays and pull-down experiments followed by mass spectrometry analysis demonstrated that nELAV and hnRNPA2/B1 proteins bind to the same U-rich element. These RNA-binding proteins (RBPs) were shown to oppositely control CDK5R1 mRNA stability and p35 protein content at post-trascriptional level. While nELAV proteins have a positive regulatory effect, hnRNPA2/B1 has a negative action that is responsible for the mRNA destabilizing activity both of the C2.1 region and of the full-length 3'-UTR. In co-expression experiments of hnRNPA2/B1 and nELAV RBPs we observed an overall decrease of p35 content. We also demonstrated that hnRNPA2/B1 can downregulate nELAV protein content but not vice versa. This study, by providing new insights on the combined action of different regulatory factors, contributes to clarify the complex post-transcriptional control of CDK5R1 gene expression.
Collapse
Affiliation(s)
- Paola Zuccotti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Claudia Colombrita
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy; IRCCS Istituto Auxologico Italiano, Cusano, Milan, Italy
| | - Silvia Moncini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Andrea Barbieri
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Marta Lunghi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Gelfi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy; IBFM-CNR, Segrate, Milan, Italy
| | - Sara De Palma
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy; IBFM-CNR, Segrate, Milan, Italy
| | - Angelo Nicolin
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Antonia Ratti
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy; IRCCS Istituto Auxologico Italiano, Cusano, Milan, Italy
| | - Marco Venturin
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy.
| | - Paola Riva
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
9
|
Papadodima O, Chatziioannou A, Patrinou-Georgoula M, Kolisis FN, Pletsa V, Guialis A. HuR-regulated mRNAs associated with nuclear hnRNP A1-RNP complexes. Int J Mol Sci 2013; 14:20256-81. [PMID: 24152440 PMCID: PMC3821614 DOI: 10.3390/ijms141020256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/06/2013] [Accepted: 09/16/2013] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional regulatory networks are dependent on the interplay of many RNA-binding proteins having a major role in mRNA processing events in mammals. We have been interested in the concerted action of the two RNA-binding proteins hnRNP A1 and HuR, both stable components of immunoselected hnRNP complexes and having a major nuclear localization. Specifically, we present here the application of the RNA-immunoprecipitation (RIP)-Chip technology to identify a population of nuclear transcripts associated with hnRNP A1-RNPs as isolated from the nuclear extract of either HuR WT or HuR-depleted (KO) mouse embryonic fibroblast (MEF) cells. The outcome of this analysis was a list of target genes regulated via HuR for their association (either increased or reduced) with the nuclear hnRNP A1-RNP complexes. Real time PCR analysis was applied to validate a selected number of nuclear mRNA transcripts, as well as to identify pre-spliced transcripts (in addition to their mature mRNA counterpart) within the isolated nuclear hnRNP A1-RNPs. The differentially enriched mRNAs were found to belong to GO categories relevant to biological processes anticipated for hnRNP A1 and HuR (such as transport, transcription, translation, apoptosis and cell cycle) indicating their concerted function in mRNA metabolism.
Collapse
Affiliation(s)
- Olga Papadodima
- Division of Biological Research and Biotechnology, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, Athens 11635, Greece; E-Mails: (O.P.); (A.C.); (M.P.-G.)
| | - Aristotelis Chatziioannou
- Division of Biological Research and Biotechnology, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, Athens 11635, Greece; E-Mails: (O.P.); (A.C.); (M.P.-G.)
| | - Meropi Patrinou-Georgoula
- Division of Biological Research and Biotechnology, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, Athens 11635, Greece; E-Mails: (O.P.); (A.C.); (M.P.-G.)
| | - Fragiskos N. Kolisis
- Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens 15780, Greece; E-Mail:
| | - Vasiliki Pletsa
- Division of Biological Research and Biotechnology, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, Athens 11635, Greece; E-Mails: (O.P.); (A.C.); (M.P.-G.)
- Authors to whom correspondence should be addressed; E-Mails: (V.P.); (A.G.); Tel.: +30-210-7273-754 (V.P. & A.G.); Fax: +30-210-7273-677 (V.P. & A.G.)
| | - Apostolia Guialis
- Division of Biological Research and Biotechnology, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, Athens 11635, Greece; E-Mails: (O.P.); (A.C.); (M.P.-G.)
- Authors to whom correspondence should be addressed; E-Mails: (V.P.); (A.G.); Tel.: +30-210-7273-754 (V.P. & A.G.); Fax: +30-210-7273-677 (V.P. & A.G.)
| |
Collapse
|
10
|
Impera L, Daniele G, Marra L, Baldazzi C, Iacobucci I, Martinelli G, Testoni N, Storlazzi CT. A novel t(2;10)(q31;p12) balanced translocation in acute myeloid leukemia. Hematol Rep 2012; 4:e27. [PMID: 23355945 PMCID: PMC3555215 DOI: 10.4081/hr.2012.e27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 11/30/2012] [Indexed: 11/23/2022] Open
Abstract
We describe a case of acute myeloid leukemia M5 showing a balanced t(2;10) (q31;p12) translocation. This has never been described before as the sole cytogenetic abnormality in a bone marrow cell clone at onset. Using fluorescence in situ hybridization with properly designed bacterial artificial chromosome probes, we mapped the breakpoint regions on both derivative chromosomes 2 and 10: der(2) and der(10), respectively. The MPP7 gene, disrupted by the breakpoint on chromosome 10, was juxtaposed upstream of both HNRNA3 and NFE2L2 genes on chromosome 2, without the formation of any fusion gene. Using real-time quantitative polymerase chain reaction, we tested the possible disregulation of any of the breakpoint-associated genes as a consequence of the translocation, but we found no statistically significant alteration. Considering the potential role of this clonal cytogenetic abnormality in leukemogenesis, we speculate that this translocation could have an impact on additional genes mapping outside the breakpoint regions. However, the limited amount of RNA material available prevented us from testing this hypothesis in this present case.
Collapse
|
11
|
Rübsamen D, Blees JS, Schulz K, Döring C, Hansmann ML, Heide H, Weigert A, Schmid T, Brüne B. IRES-dependent translation of egr2 is induced under inflammatory conditions. RNA (NEW YORK, N.Y.) 2012; 18:1910-1920. [PMID: 22915601 PMCID: PMC3446713 DOI: 10.1261/rna.033019.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 07/17/2012] [Indexed: 06/01/2023]
Abstract
Adjusting translation is crucial for cells to rapidly adapt to changing conditions. While pro-proliferative signaling via the PI3K-mTOR-pathway is known to induce cap-dependent translation, stress conditions, such as nutrient deprivation or hypoxia often activate alternative modes of translation, e.g., via internal ribosome entry sites (IRESs). As the effects of inflammatory conditions on translation are only poorly characterized, we aimed at identifying translationally deregulated targets in inflammatory settings. For this purpose, we cocultured breast tumor cells with conditioned medium of activated monocyte-derived macrophages (CM). Polysome profiling and microarray analysis identified early growth response-2 (egr2) to be regulated at the level of translation. Using bicistronic reporter assays, we found that egr2 contains an IRES within its 5' UTR, which facilitated enhanced translation upon CM treatment. We further provide evidence that the activity of egr2-IRES was induced by IL-1β and p38-MAPK signaling. In addition, we identified several potential IRES trans-acting factors (ITAFs) such as polypyrimidine tract binding protein (PTB) and hnRNP-A1 that directly bind to the egr2-5'UTR. In summary, our data provide evidence that egr2 expression is translationally regulated via an IRES element, which is responsive to an inflammatory environment.
Collapse
Affiliation(s)
- Daniela Rübsamen
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Johanna S. Blees
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Kathrin Schulz
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Claudia Döring
- Senckenberg Institute of Pathology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Martin-Leo Hansmann
- Senckenberg Institute of Pathology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Heinrich Heide
- Molecular Bioenergetics Group, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| |
Collapse
|
12
|
Papadopoulou C, Ganou V, Patrinou-Georgoula M, Guialis A. HuR-hnRNP interactions and the effect of cellular stress. Mol Cell Biochem 2012; 372:137-47. [PMID: 22983828 DOI: 10.1007/s11010-012-1454-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/05/2012] [Indexed: 12/11/2022]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute an important group of RNA-binding proteins (RBPs) that play an active role in post-transcriptional gene regulation. Here, we focus on representative members of the hnRNP group of RBPs, namely hnRNP A1 and hnRNP C1/C2, which participate mainly in RNA splicing, as well as on HuR, a prototype of the AU-rich element-binding proteins (ARE-BP), which has an established role in regulating the stability and translation of target mRNAs. HuR and most hnRNPs are primarily localized in the nucleoplasm, and they can shuttle between the nucleus and the cytoplasm. Herein, we have extended our recently reported findings on the ability of HuR to associate with the immunopurified from mammalian cell extracts hnRNP and mRNP complexes by the application of an anti-HuR antibody that selects HuR-RNP complexes. We find that the protein components precipitated by the anti-HuR antibody are very similar to the hnRNP-HuR complexes reported previously. The in vivo association of HuR and hnRNP proteins is examined in the presence and the absence of thermal stress by confocal microscopy of intact cells and by in situ nuclear matrix preparation. We find notable heat-induced changes of HuR and of hnRNP A1, which exit the nucleus and co-localize to large cytoplasmic foci that represent heat-induced stress granules. The functional implications of HuR-hnRNP interactions in stressed and unstressed cells are discussed.
Collapse
Affiliation(s)
- Christina Papadopoulou
- RNA Processing Program, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | | | | | | |
Collapse
|
13
|
Kafasla P, Karakasiliotis I, Kontoyiannis DL. Decoding the functions of post-transcriptional regulators in the determination of inflammatory states: focus on macrophage activation. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:509-23. [PMID: 22761012 DOI: 10.1002/wsbm.1179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inflammation involves a continuum of intercellular interactions and cellular responses targeting infectious or tissue damage while maintaining homeostasis. At its core, this continuum encompasses the alternating phenotypes of innate immune cells; each phenotype is typified by the expression of molecules which either support host defence or aid tissue restoration and the resolution of inflammation. The aberrant persistence of any such phenotype can drive chronic inflammatory pathology. For macrophages, these phenotypes arise as changes in cellular plasticity because of adaptation. As such their underlying gene expression programs may not be determined by robust transcriptomic and epigenetic programs but by more flexible means like post-transcriptional mechanisms affecting mRNA use. These mechanisms require the assemblies of RNA-binding proteins (RBPs) and non-coding RNAs onto specific elements on their RNA targets in Ribonucleoprotein particles (RNPs) which control mRNA maturation, turnover and translation. The collection of RNPs within a cell defines the ribonome, that is, a high order system of coordinative post-transcriptional determination. mRNAs involved in the definition of different macrophage activation phenotypes share elements of RBP recognition rendering them amenable to ribonomic regulation. The molecular features of their cognitive RBPs and the pathologies developing in the corresponding mouse mutants support their involvement in inflammatory reactions. We view this information in the context of macrophage activation states to propose that these states can be determined via differential--synergistic or antagonistic--RNP associations. In doing so, we substantiate the need for the use of systems platforms to model RNP hierarchies controlling the continuum of inflammation.
Collapse
Affiliation(s)
- Panagiota Kafasla
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | | | | |
Collapse
|
14
|
Papadopoulou C, Boukakis G, Ganou V, Patrinou-Georgoula M, Guialis A. Expression profile and interactions of hnRNP A3 within hnRNP/mRNP complexes in mammals. Arch Biochem Biophys 2012; 523:151-60. [DOI: 10.1016/j.abb.2012.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/27/2012] [Accepted: 04/13/2012] [Indexed: 11/15/2022]
|
15
|
A fraction of the transcription factor TAF15 participates in interactions with a subset of the spliceosomal U1 snRNP complex. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1812-24. [PMID: 22019700 DOI: 10.1016/j.bbapap.2011.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/23/2011] [Accepted: 09/26/2011] [Indexed: 10/16/2022]
Abstract
RNA/ssDNA-binding proteins comprise an emerging class of multifunctional proteins with an anticipated role in coupling transcription with RNA processing. We focused here on the highly related transcription factors of the TET sub-class: TLS/FUS, EWS and in particular the least studied member TAF15. An extensive array of immunoprecipitation studies on differentially extracted HeLa nuclei revealed the specific association of TAF15 with the spliceosomal U1 snRNP complex, as deduced by the co-precipitating U1 snRNA, U1-70K and Sm proteins. Additionally, application of anti-U1 RNP autoantibodies identified TAF15 in the immunoprecipitates. Minor fractions of nuclear TAF15 and U1 snRNP were involved in this association. Pull-down assays using recombinant TAF15 and U1 snRNP-specific proteins (U1-70K, U1A and U1C) provided in vitro evidence for a direct protein-protein interaction between TAF15 and U1C, which required the N-terminal domain of TAF15. The ability of TAF15 to directly contact RNA, most likely RNA pol II transcripts, was supported by in vivo UV cross-linking studies in the presence of α-amanitin. By all findings, the existence of a functionally discrete subset of U1 snRNP in association with TAF15 was suggested and provided further support for the involvement of U1 snRNP components in early steps of coordinated gene expression.
Collapse
|
16
|
Pastor T, Pagani F. Interaction of hnRNPA1/A2 and DAZAP1 with an Alu-derived intronic splicing enhancer regulates ATM aberrant splicing. PLoS One 2011; 6:e23349. [PMID: 21858080 PMCID: PMC3152568 DOI: 10.1371/journal.pone.0023349] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022] Open
Abstract
We have previously identified an Alu-derived Intronic Splicing enhancer (ISE) in the Ataxia Teleangectasia Mutated gene (ATM) that facilitates intron pre-mRNA processing and leads to the inclusion of a cryptic exon in the final mRNA transcript. By using an RNA pull-down assay, we show here that hnRNPA1/A2, HuR and DAZAP1 splicing factors and DHX36 RNA helicase bind to the ISE. By functional studies (overexpression and siRNA experiments), we demonstrate that hnRNPA1 and DAZAP1 are indeed involved in ISE-dependent ATM cryptic exon activation, with hnRNPA1 acting negatively and DAZAP1 positively on splicing selection. On the contrary, HuR and DHX36 have no effect on ATM splicing pattern. These data suggest that splicing factors with both negative and positive effect can assemble on the intronic Alu repeats and regulate pre-mRNA splicing.
Collapse
Affiliation(s)
- Tibor Pastor
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Franco Pagani
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- * E-mail:
| |
Collapse
|
17
|
Izquierdo JM. Heterogeneous ribonucleoprotein C displays a repressor activity mediated by T-cell intracellular antigen-1-related/like protein to modulate Fas exon 6 splicing through a mechanism involving Hu antigen R. Nucleic Acids Res 2010; 38:8001-14. [PMID: 20699271 PMCID: PMC3001070 DOI: 10.1093/nar/gkq698] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
T-cell intracellular antigen (TIA)-proteins are known regulators of alternative pre-mRNA splicing. In this study, pull-down experiments and mass spectrometry indicate that TIAR/TIAL1 and hnRNP C1/C2 are associated in HeLa nuclear extracts. Co-immunoprecipitation and GST-pull-down assays confirmed this interaction. Interestingly, binding requires the glutamine-rich (Q-rich) C-terminal domain of TIAR and the leucine-rich plus acidic residues-rich C-terminal domains of hnRNP C1/C2. This interaction also occurs in an RNA-dependent manner. Recombinant GFP-TIAR and RFP-hnRNP C1 proteins display partial nuclear co-localization when overexpressed in HeLa cells, and this requires the Q-rich domain of TIAR. hnRNP C1 overexpression in the presence of rate-limiting amounts of TIAR in HeLa and HEK293 cells affects alternative splicing of Fas and FGFR2 minigenes, promoting Fas exon 6 and FGFR2 exon K-SAM skipping, respectively. The repressor activity of hnRNP C1 on Fas exon 6 splicing is mediated by Hu antigen R (HuR). Experiments involving tethering approaches showed that the repressor capacity of hnRNP C1 is associated with an exonic splicing silencer in Fas exon 6. This effect was reversed by splice-site strengthening and is linked to its basic leucine zipper-like motif. These results suggest that hnRNP C1/C2 acts as a bridge between HuR and TIAR to modulate alternative Fas splicing.
Collapse
Affiliation(s)
- José M Izquierdo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Lab-107, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|