1
|
Elshazly AM, Xu J, Melhem N, Abdulnaby A, Elzahed AA, Saleh T, Gewirtz DA. Is Autophagy Targeting a Valid Adjuvant Strategy in Conjunction with Tyrosine Kinase Inhibitors? Cancers (Basel) 2024; 16:2989. [PMID: 39272847 PMCID: PMC11394573 DOI: 10.3390/cancers16172989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) represent a relatively large class of small-molecule inhibitors that compete with ATP for the catalytic binding site of tyrosine kinase proteins. While TKIs have demonstrated effectiveness in the treatment of multiple malignancies, including chronic myelogenous leukemia, gastrointestinal tumors, non-small cell lung cancers, and HER2-overexpressing breast cancers, as is almost always the case with anti-neoplastic agents, the development of resistance often imposes a limit on drug efficacy. One common survival response utilized by tumor cells to ensure their survival in response to different stressors, including anti-neoplastic drugs, is that of autophagy. The autophagic machinery in response to TKIs in multiple tumor models has largely been shown to be cytoprotective in nature, although there are a number of cases where autophagy has demonstrated a cytotoxic function. In this review, we provide an overview of the literature examining the role that autophagy plays in response to TKIs in different preclinical tumor model systems in an effort to determine whether autophagy suppression or modulation could be an effective adjuvant strategy to increase efficiency and/or overcome resistance to TKIs.
Collapse
Affiliation(s)
- Ahmed M Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Nebras Melhem
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Alsayed Abdulnaby
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Aya A Elzahed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, Hashemite University, Zarqa 13133, Jordan
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA
| |
Collapse
|
2
|
Hussain S, Mursal M, Verma G, Hasan SM, Khan MF. Targeting oncogenic kinases: Insights on FDA approved tyrosine kinase inhibitors. Eur J Pharmacol 2024; 970:176484. [PMID: 38467235 DOI: 10.1016/j.ejphar.2024.176484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Protein kinases play pivotal roles in various biological functions, influencing cell differentiation, promoting survival, and regulating the cell cycle. The disruption of protein kinase activity is intricately linked to pathways in tumor development. This manuscript explores the transformative impact of protein kinase inhibitors on cancer therapy, particularly their efficacy in cases driven by targeted mutations. Focusing on key tyrosine kinase inhibitors (TKIs) like Bcr-Abl, Epidermal Growth Factor Receptor (EGFR), and Vascular Endothelial Growth Factor Receptor (VEGFR), it targets critical kinase families in cancer progression. Clinical trial details of these TKIs offer insights into their therapeutic potentials. Learning from FDA-approved kinase inhibitors, the review dissects trends in kinase drug development since imatinib's paradigm-shifting approval in 2001. TKIs have evolved into pivotal drugs, extending beyond oncology. Ongoing clinical trials explore novel kinase targets, revealing the vast potential within the human kinome. The manuscript provides a detailed analysis of advancements until 2022, discussing the roles of specific oncogenic protein kinases in cancer development and carcinogenesis. Our exploration on PubMed for relevant and significant TKIs undergoing pre-FDA approval phase III clinical trials enriches the discussion with valuable findings. While kinase inhibitors exhibit lower toxicity than traditional chemotherapy in cancer treatment, challenges like resistance and side effects emphasize the necessity of understanding resistance mechanisms, prompting the development of novel inhibitors like osimertinib targeting specific mutant proteins. The review advocates thorough research on effective combination therapies, highlighting the future development of more selective RTKIs to optimize patient-specific cancer treatment and reduce adverse events.
Collapse
Affiliation(s)
- Sahil Hussain
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Mohd Mursal
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Garima Verma
- RWE Specialist, HealthPlix Technologies, Bengaluru, Karnataka 560103, India
| | - Syed Misbahul Hasan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Mohemmed Faraz Khan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
3
|
Elkholy AR, El-Sheakh AR, Suddek GM. Nilotinib alleviates paraquat-induced hepatic and pulmonary injury in rats via the Nrf2/Nf-kB axis. Int Immunopharmacol 2023; 124:110886. [PMID: 37678030 DOI: 10.1016/j.intimp.2023.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Paraquat (PQ, 1,1'-dimethyl-4-4'-bipyridinium dichloride) is a highly toxic quaternary ammonium herbicide widely used in agriculture. It exerts its toxic effects mainly as a result of its redox cycle via the production of superoxide anions in organisms, leading to an imbalance in the redox state of the cell causing oxidative damage and finally cell death. The aim of this study was to estimate the beneficial protective role of nilotinib (NIL) on PQ-induced hepatic and pulmonary toxicity in rats. METHODS Male wistar rats were randomly divided into four groups, namely control, PQ (15 mg/kg), PQ plus NIL (5 mg/kg) and PQ plus NIL (10 mg/kg). NIL (5 and 10 mg/kg/day) was taken by oral syringe for five days followed by a single intra-peritoneal administration of PQ (15 mg/kg) on sixth day. RESULTS Pretreatment with NIL relieved the histological damage in liver and lung tissues and improved hepatic biochemical markers. It significantly (p < 0.05) reduced serum levels of ALT, AST, ALP, Y-GT and total bilirubin while increased that of albumin. Meanwhile, NIL significantly (p < 0.05) reduced oxidative stress markers via reduction of malondialdhyde (MDA) and elevation of glutathione (GSH) contents in liver and lung tissues. In addition, it significantly (p < 0.05) decreased the inflammation by reducing hepatic and pulmonary tumor necrosis factor alpha (TNF-α) and nuclear transcription factor kappa B (NF-KB/p65) contents. Nilotinib also down-regulated apoptosis by reducing cysteinyl aspartate-specific proteinase-3 (caspase-3). Furthermore, it upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and microtubule-associated protein 1A/1B-light chain 3 II (LC3II) in liver and lung tissues. SIGNIFICANCE NIL suppressed PQ-induced inflammation, oxidative stress and apoptosis in liver and lung tissues by modulating Nrf2/Nf-kB axis.
Collapse
Affiliation(s)
- Azza R Elkholy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt; Future studies and Risks management' National Committee of Drugs, Academy of Scientific Research, Ministry of Higher Education, Elsayeda Zeinab, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
4
|
Brahma R, Shin JM, Cho KH. KinScan: AI-based rapid profiling of activity across the kinome. Brief Bioinform 2023; 24:bbad396. [PMID: 37985454 DOI: 10.1093/bib/bbad396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/22/2023] [Accepted: 10/14/2023] [Indexed: 11/22/2023] Open
Abstract
Kinases play a vital role in regulating essential cellular processes, including cell cycle progression, growth, apoptosis, and metabolism, by catalyzing the transfer of phosphate groups from adenosing triphosphate to substrates. Their dysregulation has been closely associated with numerous diseases, including cancer development, making them attractive targets for drug discovery. However, accurately predicting the binding affinity between chemical compounds and kinase targets remains challenging due to the highly conserved structural similarities across the kinome. To address this limitation, we present KinScan, a novel computational approach that leverages large-scale bioactivity data and integrates the Multi-Scale Context Aware Transformer framework to construct a virtual profiling model encompassing 391 protein kinases. The developed model demonstrates exceptional prediction capability, distinguishing between kinases by utilizing structurally aligned kinase binding site features derived from multiple sequence alignment for fast and accurate predictions. Through extensive validation and benchmarking, KinScan demonstrated its robust predictive power and generalizability for large-scale kinome-wide profiling and selectivity, uncovering associations with specific diseases and providing valuable insights into kinase activity profiles of compounds. Furthermore, we deployed a web platform for end-to-end profiling and selectivity analysis, accessible at https://kinscan.drugonix.com/softwares/kinscan.
Collapse
Affiliation(s)
- Rahul Brahma
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jae-Min Shin
- AzothBio, Rm. DA724 Hyundai Knowledge Industry Center, Hanam-si, Gyeonggi-do, Republic of Korea
| | - Kwang-Hwi Cho
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Farina N, Campochiaro C, Lescoat A, Benanti G, De Luca G, Khanna D, Dagna L, Matucci-Cerinic M. Drug development and novel therapeutics to ensure a personalized approach in the treatment of systemic sclerosis. Expert Rev Clin Immunol 2023; 19:1131-1142. [PMID: 37366065 DOI: 10.1080/1744666x.2023.2230370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a systemic disease encompassing autoimmunity, vasculopathy, and fibrosis. SSc is still burdened by high mortality and morbidity rates. Recent advances in understanding the pathogenesis of SSc have identified novel potential therapeutic targets. Several clinical trials have been subsequently designed to evaluate the efficacy of a number of new drugs. The aim of this review is to provide clinicians with useful information about these novel molecules. AREA COVERED In this narrative review, we summarize the available evidence regarding the most promising targeted therapies currently under investigation for the treatment of SSc. These medications include kinase inhibitors, B-cell depleting agents, and interleukin inhibitors. EXPERT OPINION Over the next five years, several new, targeted drugs will be introduced in clinical practice for the treatment of SSc. Such pharmacological agents will expand the existing pharmacopoeia and enable a more personalized and effective approach to patients with SSc. Thus, it will not only possible to target a specific disease domain, but also different stages of the disease.
Collapse
Affiliation(s)
- N Farina
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
| | - C Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - A Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
| | - G Benanti
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - G De Luca
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - D Khanna
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - L Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - M Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Coria-Rodríguez H, Ochoa S, de Anda-Jáuregui G, Hernández-Lemus E. Drug repurposing for Basal breast cancer subpopulations using modular network signatures. Comput Biol Chem 2023; 105:107902. [PMID: 37348299 DOI: 10.1016/j.compbiolchem.2023.107902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
Breast cancer is characterized as being a heterogeneous pathology with a broad phenotype variability. Breast cancer subtypes have been developed in order to capture some of this heterogeneity. Each of these breast cancer subtypes, in turns retains varied characteristic features impacting diagnostic, prognostic and therapeutics. Basal breast tumors, in particular have been challenging in these regards. Basal breast cancer is often more aggressive, of rapid evolution and no tailor-made targeted therapies are available yet to treat it. Arguably, epigenetic variability is behind some of these intricacies. It is possible to further classify basal breast tumor in groups based on their non-coding transcriptome and methylome profiles. It is expected that these groups will have differences in survival as well as in sensitivity to certain classes of drugs. With this in mind, we implemented a computational learning approach to infer different subpopulations of basal breast cancer (from TCGA multi-omic data) based on their epigenetic signatures. Such epigenomic signatures were associated with different survival profiles; we then identified their associated gene co-expression network structure, extracted a signature based on modules within these networks, and use these signatures to find and prioritize drugs (in the LINCS dataset) that may be used to target these types of cancer. In this way we are introducing the analytical workflow for an epigenomic signature-based drug repurposing structure.
Collapse
Affiliation(s)
- Hiram Coria-Rodríguez
- Computational Genomics Division, National Institute of Genomic Medicine, Periferico Sur 4809, Mexico City, 14610, Mexico
| | - Soledad Ochoa
- Computational Genomics Division, National Institute of Genomic Medicine, Periferico Sur 4809, Mexico City, 14610, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Periferico Sur 4809, Mexico City, 14610, Mexico; Center for Complexity Sciences, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Mexico City, 04510, Mexico; Catedras Conacyt, National Council on Science and Technology, Insurgentes Sur, Mexico City, 03940, Mexico.
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Periferico Sur 4809, Mexico City, 14610, Mexico; Center for Complexity Sciences, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Mexico City, 04510, Mexico.
| |
Collapse
|
7
|
Tsukamoto S, Takahama T, Mavrogenis AF, Tanaka Y, Tanaka Y, Errani C. Clinical outcomes of medical treatments for progressive desmoid tumors following active surveillance: a systematic review. Musculoskelet Surg 2023; 107:7-18. [PMID: 35150408 DOI: 10.1007/s12306-022-00738-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/29/2022] [Indexed: 12/14/2022]
Abstract
Approximately 80% of desmoid tumors (DTs) show spontaneous regression or disease stabilization during first-line active surveillance. Medical treatment can be considered in cases of disease progression. This systematic review aimed to evaluate the effectiveness and toxicity of each medical treatment by reviewing only the studies that included progressive disease as the inclusion criterion. We searched the EMBASE, PubMed, and CENTRAL databases to identify published studies for progressive DTs. The disease control rates of the medical treatments, such as low-dose chemotherapy with methotrexate plus vinblastine or vinorelbine, imatinib, sorafenib, pazopanib, nilotinib, anlotinib, doxorubicin-based agents, liposomal doxorubicin, hydroxyurea, and oral vinorelbine for progressive DTs were 71-100%, 78-92%, 67-96%, 84%, 88%, 86%, 89-100%, 90-100%, 75%, and 64%, respectively. Low-dose chemotherapy, sorafenib, pazopanib, nilotinib, anlotinib, and liposomal doxorubicin had similar toxicities. Sorafenib and pazopanib were less toxic than imatinib. Doxorubicin-based chemotherapy was associated with the highest toxicity. Hydroxyurea and oral vinorelbine exhibited the lowest toxicity. Stepwise therapy escalation from an initial, less toxic treatment to more toxic agents is recommended for progressive DTs. Sorafenib and pazopanib had limited on-treatment side effects but had the possibility to induce long-term treatment-related side effects. In contrast, low-dose chemotherapy has some on-treatment side effects and is known to have very low long-term toxicity. Thus, for progressive DTs following active surveillance, low-dose chemotherapy is recommended in young patients as long-term side effects are minor, whereas therapies such as sorafenib and pazopanib is recommended for older patients as early side effects are minor.
Collapse
Affiliation(s)
- S Tsukamoto
- Department of Orthopaedic Surgery, Nara Medical University, 840, Shijo-cho, Kashihara, Nara, 634-8521, Japan.
| | - T Takahama
- Department of Medical Oncology, Kindai University Nara Hospital, Nara, 630-0293, Japan
| | - A F Mavrogenis
- First Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, 41 Ventouri Street, Holargos, 15562, Athens, Greece
| | - Y Tanaka
- Department of Anesthesiology, Nara Medical University, 840, Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Y Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, 840, Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - C Errani
- Department of Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| |
Collapse
|
8
|
Walsh RR, Damle NK, Mandhane S, Piccoli SP, Talluri RS, Love D, Yao SL, Ramanathan V, Hurko O. Plasma and cerebrospinal fluid pharmacokinetics of vodobatinib, a neuroprotective c-Abl tyrosine kinase inhibitor for the treatment of Parkinson's disease. Parkinsonism Relat Disord 2023; 108:105281. [PMID: 36717298 DOI: 10.1016/j.parkreldis.2023.105281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Preclinical evidence suggests that c-Abl is critical in the pathogenesis of Parkinson's Disease (PD). Vodobatinib (K0706) is a potent, specific Abl kinase inhibitor currently being developed for the treatment of PD. In previously reported studies, nilotinib, a multikinase c-Abl inhibitor, did not show clinical activity as evidenced by no improvement of symptoms or the rate of decline after one to six months of treatment at the maximum permissible dose, presumably because of insufficient CNS penetration. Here we report clinical PK and safety data for vodobatinib. OBJECTIVES To determine safety, plasma PK, and CSF penetration of vodobatinib in healthy volunteers and PD subjects following oral administration, and compare CSF levels to in vitro concentrations required for c-Abl inhibition relative to data reported for nilotinib. METHODS Inhibition of c-Abl kinase activity and c-Abl binding affinity were first assessed in vitro. Healthy human volunteers and PD patients received various oral doses of vodobatinib once-daily for seven and fourteen days respectively, to assess safety, and plasma and CSF PK. RESULTS In in vitro assays, vodobatinib was more potent (kinase IC50 = 0.9 nM) than nilotinib (kinase IC50 = 15-45 nM). Administration of vodobatinib 48, 192 and 384 mg to healthy subjects for 7 days yielded mean Cmax, CSF values of 1.8, 11.6, and 12.2 nM respectively, with the two highest doses exceeding the IC50 over the entire dosing interval. Cavg, CSF values were 6-8 times greater than the IC50. Comparable CSF levels were observed in PD patients. All doses were well tolerated in both cohorts. CONCLUSION Based on achieved CSF concentrations, the potential for c-Abl inhibition in the brain is substantially higher with vodobatinib than with nilotinib. The CSF PK profile of vodobatinib is suitable for determining if c-Abl inhibition will be neuroprotective in PD patients.
Collapse
Affiliation(s)
- Ryan R Walsh
- Sun Pharma Advanced Research Company Ltd, Cranbury, NJ, USA.
| | - Nitin K Damle
- Sun Pharma Advanced Research Company Ltd, Mumbai, India
| | | | | | | | - Damon Love
- Sun Pharma Advanced Research Company Ltd, Cranbury, NJ, USA
| | - Siu-Long Yao
- Sun Pharma Advanced Research Company Ltd, Cranbury, NJ, USA
| | | | - Orest Hurko
- Sun Pharma Advanced Research Company Ltd, Cranbury, NJ, USA
| |
Collapse
|
9
|
Zhou F, Zhu X, Liu Y, Sun Y, Zhang Y, Cheng D, Wang W. Coronary atherosclerosis and chemotherapy: From bench to bedside. Front Cardiovasc Med 2023; 10:1118002. [PMID: 36742069 PMCID: PMC9892653 DOI: 10.3389/fcvm.2023.1118002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Cardiovascular disease, particularly coronary artery disease, is the leading cause of death in humans worldwide. Coronary heart disease caused by chemotherapy affects the prognosis and survival of patients with tumors. The most effective chemotherapeutic drugs for cancer include proteasome inhibitors, tyrosine kinase inhibitors, immune checkpoint inhibitors, 5-fluorouracil, and anthracyclines. Animal models and clinical trials have consistently shown that chemotherapy is closely associated with coronary events and can cause serious adverse cardiovascular events. Adverse cardiovascular events after chemotherapy can affect the clinical outcome, treatment, and prognosis of patients with tumors. In recent years, with the development of new chemotherapeutic drugs, new discoveries have been made about the effects of drugs used for chemotherapy on cardiovascular disease and its related mechanisms, such as inflammation. This review article summarizes the effects of chemotherapeutic drugs on coronary artery disease and its related mechanisms to guide efforts in reducing cardiovascular adverse events during tumor chemotherapy, preventing the development of coronary heart disease, and designing new prevention and treatment strategies for cardiotoxicity caused by clinical tumor chemotherapy.
Collapse
Affiliation(s)
- Fanghui Zhou
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinxin Zhu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yao Liu
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue Sun
- Department of Blood and Endocrinology, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, Heilongjiang, China
| | - Ying Zhang
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | | | - Wei Wang
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China,*Correspondence: Wei Wang,
| |
Collapse
|
10
|
Schuster R, Younesi F, Ezzo M, Hinz B. The Role of Myofibroblasts in Physiological and Pathological Tissue Repair. Cold Spring Harb Perspect Biol 2023; 15:a041231. [PMID: 36123034 PMCID: PMC9808581 DOI: 10.1101/cshperspect.a041231] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Myofibroblasts are the construction workers of wound healing and repair damaged tissues by producing and organizing collagen/extracellular matrix (ECM) into scar tissue. Scar tissue effectively and quickly restores the mechanical integrity of lost tissue architecture but comes at the price of lost tissue functionality. Fibrotic diseases caused by excessive or persistent myofibroblast activity can lead to organ failure. This review defines myofibroblast terminology, phenotypic characteristics, and functions. We will focus on the central role of the cell, ECM, and tissue mechanics in regulating tissue repair by controlling myofibroblast action. Additionally, we will discuss how therapies based on mechanical intervention potentially ameliorate wound healing outcomes. Although myofibroblast physiology and pathology affect all organs, we will emphasize cutaneous wound healing and hypertrophic scarring as paradigms for normal tissue repair versus fibrosis. A central message of this review is that myofibroblasts can be activated from multiple cell sources, varying with local environment and type of injury, to either restore tissue integrity and organ function or create an inappropriate mechanical environment.
Collapse
Affiliation(s)
- Ronen Schuster
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
| | - Fereshteh Younesi
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Maya Ezzo
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| |
Collapse
|
11
|
Rai Y, Hara T. Tyrosine Kinase Inhibitor-associated Cerebral Arterial Occlusive Disease Treated with High-flow Bypass Surgery: A Case Report. NMC Case Rep J 2023; 10:61-66. [PMID: 37065876 PMCID: PMC10101701 DOI: 10.2176/jns-nmc.2022-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/05/2023] [Indexed: 04/18/2023] Open
Abstract
Nilotinib, one of the tyrosine kinase inhibitors, has been used to treat chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). Nilotinib-associated cerebral arterial occlusive disease, which is treated with medicine with/without bypass surgery or stenting, has been sporadically reported to occur. The mechanism of the nilotinib-associated cerebral disease has not been clarified and is still controversial. Here we present the case of a 39-year-old woman with Ph+ ALL treated with nilotinib, which led to symptomatic intracranial arterial stenosis. We performed high-flow bypass surgery and observed the arterial stenotic change in the stenotic portion intraoperatively, whose findings strongly supported the theory of atherosclerosis and seemed to be irreversible.
Collapse
Affiliation(s)
- Yurie Rai
- Department of Neurosurgery, Toranomon Hospital, Tokyo, Japan
| | - Takayuki Hara
- Department of Neurosurgery, Toranomon Hospital, Tokyo, Japan
| |
Collapse
|
12
|
Kaehler M, Cascorbi I. Molecular Mechanisms of Tyrosine Kinase Inhibitor Resistance in Chronic Myeloid Leukemia. Handb Exp Pharmacol 2023; 280:65-83. [PMID: 36882601 DOI: 10.1007/164_2023_639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The hematopoietic neoplasm chronic myeloid leukemia (CML) is a rare disease caused by chromosomal reciprocal translocation t(9;22)(q34:q11) with subsequent formation of the BCR-ABL1 fusion gene. This fusion gene encodes a constitutively active tyrosine kinase, which results in malignant transformation of the cells. Since 2001, CML can be effectively treated using tyrosine kinase inhibitors (TKIs) such as imatinib, which prevent phosphorylation of downstream targets by blockade of the BCR-ABL kinase. Due to its tremendous success, this treatment became the role model of targeted therapy in precision oncology. Here, we review the mechanisms of TKI resistance focusing on BCR-ABL1-dependent and -independent mechanisms. These include the genomics of the BCR-ABL1, TKI metabolism and transport and alternative signaling pathways.
Collapse
Affiliation(s)
- Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
13
|
Alteration of Autophagy and Glial Activity in Nilotinib-Treated Huntington's Disease Patients. Metabolites 2022; 12:metabo12121225. [PMID: 36557263 PMCID: PMC9781133 DOI: 10.3390/metabo12121225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Nilotinib is a tyrosine kinase inhibitor that is safe and tolerated in neurodegeneration, it achieves CSF concentration that is adequate to inhibit discoidin domain receptor (DDR)-1. Nilotinib significantly affects dopamine metabolites, including Homovanillic acid (HVA), resulting in an increase in brain dopamine. HD is a hereditary disease caused by mutations in the Huntingtin's (HTT) gene and characterized by neurodegeneration and motor and behavioral symptoms that are associated with activation of dopamine receptors. We explored the effects of a low dose of nilotinib (150 mg) on behavioral changes and motor symptoms in manifest HD patients and examined the effects of nilotinib on several brain mechanisms, including dopamine transmission and gene expression via cerebrospinal fluid (CSF) miRNA sequencing. Nilotinib, 150 mg, did not result in any behavioral changes, although it significantly attenuated HVA levels, suggesting reduction of dopamine catabolism. There was no significant change in HTT, phosphorylated neuro-filament and inflammatory markers in the CSF and plasma via immunoassays. Whole miRNA genome sequencing of the CSF revealed significant longitudinal changes in miRNAs that control specific genes associated with autophagy, inflammation, microglial activity and basal ganglia neurotransmitters, including dopamine and serotonin.
Collapse
|
14
|
Carracedo M, Pawelzik SC, Artiach G, Pouwer MG, Plunde O, Saliba-Gustafsson P, Ehrenborg E, Eriksson P, Pieterman E, Stenke L, Princen HMG, Franco-Cereceda A, Bäck M. The tyrosine kinase inhibitor nilotinib targets discoidin domain receptor 2 in calcific aortic valve stenosis. Br J Pharmacol 2022; 179:4709-4721. [PMID: 35751904 PMCID: PMC9544120 DOI: 10.1111/bph.15911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/16/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022] Open
Abstract
Background and Purpose Tyrosine kinase inhibitors (TKI) used to treat chronic myeloid leukaemia (CML) have been associated with cardiovascular side effects, including reports of calcific aortic valve stenosis. The aim of this study was to establish the effects of first and second generation TKIs in aortic valve stenosis and to determine the associated molecular mechanisms. Experimental Approach Hyperlipidemic APOE*3Leiden.CETP transgenic mice were treated with nilotinib, imatinib or vehicle. Human valvular interstitial cells (VICs) were isolated and studied in vitro. Gene expression analysis was perfromed in aortic valves from 64 patients undergoing aortic valve replacement surgery. Key Results Nilotinib increased murine aortic valve thickness. Nilotinib, but not imatinib, promoted calcification and osteogenic activation and decreased autophagy in human VICs. Differential tyrosine kinase expression was detected between healthy and calcified valve tissue. Transcriptomic target identification revealed that the discoidin domain receptor DDR2, which is preferentially inhibited by nilotinib, was predominantly expressed in human aortic valves but markedly downregulated in calcified valve tissue. Nilotinib and selective DDR2 targeting in VICs induced a similar osteogenic activation, which was blunted by increasing the DDR2 ligand, collagen. Conclusions and Implications These findings suggest that inhibition of DDR2 by nilotinib promoted aortic valve thickening and VIC calcification, with possible translational implications for cardiovascular surveillance and possible personalized medicine in CML patients.
Collapse
Affiliation(s)
| | - Sven-Christian Pawelzik
- Department of Medicine, Karolinska Institutet.,Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden
| | | | - Marianne G Pouwer
- Metabolic Health Research, Gaubius Laboratory, The Netherlands Organization of Applied Scientific Research (TNO), Leiden, the Netherlands
| | | | | | | | | | - Elsbet Pieterman
- Metabolic Health Research, Gaubius Laboratory, The Netherlands Organization of Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Leif Stenke
- Department of Medicine, Karolinska Institutet.,Theme Cancer, Division of Hematology, Karolinska University Hospital
| | - Hans M G Princen
- Metabolic Health Research, Gaubius Laboratory, The Netherlands Organization of Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Anders Franco-Cereceda
- Department of Molecular Medicine and Surgery, Karolinska Institutet.,Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Bäck
- Department of Medicine, Karolinska Institutet.,Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Eshraghi M, Ahmadi M, Afshar S, Lorzadeh S, Adlimoghaddam A, Rezvani Jalal N, West R, Dastghaib S, Igder S, Torshizi SRN, Mahmoodzadeh A, Mokarram P, Madrakian T, Albensi BC, Łos MJ, Ghavami S, Pecic S. Enhancing autophagy in Alzheimer's disease through drug repositioning. Pharmacol Ther 2022; 237:108171. [PMID: 35304223 DOI: 10.1016/j.pharmthera.2022.108171] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the biggest human health threats due to increases in aging of the global population. Unfortunately, drugs for treating AD have been largely ineffective. Interestingly, downregulation of macroautophagy (autophagy) plays an essential role in AD pathogenesis. Therefore, targeting autophagy has drawn considerable attention as a therapeutic approach for the treatment of AD. However, developing new therapeutics is time-consuming and requires huge investments. One of the strategies currently under consideration for many diseases is "drug repositioning" or "drug repurposing". In this comprehensive review, we have provided an overview of the impact of autophagy on AD pathophysiology, reviewed the therapeutics that upregulate autophagy and are currently used in the treatment of other diseases, including cancers, and evaluated their repurposing as a possible treatment option for AD. In addition, we discussed the potential of applying nano-drug delivery to neurodegenerative diseases, such as AD, to overcome the challenge of crossing the blood brain barrier and specifically target molecules/pathways of interest with minimal side effects.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Aida Adlimoghaddam
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada
| | | | - Ryan West
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benedict C Albensi
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; Nova Southeastern Univ. College of Pharmacy, Davie, FL, United States of America; University of Manitoba, College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America.
| |
Collapse
|
16
|
Manley PW, Huth F, Moussaoui S, Schoepfer J. A kinase inhibitor which specifically targets the ABL myristate pocket (STAMP), but unlike asciminib crosses the blood–brain barrier. Bioorg Med Chem Lett 2022; 59:128577. [DOI: 10.1016/j.bmcl.2022.128577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/03/2022] [Accepted: 01/15/2022] [Indexed: 11/25/2022]
|
17
|
Fowler AJ, Ahn J, Hebron M, Chiu T, Ayoub R, Mulki S, Ressom H, Torres-Yaghi Y, Wilmarth B, Pagan FL, Moussa C. CSF MicroRNAs Reveal Impairment of Angiogenesis and Autophagy in Parkinson Disease. Neurol Genet 2021; 7:e633. [PMID: 34786477 PMCID: PMC8589263 DOI: 10.1212/nxg.0000000000000633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Background and Objectives We assessed longitudinal changes in CSF microRNAs (miRNAs) in patients with moderately severe Parkinson disease. Methods We used next-generation whole-genome miRNA sequencing to determine CSF miRNA expression in 75 patients with Parkinson disease after single random ascending doses of nilotinib and longitudinal miRNA expression after daily nilotinib, 150 and 300 mg, vs placebo for 1 year. Results Significant changes in the expression of miRNAs that control genes and pathways that regulate angiogenesis, autophagy, and the blood-brain-barrier components, primarily collagen, were observed over 1 year, suggesting impairment of these pathways in Parkinson progression in these patients. Different miRNAs that indicate activation of genes associated with autophagy flux and clearance and angiogenesis were significantly altered in the nilotinib, 300 mg vs 150 mg, or placebo group, and these changes correlated with clinical outcomes. No changes were observed in miRNAs after a single dose of nilotinib vs placebo. Discussion This study suggests vascular and autophagy defects in Parkinson progression. Nilotinib, 300 mg, reverses these effects via alteration of miRNA expression, suggesting epigenomic changes that may underlie long-term disease-modifying effects. Trial Registration Information Clinical trial registration number: NCT02954978.
Collapse
Affiliation(s)
- Alan J Fowler
- Translational Neurotherapeutics Program (A.J.F., M.H., T.C., R.A., S.M., B.W., F.L.P., C.M.), Department of Neurology; Interdisciplinary Program in Neuroscience (A.J.F.); Department of Biostatistics, Bioinformatics, and Biomathematics (J.A.); Department of Oncology (H.R.), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center; and Movement Disorders Clinic (Y.T.Y., B.W., F.L.P., C.M.), Department of Neurology, MedStar Georgetown University Hospital, Washington, DC
| | - Jaeil Ahn
- Translational Neurotherapeutics Program (A.J.F., M.H., T.C., R.A., S.M., B.W., F.L.P., C.M.), Department of Neurology; Interdisciplinary Program in Neuroscience (A.J.F.); Department of Biostatistics, Bioinformatics, and Biomathematics (J.A.); Department of Oncology (H.R.), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center; and Movement Disorders Clinic (Y.T.Y., B.W., F.L.P., C.M.), Department of Neurology, MedStar Georgetown University Hospital, Washington, DC
| | - Michaeline Hebron
- Translational Neurotherapeutics Program (A.J.F., M.H., T.C., R.A., S.M., B.W., F.L.P., C.M.), Department of Neurology; Interdisciplinary Program in Neuroscience (A.J.F.); Department of Biostatistics, Bioinformatics, and Biomathematics (J.A.); Department of Oncology (H.R.), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center; and Movement Disorders Clinic (Y.T.Y., B.W., F.L.P., C.M.), Department of Neurology, MedStar Georgetown University Hospital, Washington, DC
| | - Timothy Chiu
- Translational Neurotherapeutics Program (A.J.F., M.H., T.C., R.A., S.M., B.W., F.L.P., C.M.), Department of Neurology; Interdisciplinary Program in Neuroscience (A.J.F.); Department of Biostatistics, Bioinformatics, and Biomathematics (J.A.); Department of Oncology (H.R.), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center; and Movement Disorders Clinic (Y.T.Y., B.W., F.L.P., C.M.), Department of Neurology, MedStar Georgetown University Hospital, Washington, DC
| | - Reem Ayoub
- Translational Neurotherapeutics Program (A.J.F., M.H., T.C., R.A., S.M., B.W., F.L.P., C.M.), Department of Neurology; Interdisciplinary Program in Neuroscience (A.J.F.); Department of Biostatistics, Bioinformatics, and Biomathematics (J.A.); Department of Oncology (H.R.), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center; and Movement Disorders Clinic (Y.T.Y., B.W., F.L.P., C.M.), Department of Neurology, MedStar Georgetown University Hospital, Washington, DC
| | - Sanjana Mulki
- Translational Neurotherapeutics Program (A.J.F., M.H., T.C., R.A., S.M., B.W., F.L.P., C.M.), Department of Neurology; Interdisciplinary Program in Neuroscience (A.J.F.); Department of Biostatistics, Bioinformatics, and Biomathematics (J.A.); Department of Oncology (H.R.), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center; and Movement Disorders Clinic (Y.T.Y., B.W., F.L.P., C.M.), Department of Neurology, MedStar Georgetown University Hospital, Washington, DC
| | - Habtom Ressom
- Translational Neurotherapeutics Program (A.J.F., M.H., T.C., R.A., S.M., B.W., F.L.P., C.M.), Department of Neurology; Interdisciplinary Program in Neuroscience (A.J.F.); Department of Biostatistics, Bioinformatics, and Biomathematics (J.A.); Department of Oncology (H.R.), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center; and Movement Disorders Clinic (Y.T.Y., B.W., F.L.P., C.M.), Department of Neurology, MedStar Georgetown University Hospital, Washington, DC
| | - Yasar Torres-Yaghi
- Translational Neurotherapeutics Program (A.J.F., M.H., T.C., R.A., S.M., B.W., F.L.P., C.M.), Department of Neurology; Interdisciplinary Program in Neuroscience (A.J.F.); Department of Biostatistics, Bioinformatics, and Biomathematics (J.A.); Department of Oncology (H.R.), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center; and Movement Disorders Clinic (Y.T.Y., B.W., F.L.P., C.M.), Department of Neurology, MedStar Georgetown University Hospital, Washington, DC
| | - Barbara Wilmarth
- Translational Neurotherapeutics Program (A.J.F., M.H., T.C., R.A., S.M., B.W., F.L.P., C.M.), Department of Neurology; Interdisciplinary Program in Neuroscience (A.J.F.); Department of Biostatistics, Bioinformatics, and Biomathematics (J.A.); Department of Oncology (H.R.), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center; and Movement Disorders Clinic (Y.T.Y., B.W., F.L.P., C.M.), Department of Neurology, MedStar Georgetown University Hospital, Washington, DC
| | - Fernando L Pagan
- Translational Neurotherapeutics Program (A.J.F., M.H., T.C., R.A., S.M., B.W., F.L.P., C.M.), Department of Neurology; Interdisciplinary Program in Neuroscience (A.J.F.); Department of Biostatistics, Bioinformatics, and Biomathematics (J.A.); Department of Oncology (H.R.), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center; and Movement Disorders Clinic (Y.T.Y., B.W., F.L.P., C.M.), Department of Neurology, MedStar Georgetown University Hospital, Washington, DC
| | - Charbel Moussa
- Translational Neurotherapeutics Program (A.J.F., M.H., T.C., R.A., S.M., B.W., F.L.P., C.M.), Department of Neurology; Interdisciplinary Program in Neuroscience (A.J.F.); Department of Biostatistics, Bioinformatics, and Biomathematics (J.A.); Department of Oncology (H.R.), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center; and Movement Disorders Clinic (Y.T.Y., B.W., F.L.P., C.M.), Department of Neurology, MedStar Georgetown University Hospital, Washington, DC
| |
Collapse
|
18
|
Trends in kinase drug discovery: targets, indications and inhibitor design. Nat Rev Drug Discov 2021; 20:839-861. [PMID: 34354255 DOI: 10.1038/s41573-021-00252-y] [Citation(s) in RCA: 382] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
The FDA approval of imatinib in 2001 was a breakthrough in molecularly targeted cancer therapy and heralded the emergence of kinase inhibitors as a key drug class in the oncology area and beyond. Twenty years on, this article analyses the landscape of approved and investigational therapies that target kinases and trends within it, including the most popular targets of kinase inhibitors and their expanding range of indications. There are currently 71 small-molecule kinase inhibitors (SMKIs) approved by the FDA and an additional 16 SMKIs approved by other regulatory agencies. Although oncology is still the predominant area for their application, there have been important approvals for indications such as rheumatoid arthritis, and one-third of the SMKIs in clinical development address disorders beyond oncology. Information on clinical trials of SMKIs reveals that approximately 110 novel kinases are currently being explored as targets, which together with the approximately 45 targets of approved kinase inhibitors represent only about 30% of the human kinome, indicating that there are still substantial unexplored opportunities for this drug class. We also discuss trends in kinase inhibitor design, including the development of allosteric and covalent inhibitors, bifunctional inhibitors and chemical degraders.
Collapse
|
19
|
Ayala-Aguilera CC, Valero T, Lorente-Macías Á, Baillache DJ, Croke S, Unciti-Broceta A. Small Molecule Kinase Inhibitor Drugs (1995-2021): Medical Indication, Pharmacology, and Synthesis. J Med Chem 2021; 65:1047-1131. [PMID: 34624192 DOI: 10.1021/acs.jmedchem.1c00963] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The central role of dysregulated kinase activity in the etiology of progressive disorders, including cancer, has fostered incremental efforts on drug discovery programs over the past 40 years. As a result, kinase inhibitors are today one of the most important classes of drugs. The FDA approved 73 small molecule kinase inhibitor drugs until September 2021, and additional inhibitors were approved by other regulatory agencies during that time. To complement the published literature on clinical kinase inhibitors, we have prepared a review that recaps this large data set into an accessible format for the medicinal chemistry community. Along with the therapeutic and pharmacological properties of each kinase inhibitor approved across the world until 2020, we provide the synthesis routes originally used during the discovery phase, many of which were only available in patent applications. In the last section, we also provide an update on kinase inhibitor drugs approved in 2021.
Collapse
Affiliation(s)
- Cecilia C Ayala-Aguilera
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Teresa Valero
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Álvaro Lorente-Macías
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Daniel J Baillache
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Stephen Croke
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| |
Collapse
|
20
|
Hallal M, Braga-Lagache S, Jankovic J, Simillion C, Bruggmann R, Uldry AC, Allam R, Heller M, Bonadies N. Inference of kinase-signaling networks in human myeloid cell line models by Phosphoproteomics using kinase activity enrichment analysis (KAEA). BMC Cancer 2021; 21:789. [PMID: 34238254 PMCID: PMC8268341 DOI: 10.1186/s12885-021-08479-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/10/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Despite the introduction of targeted therapies, most patients with myeloid malignancies will not be cured and progress. Genomics is useful to elucidate the mutational landscape but remains limited in the prediction of therapeutic outcome and identification of targets for resistance. Dysregulation of phosphorylation-based signaling pathways is a hallmark of cancer, and therefore, kinase-inhibitors are playing an increasingly important role as targeted treatments. Untargeted phosphoproteomics analysis pipelines have been published but show limitations in inferring kinase-activities and identifying potential biomarkers of response and resistance. METHODS We developed a phosphoproteomics workflow based on titanium dioxide phosphopeptide enrichment with subsequent analysis by liquid chromatography tandem mass spectrometry (LC-MS). We applied a novel Kinase-Activity Enrichment Analysis (KAEA) pipeline on differential phosphoproteomics profiles, which is based on the recently published SetRank enrichment algorithm with reduced false positive rates. Kinase activities were inferred by this algorithm using an extensive reference database comprising five experimentally validated kinase-substrate meta-databases complemented with the NetworKIN in-silico prediction tool. For the proof of concept, we used human myeloid cell lines (K562, NB4, THP1, OCI-AML3, MOLM13 and MV4-11) with known oncogenic drivers and exposed them to clinically established kinase-inhibitors. RESULTS Biologically meaningful over- and under-active kinases were identified by KAEA in the unperturbed human myeloid cell lines (K562, NB4, THP1, OCI-AML3 and MOLM13). To increase the inhibition signal of the driving oncogenic kinases, we exposed the K562 (BCR-ABL1) and MOLM13/MV4-11 (FLT3-ITD) cell lines to either Nilotinib or Midostaurin kinase inhibitors, respectively. We observed correct detection of expected direct (ABL, KIT, SRC) and indirect (MAPK) targets of Nilotinib in K562 as well as indirect (PRKC, MAPK, AKT, RPS6K) targets of Midostaurin in MOLM13/MV4-11, respectively. Moreover, our pipeline was able to characterize unexplored kinase-activities within the corresponding signaling networks. CONCLUSIONS We developed and validated a novel KAEA pipeline for the analysis of differential phosphoproteomics MS profiling data. We provide translational researchers with an improved instrument to characterize the biological behavior of kinases in response or resistance to targeted treatment. Further investigations are warranted to determine the utility of KAEA to characterize mechanisms of disease progression and treatment failure using primary patient samples.
Collapse
Affiliation(s)
- Mahmoud Hallal
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sophie Braga-Lagache
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jovana Jankovic
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cedric Simillion
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Ramanjaneyulu Allam
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Manfred Heller
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nicolas Bonadies
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
21
|
Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim Biophys Acta Rev Cancer 2021; 1876:188585. [PMID: 34224836 DOI: 10.1016/j.bbcan.2021.188585] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023]
Abstract
The tumor microenvironment plays a pivotal role in tumor initiation and progression by creating a dynamic interaction with cancer cells. The tumor microenvironment consists of various cellular components, including endothelial cells, fibroblasts, pericytes, adipocytes, immune cells, cancer stem cells and vasculature, which provide a sustained environment for cancer cell proliferation. Currently, targeting tumor microenvironment is increasingly being explored as a novel approach to improve cancer therapeutics, as it influences the growth and expansion of malignant cells in various ways. Despite continuous advancements in targeted therapies for cancer treatment, drug resistance, toxicity and immune escape mechanisms are the basis of treatment failure and cancer escape. Targeting tumor microenvironment efficiently with approved drugs and combination therapy is the solution to this enduring challenge that involves combining more than one treatment modality such as chemotherapy, surgery, radiotherapy, immunotherapy and nanotherapy that can effectively and synergistically target the critical pathways associated with disease pathogenesis. This review shed light on the composition of the tumor microenvironment, interaction of different components within tumor microenvironment with tumor cells and associated hallmarks, the current status of combinatorial therapies being developed, and various growing advancements. Furthermore, computational tools can also be used to monitor the significance and outcome of therapies being developed. We addressed the perceived barriers and regulatory hurdles in developing a combinatorial regimen and evaluated the present status of these therapies in the clinic. The accumulating depth of knowledge about the tumor microenvironment in cancer may facilitate further development of effective treatment modalities. This review presents the tumor microenvironment as a sweeping landscape for developing novel cancer therapies.
Collapse
|
22
|
Massimino M, Tirrò E, Stella S, Manzella L, Pennisi MS, Romano C, Vitale SR, Puma A, Tomarchio C, Di Gregorio S, Antolino A, Di Raimondo F, Vigneri P. Impact of the Breakpoint Region on the Leukemogenic Potential and the TKI Responsiveness of Atypical BCR-ABL1 Transcripts. Front Pharmacol 2021; 12:669469. [PMID: 34276365 PMCID: PMC8277938 DOI: 10.3389/fphar.2021.669469] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022] Open
Abstract
Chronic Myeloid Leukemia (CML) is a hematological disorder characterized by the clonal expansion of a hematopoietic stem cell carrying the Philadelphia chromosome that juxtaposes the BCR and ABL1 genes. The ensuing BCR-ABL1 chimeric oncogene is characterized by a breakpoint region that generally involves exons 1, 13 or 14 in BCR and exon 2 in ABL1. Additional breakpoint regions, generating uncommon BCR-ABL1 fusion transcripts, have been detected in various CML patients. However, to date, the impact of these infrequent transcripts on BCR-ABL1-dependent leukemogenesis and sensitivity to tyrosine kinase inhibitors (TKIs) remain unclear. We analyzed the transforming potential and TKIs responsiveness of three atypical BCR-ABL1 fusions identified in CML patients, and of two additional BCR-ABL1 constructs with lab-engineered breakpoints. We observed that modifications in the DC2 domain of BCR and SH3 region of ABL1 affect BCR-ABL1 catalytic efficiency and leukemogenic ability. Moreover, employing immortalized cell lines and primary CD34-positive progenitors, we demonstrate that these modifications lead to reduced BCR-ABL1 sensitivity to imatinib, dasatinib and ponatinib but not nilotinib. We conclude that BCR-ABL1 oncoproteins displaying uncommon breakpoints involving the DC2 and SH3 domains are successfully inhibited by nilotinib treatment.
Collapse
Affiliation(s)
- Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Cristina Tomarchio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Sandra Di Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Agostino Antolino
- Department of Transfusional Medicine, Maria Paternò-Arezzo Hospital, Ragusa, Italy
| | - Francesco Di Raimondo
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy.,Department of Surgery, Medical and Surgical Specialities, University of Catania, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| |
Collapse
|
23
|
Kaehler M, Cascorbi I. Pharmacogenomics of Impaired Tyrosine Kinase Inhibitor Response: Lessons Learned From Chronic Myelogenous Leukemia. Front Pharmacol 2021; 12:696960. [PMID: 34262462 PMCID: PMC8273252 DOI: 10.3389/fphar.2021.696960] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022] Open
Abstract
The use of small molecules became one key cornerstone of targeted anti-cancer therapy. Among them, tyrosine kinase inhibitors (TKIs) are especially important, as they were the first molecules to proof the concept of targeted anti-cancer treatment. Since 2001, TKIs can be successfully used to treat chronic myelogenous leukemia (CML). CML is a hematologic neoplasm, predominantly caused by reciprocal translocation t(9;22)(q34;q11) leading to formation of the so-called BCR-ABL1 fusion gene. By binding to the BCR-ABL1 kinase and inhibition of downstream target phosphorylation, TKIs, such as imatinib or nilotinib, can be used as single agents to treat CML patients resulting in 80 % 10-year survival rates. However, treatment failure can be observed in 20-25 % of CML patients occurring either dependent or independent from the BCR-ABL1 kinase. Here, we review approved TKIs that are indicated for the treatment of CML, their side effects and limitations. We point out mechanisms of TKI resistance focusing either on BCR-ABL1-dependent mechanisms by summarizing the clinically observed BCR-ABL1-mutations and their implications on TKI binding, as well as on BCR-ABL1-independent mechanisms of resistances. For the latter, we discuss potential mechanisms, among them cytochrome P450 implications, drug efflux transporter variants and expression, microRNA deregulation, as well as the role of alternative signaling pathways. Further, we give insights on how TKI resistance could be analyzed and what could be learned from studying TKI resistance in CML in vitro.
Collapse
Affiliation(s)
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
24
|
Mendoza FA, Piera-Velazquez S, Jimenez SA. Tyrosine kinases in the pathogenesis of tissue fibrosis in systemic sclerosis and potential therapeutic role of their inhibition. Transl Res 2021; 231:139-158. [PMID: 33422651 DOI: 10.1016/j.trsl.2021.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022]
Abstract
Systemic sclerosis (SSc) is an idiopathic autoimmune disease with a heterogeneous clinical phenotype ranging from limited cutaneous involvement to rapidly progressive diffuse SSc. The most severe SSc clinical and pathologic manifestations result from an uncontrolled fibrotic process involving the skin and various internal organs. The molecular mechanisms responsible for the initiation and progression of the SSc fibrotic process have not been fully elucidated. Recently it has been suggested that tyrosine protein kinases play a role. The implicated kinases include receptor-activated tyrosine kinases and nonreceptor tyrosine kinases. The receptor kinases are activated following specific binding of growth factors (platelet-derived growth factor, fibroblast growth factor, or vascular endothelial growth factor). Other receptor kinases are the discoidin domain receptors activated by binding of various collagens, the ephrin receptors that are activated by ephrins and the angiopoetin-Tie-2s receptors. The nonreceptor tyrosine kinases c-Abl, Src, Janus, and STATs have also been shown to participate in SSc-associated tissue fibrosis. Currently, there are no effective disease-modifying therapies for SSc-associated tissue fibrosis. Therefore, extensive investigation has been conducted to examine whether tyrosine kinase inhibitors (TKIs) may exert antifibrotic effects. Here, we review the role of receptor and nonreceptor tyrosine kinases in the pathogenesis of the frequently progressive cutaneous and systemic fibrotic alterations in SSc, and the potential of TKIs as SSc disease-modifying antifibrotic therapeutic agents.
Collapse
Affiliation(s)
- Fabian A Mendoza
- Rheumatology Division, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
25
|
Salem H, Abo Elsoud FA, Heshmat D, Magdy A. Resonance Rayleigh scattering technique-using erythrosine B, as novel spectrofluorimetric method for determination of anticancer agent nilotinib: Application for capsules and human plasma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119428. [PMID: 33485244 DOI: 10.1016/j.saa.2021.119428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
A exceedingly touchy resonance Rayleigh scattering (RRS) strategy for the assurance of nilotinib (NILO) was introduced. In the pH 3.4 acetate buffer solution, NILO reacted with erythrosine B to produce an ion-association complex, which increased the RRS intensity of the studied system. The enhanced RRS intensity (ΔI) was linearly proportional to the concentration of NILO, the linear range of the method was 0.1-1.0 µg/mL and the detection limit (DL) was 0.025 µg/mL. In like manner, this test was connected to distinguish the concentration of NILO in capsules and human plasma with palatable comes about.
Collapse
Affiliation(s)
- Hesham Salem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia, Egypt.
| | - Fatma A Abo Elsoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia, Egypt
| | - Dina Heshmat
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia, Egypt
| | - Ahmed Magdy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia, Egypt
| |
Collapse
|
26
|
Meng L, Zhao P, Hu Z, Ma W, Niu Y, Su J, Zhang Y. Nilotinib, A Tyrosine Kinase Inhibitor, Suppresses the Cell Growth and Triggers Autophagy in Papillary Thyroid Cancer. Anticancer Agents Med Chem 2021; 22:596-602. [PMID: 33797387 DOI: 10.2174/1871520621666210402110331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) represents for the most common thyroid cancer. Until recently, treatment options for PTC patients are limited. Nilotinib is the second-generation tyrosine kinase inhibitor, and has been widely used in the treatment of chronic myeloid leukemia (CML). OBJECTIVES We aimed to explore whether nilotinib is effective in PTC cancer progression and the underlying mechanisms. METHODS In this study, the three human PTC cell lines (KTC-1, BCPAP, and TPC1) were used to verify the effects of nilotinib on cell growth. The half maximal inhibitory concentration (IC50) was calculated according to the growth curve post nilotinib treatment at different concentrations. Cell counting kit-8 and colony formation analysis were used to monitor cell growth after nilotinib treatment. Cell apoptosis and autophagy related proteins and phosphorylation of PI3K/Akt/mTOR were detected by Western blotting analysis. RESULTS Nilotinib treatment can effectively inhibit PTC cell growth, which was accompanied by increase of apoptosis and induction of autophagy. Mechanistically, nilotinib treatment repressed the phosphorylation of PI3K/Akt/mTOR pathway. CONCLUSION Collectively, our results demonstrated that nilotinib may display anti-tumor effect against PTC via inhibiting of PI3K/Akt/mTOR pathway and inducing apoptosis and autophagy.
Collapse
Affiliation(s)
- Lei Meng
- Three Departments of Abdominal Surgery, Xingtai First Hospital, No.376 Shunde Road, Qiaodong District, Xingtai 054000, Hebei. China
| | - Pengxin Zhao
- The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang 050000, Hebei. China
| | - Zhigang Hu
- The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang 050000, Hebei. China
| | - Weiyuan Ma
- The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang 050000, Hebei. China
| | - Yong Niu
- Quyang People's Hospital, Taihang Road, Quyang County, Baoding 071000, Hebei. China
| | - Jingwei Su
- Quyang People's Hospital, Taihang Road, Quyang County, Baoding 071000, Hebei. China
| | - Yubo Zhang
- The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang 050000, Hebei. China
| |
Collapse
|
27
|
Zhao M, Wu J, Wu H, Sawalha AH, Lu Q. Clinical Treatment Options in Scleroderma: Recommendations and Comprehensive Review. Clin Rev Allergy Immunol 2021; 62:273-291. [PMID: 33449302 DOI: 10.1007/s12016-020-08831-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
There are two major clinical subsets of scleroderma: (i) systemic sclerosis (SSc) is a complex systemic autoimmune disorder characterized by inflammation, vasculopathy, and excessive fibrosis of the skin and multiple internal organs and (ii) localized scleroderma (LoS), also known as morphea, is confined to the skin and/or subcutaneous tissues resulting in collagen deposition and subsequent fibrosis. SSc is rare but is associated with significant morbidity and mortality compared with other rheumatic diseases. Fatal outcomes in SSc often originate from organ complications of the disease, such as lung fibrosis, pulmonary artery hypertension (PAH), and scleroderma renal crisis (SRC). Current treatment modalities in SSc have focused on targeting vascular damage, fibrosis, and regulation of inflammation as well as autoimmune responses. Some drugs previously used in an attempt to suppress fibrosis, like D-penicillamine (D-Pen) or colchicine, have been disappointing in clinical practice despite anecdotal evidence of their advantages. Some canonical medications, including glucocorticoids, immunosuppressants, and vasodilators, have had some success in treating various manifestations in SSc patients. Increasing evidence suggests that some biologic agents targeting collagen, cytokines, and cell surface molecules might have promising therapeutic effects in SSc. In recent years, hematopoietic stem cell transplantation (HSCT), mostly autologous, has made great progress as a promising treatment option in severe and refractory SSc. Due to the complexity and heterogeneity of SSc, there are currently no optimal treatments for all aspects of the disease. As for LoS, local skin-targeted therapy is generally used, including topical application of glucocorticoids or other immunomodulatory ointments and ultraviolet (UV) irradiation. In addition, systemic immunosuppressants are also utilized in several forms of LoS. Here, we comprehensively discuss current treatment options for scleroderma, encompassing old, new, and future potential treatment options. In addition, we summarize data from new clinical trials that have the potential to modify the disease process and improve long-term outcomes in SSc.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Jiali Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Amr H Sawalha
- Departments of Pediatrics, Medicine, and Immunology, and Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China. .,Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China. .,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
28
|
Sin TK, Zhang G, Zhang Z, Zhu JZ, Zuo Y, Frost JA, Li M, Li YP. Cancer-Induced Muscle Wasting Requires p38β MAPK Activation of p300. Cancer Res 2020; 81:885-897. [PMID: 33355181 DOI: 10.1158/0008-5472.can-19-3219] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/10/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022]
Abstract
Cancer-associated cachexia, characterized by muscle wasting, is a lethal metabolic syndrome without defined etiology or established treatment. We previously found that p300 mediates cancer-induced muscle wasting by activating C/EBPβ, which then upregulates key catabolic genes. However, the signaling mechanism that activates p300 in response to cancer is unknown. Here, we show that upon cancer-induced activation of Toll-like receptor 4 in skeletal muscle, p38β MAPK phosphorylates Ser-12 on p300 to stimulate C/EBPβ acetylation, which is necessary and sufficient to cause muscle wasting. Thus, p38β MAPK is a central mediator and therapeutic target of cancer-induced muscle wasting. In addition, nilotinib, an FDA-approved kinase inhibitor that preferentially binds p38β MAPK, inhibited p300 activation 20-fold more potently than the p38α/β MAPK inhibitor, SB202190, and abrogated cancer cell-induced muscle protein loss in C2C12 myotubes without suppressing p38α MAPK-dependent myogenesis. Systemic administration of nilotinib at a low dose (0.5 mg/kg/day, i.p.) in tumor-bearing mice not only alleviated muscle wasting, but also prolonged survival. Therefore, nilotinib appears to be a promising treatment for human cancer cachexia due to its selective inhibition of p38β MAPK. SIGNIFICANCE: These findings demonstrate that prevention of p38β MAPK-mediated activation of p300 by the FDA-approved kinase inhibitor, nilotinib, ameliorates cancer cachexia, representing a potential therapeutic strategy against this syndrome.
Collapse
Affiliation(s)
- Thomas K Sin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Guohua Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Zicheng Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - James Z Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Yan Zuo
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Min Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas.,The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas.,Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
29
|
Pagan FL, Wilmarth B, Torres-Yaghi Y, Hebron ML, Mulki S, Ferrante D, Matar S, Ahn J, Moussa C. Long-Term Safety and Clinical Effects of Nilotinib in Parkinson's Disease. Mov Disord 2020; 36:740-749. [PMID: 33215762 PMCID: PMC8048914 DOI: 10.1002/mds.28389] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/25/2020] [Accepted: 10/26/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Nilotinib is US Food and Drug Administration-approved for leukemia, and this open-label study investigated the safety, tolerability, and potential clinical effects of nilotinib in medically optimized patients with Parkinson's disease. OBJECTIVES Safety and tolerability were the primary objectives, and clinical outcomes were exploratory. METHODS A total of 63 patients completed a 15-month phase 2, double-blind, placebo-controlled study and were rerandomized 1:1 into an open-label study of nilotinib 150 mg versus 300 mg for 12 months. RESULTS Nilotinib was safe and tolerated, and no adverse effects seemed to be related to the drug, and no differences in adverse events were observed between groups. Exploratory clinical outcomes showed that nilotinib 300 mg was remarkably stable from baseline to 27 months using partial and total Unified Parkinson's Disease Scale (UPDRS). Nilotinib 150 mg versus 300 mg, significantly declined using partial or the sum of UPDRS Parts I and II. There was no significant difference in nilotinib 150 mg versus 300 mg using UPDRS Part III (on levodopa) and total UPDRS Parts I to III. Subgroup analysis showed that late-start nilotinib 150 mg significantly worsened using the sum of UPDRS Parts II + III and total UPDRS Parts I to III compared with late-start nilotinib 300 mg. Quality of life using the Parkinson's Disease Questionnaire in nilotinib 150 mg significantly declined between 15 and 27 months compared with nilotinib 300 mg, and there was no change in cognition using the Montreal Cognitive Assessment between groups. CONCLUSIONS This study provides evidence that nilotinib is safe and tolerated in Parkinson's disease. The exploratory clinical data will inform an adequately powered larger study to evaluate the efficacy of nilotinib 300 mg in Parkinson's disease. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Fernando L Pagan
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA.,Movement Disorders Clinic, Department of Neurology, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Barbara Wilmarth
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA.,Movement Disorders Clinic, Department of Neurology, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Yasar Torres-Yaghi
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA.,Movement Disorders Clinic, Department of Neurology, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Michaeline L Hebron
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Sanjana Mulki
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Dalila Ferrante
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Sara Matar
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Charbel Moussa
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
30
|
Moussa C. Reply to "Cardiovascular Safety of Nilotinib in Alzheimer's Disease". Ann Neurol 2020; 89:196-197. [PMID: 33103265 DOI: 10.1002/ana.25946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Charbel Moussa
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
31
|
Contreras PS, Tapia PJ, González-Hódar L, Peluso I, Soldati C, Napolitano G, Matarese M, Heras ML, Valls C, Martinez A, Balboa E, Castro J, Leal N, Platt FM, Sobota A, Winter D, Klein AD, Medina DL, Ballabio A, Alvarez AR, Zanlungo S. c-Abl Inhibition Activates TFEB and Promotes Cellular Clearance in a Lysosomal Disorder. iScience 2020; 23:101691. [PMID: 33163944 PMCID: PMC7607485 DOI: 10.1016/j.isci.2020.101691] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/11/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
The transcription factor EB (TFEB) has emerged as a master regulator of lysosomal biogenesis, exocytosis, and autophagy, promoting the clearance of substrates stored in cells. c-Abl is a tyrosine kinase that participates in cellular signaling in physiological and pathophysiological conditions. In this study, we explored the connection between c-Abl and TFEB. Here, we show that under pharmacological and genetic c-Abl inhibition, TFEB translocates into the nucleus promoting the expression of its target genes independently of its well-known regulator, mammalian target of rapamycin complex 1. Active c-Abl induces TFEB phosphorylation on tyrosine and the inhibition of this kinase promotes lysosomal biogenesis, autophagy, and exocytosis. c-Abl inhibition in Niemann-Pick type C (NPC) models, a neurodegenerative disease characterized by cholesterol accumulation in lysosomes, promotes a cholesterol-lowering effect in a TFEB-dependent manner. Thus, c-Abl is a TFEB regulator that mediates its tyrosine phosphorylation, and the inhibition of c-Abl activates TFEB promoting cholesterol clearance in NPC models. c-Abl is a TFEB regulator that mediates its tyr phosphorylation c-Abl inhibition promotes TFEB activity independently of mTORC1 c-Abl inhibition reduces cholesterol accumulation in NPC1 models
Collapse
Affiliation(s)
- Pablo S Contreras
- Department of Cell & Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile.,CARE UC Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile
| | - Pablo J Tapia
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile
| | - Lila González-Hódar
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile
| | - Ivana Peluso
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Chiara Soldati
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Maria Matarese
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Macarena Las Heras
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile
| | - Cristian Valls
- Department of Cell & Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile.,CARE UC Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Martinez
- Department of Cell & Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile.,CARE UC Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Elisa Balboa
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile
| | - Juan Castro
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile
| | - Nancy Leal
- Department of Cell & Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile.,CARE UC Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Andrzej Sobota
- Department of Cell Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, Germany
| | - Andrés D Klein
- Centro de Genética y Genómica, Universidad Del Desarrollo Clínica Alemana de Santiago, Chile
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy.,Medical Genetics, Department of Pediatrics, Federico II University, Via Pansini 5, 80131 Naples, Italy.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Alejandra R Alvarez
- Department of Cell & Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile.,CARE UC Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile
| |
Collapse
|
32
|
Fallet B, Walker UA. Current immunosuppressive and antifibrotic therapies of systemic sclerosis and emerging therapeutic strategies. Expert Rev Clin Pharmacol 2020; 13:1203-1218. [PMID: 33008265 DOI: 10.1080/17512433.2020.1832466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a rare, difficult to treat disease with profound effects on quality of life and high mortality. Complex and incompletely understood pathophysiologic processes and greatly heterogeneous clinical presentations and outcomes have hampered drug development. AREAS COVERED This review summarizes the currently available immunosuppressive and antifibrotic therapies and discusses novel approaches for the treatment of SSc. We reviewed the literature using the MEDLINE and ClinicalTrial.gov databases between May and September 2020. EXPERT OPINION Available immunosuppressive and antifibrotic drugs only modestly impact the course of the disease. Most drugs are currently only investigated in the subset of patients with early diffuse cutaneous SSc. In this patient population, hematopoietic stem-cell transplantation is currently the only treatment that has demonstrated reversal of lung involvement, enhanced quality of life and reduced long-term mortality, but carries the risk of short-term treatment-related mortality. A great need to provide better therapeutic options to patients exists also for those patients who have limited cutaneous skin involvement. A better understanding of SSc pathophysiology has enabled the identification of numerous new therapeutic targets. The progress made in the design of clinical trials and outcome parameters will likely result in the improvement of effective management options.
Collapse
Affiliation(s)
- Bénédict Fallet
- Department of Rheumatology, University Hospital Basel , Basel, Switzerland
| | - Ulrich A Walker
- Department of Rheumatology, University Hospital Basel , Basel, Switzerland
| |
Collapse
|
33
|
Vairy S, Le Teuff G, Bautista F, De Carli E, Bertozzi AI, Pagnier A, Fouyssac F, Nysom K, Aerts I, Leblond P, Millot F, Berger C, Canale S, Paci A, Poinsignon V, Chevance A, Ezzalfani M, Vidaud D, Di Giannatale A, Hladun-Alvaro R, Petit FM, Vassal G, Geoerger B, Le Deley MC, Grill J. Phase I study of vinblastine in combination with nilotinib in children, adolescents, and young adults with refractory or recurrent low-grade glioma. Neurooncol Adv 2020; 2:vdaa075. [PMID: 32666050 PMCID: PMC7344116 DOI: 10.1093/noajnl/vdaa075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background New rescue regimens are needed for pediatric refractory/recurrent low-grade glioma. Nilotinib is a tyrosine kinase inhibitor that has potential synergistic effects with vinblastine on angiogenesis, tumor cell growth, and immunomodulation. Methods This phase I trial aimed to determine the recommended doses of this combination for phase II trials (RP2D) using the dual-agent Bayesian continual reassessment method. Nilotinib was given orally twice daily (BID) in combination with once-weekly vinblastine injections for a maximum of 12 cycles of 28 days (clinicaltrials.gov, NCT01884922). Results Thirty-five pediatric patients were enrolled across 4 dose levels. The median age was 7 years and 10 had neurofibromatosis type 1. Patients had received a median of 3 prior treatment lines and 25% had received more than 4 previous treatment lines. Dose-limiting toxicity (DLT) during cycle 1 was hematologic, dermatologic, and cardiovascular. The RP2D was identified at 3 mg/m2 weekly for vinblastine with 230 mg/m2 BID for nilotinib (estimated probability of DLT = 18%; 95% credibility interval, 7-29%). Fifteen patients completed the 12 cycles; 2 stopped therapy prematurely due to toxicity and 18 due to disease progression. Three patients achieved a partial response leading to an objective response rate of 8.8% (95% confidence interval [CI], 1.9-23.7), and the disease control rate was 85.3% (95% CI, 68.9-95.1). The 12-month progression-free survival was 37.1% (95% CI, 23.2-53.67). Conclusions Vinblastine and nilotinib combination was mostly limited by myelosuppression and dermatologic toxicity. The efficacy of the combination at the RP2D is currently evaluated in a randomized phase II trial comparing this regimen to vinblastine alone.
Collapse
Affiliation(s)
- Stephanie Vairy
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Gwénaël Le Teuff
- Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France.,Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France
| | - Francisco Bautista
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Emilie De Carli
- Département d'Hematologie et d'Oncologie Pediatrique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Anne-Isabelle Bertozzi
- Département d'Hematologie et d'Oncologie Pediatrique, Hopital Purpan, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Anne Pagnier
- Département d'Hematologie et d'Oncologie Pediatrique, Centre Hospitalier Universitaire de Grenoble, La Tronche, France
| | - Fanny Fouyssac
- Département d'Hematologie et d'Oncologie Pediatrique, Centre Hospitalier Universitaire de Nancy, Nancy, France
| | - Karsten Nysom
- Department of Pediatric Hematology and Oncology, Rigshospitalet, Copenhagen, Denmark
| | | | - Pierre Leblond
- Unité d'oncologie pédiatrique, Centre Oscar Lambret, Lille, France
| | - Frederic Millot
- Département d'Hematologie et d'Oncologie Pediatrique, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Claire Berger
- Département d'Hematologie et d'Oncologie Pediatrique, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Priest-en-Jarez, France.,University Research Team EA, SNA-EPIS, Saint-Etienne, France
| | - Sandra Canale
- Department of Radiology, Gustave Roussy, Villejuif, France
| | - Angelo Paci
- Department of Pharmacology and Pharmacokinetics Unit School of Pharmacy, Université Paris-Saclay, Université Paris-Sud, Gustave Roussy, Villejuif, France
| | - Vianney Poinsignon
- Department of Pharmacology and Pharmacokinetics Unit School of Pharmacy, Université Paris-Saclay, Université Paris-Sud, Gustave Roussy, Villejuif, France
| | - Aurelie Chevance
- Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France.,Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France
| | - Monia Ezzalfani
- Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France.,Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France
| | - Dominique Vidaud
- Service de Génétique et Biologie Moléculaires, Hopital Cochin, Hopitaux Universitaires de Paris Centre, Assistance Publique-Hôpitaux de Paris, and EA7331, Faculte de Pharmacie de Paris, Universite Paris Descartes, Paris, France
| | - Angela Di Giannatale
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Raquel Hladun-Alvaro
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Francois M Petit
- Département de Génétique Moléculaire, Hopital Antoine Beclere, Clamart, France
| | - Gilles Vassal
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Marie-Cécile Le Deley
- Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France.,Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| |
Collapse
|
34
|
Lopez-Cuina M, Guerin PA, Canron MH, Delamarre A, Dehay B, Bezard E, Meissner WG, Fernagut PO. Nilotinib Fails to Prevent Synucleinopathy and Cell Loss in a Mouse Model of Multiple System Atrophy. Mov Disord 2020; 35:1163-1172. [PMID: 32291831 DOI: 10.1002/mds.28034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is a rare, untreatable neurodegenerative disorder characterized by accumulation of α-synuclein in oligodendroglial inclusions. As such, MSA is a synucleinopathy along with Parkinson's disease (PD) and dementia with Lewy bodies. Activation of the abelson tyrosine kinase c-Abl leads to phosphorylation of α-synuclein at tyrosine 39, thereby promoting its aggregation and subsequent neurodegeneration. The c-Abl inhibitor nilotinib used for the treatment of chronic myeloid leukemia based on data collected in preclinical models of PD might interfere with pathogenic mechanisms that are relevant to PD and dementia with Lewy bodies, which motivated its assessment in an open-label clinical trial in PD and dementia with Lewy bodies patients. The objective of this study was to assess the preclinical efficacy of nilotinib in the specific context of MSA. METHODS Mice expressing human wild-type α-synuclein in oligodendrocytes received daily injection of nilotinib (1 or 10 mg/kg) over 12 weeks. Postmortem analysis included the assessment of c-Abl activation, α-synuclein burden, and dopaminergic neurodegeneration. RESULTS α-Synuclein phosphorylated at tyrosine 39 was detected in glial cytoplasmic inclusions in MSA patients. Increased activation of c-Abl and α-synuclein phosphorylation at tyrosine 39 were found in transgenic mice. Despite significant inhibition of c-Abl and associated reduction of α-synuclein phosphorylation at tyrosine 39 by 40%, nilotinib failed to reduce α-synuclein aggregate burden (including phosphorylation at serine 129) in the striatum and cortex or to lessen neurodegeneration in the substantia nigra. CONCLUSIONS This preclinical study suggests that partial inhibition of c-Abl and reduction of α-synuclein phosphorylation at tyrosine 39 may not be a relevant target for MSA. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Miguel Lopez-Cuina
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Paul A Guerin
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Marie-Hélène Canron
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Anna Delamarre
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Benjamin Dehay
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France.,Service de Neurologie, CRMR Atrophie Multisystématisée, CHU Bordeaux, Bordeaux, France.,Dept. Medicine, University of Otago, Christchurch, New Zealand, and New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France.,Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France.,INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| |
Collapse
|
35
|
Yang J, Shibu MA, Kong L, Luo J, BadrealamKhan F, Huang Y, Tu ZC, Yun CH, Huang CY, Ding K, Lu X. Design, Synthesis, and Structure-Activity Relationships of 1,2,3-Triazole Benzenesulfonamides as New Selective Leucine-Zipper and Sterile-α Motif Kinase (ZAK) Inhibitors. J Med Chem 2020; 63:2114-2130. [PMID: 31244114 DOI: 10.1021/acs.jmedchem.9b00664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ZAK is a new promising target for discovery of drugs with activity against antihypertrophic cardiomyopathy (HCM). A series of 1,2,3-triazole benzenesulfonamides were designed and synthesized as selective ZAK inhibitors. One of these compounds, 6p binds tightly to ZAK protein (Kd = 8.0 nM) and potently suppresses the kinase function of ZAK with single-digit nM (IC50 = 4.0 nM) and exhibits excellent selectivity in a KINOMEscan screening platform against a panel of 403 wild-type kinases. This compound dose dependently blocks p38/GATA-4 and JNK/c-Jun signaling and demonstrates promising in vivo anti-HCM efficacy upon oral administration in a spontaneous hypertensive rat (SHR) model. Compound 6p may serve as a lead compound for new anti-HCM drug discovery.
Collapse
Affiliation(s)
- Jianzhang Yang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | | | - Lulu Kong
- Department of Biochemistry and Biophysics, Institute of Systems Biomedicine and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinfeng Luo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Farheen BadrealamKhan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Yanhui Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zheng-Chao Tu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Cai-Hong Yun
- Department of Biochemistry and Biophysics, Institute of Systems Biomedicine and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
- College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
36
|
Mechanisms of Cardiovascular Toxicity of BCR-ABL1 Tyrosine Kinase Inhibitors in Chronic Myelogenous Leukemia. Curr Hematol Malig Rep 2020; 15:20-30. [DOI: 10.1007/s11899-020-00560-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Balasubramanian PK, Balupuri A, Bhujbal SP, Cho SJ. 3D-QSAR Assisted Design of Novel 7-Deazapurine Derivatives as TNNI3K Kinase Inhibitors Using Molecular Docking and Molecular Dynamics Simulation. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666190110121300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Cardiac troponin I-interacting kinase (TNNI3K) is a cardiac-specific kinase
that belongs to MAPKKK family. It is a dual-function kinase with tyrosine and serine/threonine
kinase activity. Over-expression of TNNI3K results in various cardiovascular diseases such as
cardiomyopathy, ischemia/reperfusion injury, heart failure, etc. Since, it is a cardiac-specific kinase
and expressed only in heart tissue, it is an ideal molecular target to treat cardiac diseases. The main
objective of the work is to study and understand the structure-activity relationship of the reported
deazapurine derivatives and to use the 3D-QSAR and docking results to design potent and novel
TNNI3K inhibitors of this series.
Methods:
In the present study, we have used molecular docking 3D QSAR, and molecular dynamics
simulation to understand the structure-activity correlation of reported TNNI3K inhibitors and to
design novel compounds of deazapurine derivatives with increased activity.
Results:
Both CoMFA (q2=0.669, NOC=5, r2=0.944) and CoMSIA (q2=0.783, NOC=5, r2=0.965)
have resulted in satisfactory models. The models were validated using external test set, Leave-out-
Five, bootstrapping, progressive scrambling, and rm2 metrics calculations. The validation procedures
showed the developed models were robust and reliable. The docking results and the contour maps
analysis helped in the better understanding of the structure-activity relationship.
Conclusion:
This is the first report on 3D-QSAR modeling studies of TNNI3K inhibitors. Both
docking and MD results were consistent and showed good correlation with the previous experimental
data. Based on the information obtained from contour maps, 31 novel TNNI3K inhibitors were
designed. These designed compounds showed higher activity than the existing dataset compounds.
Collapse
Affiliation(s)
| | - Anand Balupuri
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Swapnil P. Bhujbal
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Seung Joo Cho
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju 501-759, Korea
| |
Collapse
|
38
|
Multikinase Abl/DDR/Src Inhibition Produces Optimal Effects for Tyrosine Kinase Inhibition in Neurodegeneration. Drugs R D 2019; 19:149-166. [PMID: 30919310 PMCID: PMC6544596 DOI: 10.1007/s40268-019-0266-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background and objectives Inhibition of Abelson (Abl) tyrosine kinase as a therapeutic target has been gaining attention in neurodegeneration. Post-mortem Alzheimer’s and Parkinson’s disease brains show that the levels of several other tyrosine kinases, including Discoidin Domain Receptors (DDR1/2) are elevated. Knockdown of these tyrosine kinases with shRNA reduces neurotoxic proteins, including alpha-synuclein, beta-amyloid and tau. Methods Direct profiling of the pharmacokinetics of multi-kinase inhibitors Nilotinib, Bosutinib, Bafetinib, Radotinib and LCB-03-0110 shows differential levels of brain penetration but the ability of these agents to reduce toxic proteins is independent of brain concentration and selectivity to Abl. Results Our results indicate that the effective dose of Nilotinib has the lowest plasma:brain ratio (1%) followed by Bosutinib and Radotinib (5%), Bafetinib (12%) and LCB-03-0110 (12%). However, similar doses of multi-kinase Abl/DDR inhibitor Nilotinib, DDR/Src inhibitor LCB-03-0110 and Abl/Src inhibitor Bosutinib were much more effective than the more selective Abl inhibitors Radotinib and Bafetinib. Taken together, these data suggest that a multi-kinase target that includes Abl and other tyrosine kinases (DDRs, and Src) may offer more advantages alleviating neurodegenerative pathologies than the absolute CNS drug concentration and selectivity to Abl. Conclusion DDRs and Src are other potential co-targets with Abl in neurodegeneration. Electronic supplementary material The online version of this article (10.1007/s40268-019-0266-z) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Chang SP, Huang HM, Shen SC, Lee WR, Chen YC. Nilotinib induction of melanogenesis via reactive oxygen species-dependent JNK activation in B16F0 mouse melanoma cells. Exp Dermatol 2019; 27:1388-1394. [PMID: 30290020 DOI: 10.1111/exd.13797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/01/2018] [Indexed: 12/15/2022]
Abstract
Nilotinib (AMN), a second-generation tyrosine kinase inhibitor, induces apoptosis in various cancer cells, and our recent study showed that AMN effectively reduced the viability of human ovarian cancer cells via mitochondrion-dependent apoptosis. The effect of AMN in the melanogenesis of melanoma cells is still unclear. In the present study, we found that the addition of AMN but not imatinib (STI) significantly increased the darkness of B16F0 melanoma cells, and the absorptive value increased with the concentration of AMN. A decrease in the viability of B16F0 cells by AMN was detected in a concentration-dependent manner, accompanied by increased DNA ladders, hypodiploid cells and cleavage of the caspase-3 protein. An in vitro tyrosinase (TYR) activity assay showed that increased TYR activity by AMN was detected in a concentration-dependent manner; however, induction of TYR activity by STI at a concentration of 40 μmol/L was observed. Increased intracellular peroxide by AMN was detected in B16F0 cells, and application of the antioxidant, N-acetylcysteine (NAC), significantly reduced AMN-induced peroxide production which also reduced the darkness of B16F0 cells. Additionally, AMN induced c-Jun N-terminal kinase (JNK) protein phosphorylation in B16F0 cells, which was inhibited by the addition of NAC. AMN-induced melanogenesis of B16F0 cells was significantly inhibited by the addition of NAC and the JNK inhibitor, SP600125 (SP). Data of Western blotting showed that increased protein levels of melanogenesis-related enzymes of tyrosinase-related protein-1 (TRP1), TRP2 and TYR were observed in AMN-treated B16F0 cells which were inhibited by the addition of NAC and SP. Evidence is provided supporting AMN effectively inducing the melanogenesis of B16F0 melanoma cells via reactive oxygen species-dependent JNK activation.
Collapse
Affiliation(s)
- Shao-Ping Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Huei-Mei Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Woan-Ruoh Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,International MS/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
40
|
Jiang W, Ding L, Dai T, Guo J, Dai R, Chang Y. Studies of pharmacokinetics in beagle dogs and drug-drug interaction potential of a novel selective ZAK inhibitor 3h for hypertrophic cardiomyopathy treatment. J Pharm Biomed Anal 2019; 172:206-213. [PMID: 31060033 DOI: 10.1016/j.jpba.2019.04.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
Overexpression of leucine-zipper and sterile-α motif kinase (ZAK) in heart has been closely associated with the development of hypertrophic cardiomyopathy (HCM). N-(3-(1H-pyrazolo[3,4-b]pyridin-5-yl)ethynyl) benzene-sulfonamides, novel highly selective ZAK inhibitors, had exhibited reasonable orally therapeutic effects on HCM in spontaneous hypertensive rat models. In the present study, a rapid and sensitive HPLC-MS/MS method for determining ZAK inhibitor 3h in beagle dog plasma was developed and validated. Meanwhile, the pharmacokinetics in beagle dog and drug-drug interaction potential of 3h had been conducted. The pharmacokinetic results showed that the absolute oral bioavailability for 3h in beagle dogs was determined to be 61.9%, which was significantly higher than that in the previous determination in Spragur-Dawley rats (F = 20%). The Cytochrome P450 enzymes and P-glycoprotein mediated drug-drug interactions by 3h were also investigated using dog and human liver microsomes and Caco-2 cells. The results demonstrated that only CYP2C9 was obviously inhibited (IC50 = 1.66 μM). Besides, 3h could significantly decrease digoxin efflux ratio in Caco-2 experiments in a dose-dependent manner (IC50 = 13.3 μM). Considering 3h strongly suppressed the ZAK kinase activity with an IC50 of 3.3 nM, there are significantly differences between this IC50 value for ZAK inhibition and the present determinations of IC50 values. In general, the clinical drug-drug interaction potential for 3h could be well monitored during the treatment of HCM.
Collapse
Affiliation(s)
- Weifan Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lan Ding
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Tianming Dai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiayin Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Renke Dai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Yu Chang
- The First Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
41
|
Nakaya A, Ebitani M, Monzen T, Nagno T, Saito F, Yaoita Y. [A case of recurrent cerebral infarction during treatment with oral tyrosine kinase inhibitors for chronic myelogenous leukemia]. Rinsho Shinkeigaku 2019; 59:418-424. [PMID: 31243247 DOI: 10.5692/clinicalneurol.cn-001222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A 76-year-old man, diagnosed with chronic myeloid leukemia in 2010, had been on nilotinib for 7 years. He presented with right hemiparesis in September 2017. He had no history of hypertension, diabetes, hyperlipidemia, heart disease, or smoking. Brain MRI revealed a border-zone infarction of the left cerebral hemisphere and a rapidly progressing severe left internal carotid artery (ICA) stenosis. He was initiated on clopidogrel and bosutinib instead of nilotinib. He presented with right hemiparesis once again in December 2017. Brain MRI revealed the border-zone infarction of the left cerebral hemisphere and a more progressed, severe bilateral ICA stenosis. A carotid ultrasound demonstrated iso-intense and concentrically narrowed ICA on both sides. Carotid artery stenting of the left ICA was performed in February 2018, and clopidogrel was replaced by cilostazol to provide a drug-induced rush. Carotid artery stenting of the right ICA was performed in June 2018 and cervical angiogram demonstrated that there were no residual artery stenoses in the bilateral stent. In recent years, several case reports suggest that tyrosine kinase inhibitors (TKIs) are associated with progressive artery stenosis and cause cerebral infarction. Brain imaging tests should be conducted to evaluate arterial stenosis progression for patients with a history of taking TKI when an arterial vascular event occurs.
Collapse
Affiliation(s)
- Akihiko Nakaya
- Department of Neurology, Subaru Health Insurance Society Ota Memorial Hospital
| | - Masahiro Ebitani
- Department of Neurology, Subaru Health Insurance Society Ota Memorial Hospital
| | - Tatsuya Monzen
- Department of Neurology, Subaru Health Insurance Society Ota Memorial Hospital
| | - Takuro Nagno
- Department of Neurosurgery, Subaru Health Insurance Society Ota Memorial Hospital
| | - Futoshi Saito
- Department of Neurosurgery, Subaru Health Insurance Society Ota Memorial Hospital
| | - Yukihiro Yaoita
- Department of Neurosurgery, Subaru Health Insurance Society Ota Memorial Hospital
| |
Collapse
|
42
|
Targeted therapy of desmoid-type fibromatosis: mechanism, current situation, and future prospects. Front Med 2019; 13:427-437. [PMID: 30798508 DOI: 10.1007/s11684-018-0672-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022]
Abstract
Desmoid-type fibromatosis (DF) is a rare monoclonal fibroblastic proliferation that is characterized by locally infiltrative but rarely metastatic lesions. Tyrosine kinase and γ-secretase inhibitors are primarily used in the targeted therapy of DF. The use of these drugs, however, is mainly based on the recommendations of retrospective studies with small sample sizes. Previous studies that focused on the mechanism, efficacy, and safety of targeted therapy for DF were reviewed to provide references for clinical applications and research. The efficacy and safety of targeted therapy were compared with those of other systemic therapy options. Targeted therapy does not provide considerable advantages in efficacy and safety over other medical treatments and is usually applied after the failure of antihormonal therapies, nonsteroidal anti-inflammatory drugs, and chemotherapy. Further studies are required to explore the mechanism, indications, and appropriate drug dosage of the targeted therapy of DF.
Collapse
|
43
|
Hanson SM, Georghiou G, Thakur MK, Miller WT, Rest JS, Chodera JD, Seeliger MA. What Makes a Kinase Promiscuous for Inhibitors? Cell Chem Biol 2019; 26:390-399.e5. [PMID: 30612951 DOI: 10.1016/j.chembiol.2018.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/13/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022]
Abstract
ATP-competitive kinase inhibitors often bind several kinases due to the high conservation of the ATP binding pocket. Through clustering analysis of a large kinome profiling dataset, we found a cluster of eight promiscuous kinases that on average bind more than five times more kinase inhibitors than the other 398 kinases in the dataset. To understand the structural basis of promiscuous inhibitor binding, we determined the co-crystal structure of the receptor tyrosine kinase DDR1 with the type I inhibitors dasatinib and VX-680. Surprisingly, we find that DDR1 binds these type I inhibitors in an inactive conformation typically reserved for type II inhibitors. Our computational and biochemical studies show that DDR1 is unusually stable in this inactive conformation, giving a mechanistic explanation for inhibitor promiscuity. This phenotypic clustering analysis provides a strategy to obtain functional insights not available by sequence comparison alone.
Collapse
Affiliation(s)
- Sonya M Hanson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA; Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065-1115, USA
| | - George Georghiou
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Manish K Thakur
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Joshua S Rest
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA
| | - John D Chodera
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065-1115, USA.
| | - Markus A Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA.
| |
Collapse
|
44
|
Nakayama R, Jagannathan JP, Ramaiya N, Ferrone ML, Raut CP, Ready JE, Hornick JL, Wagner AJ. Clinical characteristics and treatment outcomes in six cases of malignant tenosynovial giant cell tumor: initial experience of molecularly targeted therapy. BMC Cancer 2018; 18:1296. [PMID: 30594158 PMCID: PMC6311045 DOI: 10.1186/s12885-018-5188-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/05/2018] [Indexed: 01/08/2023] Open
Abstract
Background Although tenosynovial giant cell tumor (TGCT) is classified as a benign tumor, it may undergo malignant transformation and metastasize in extremely rare occasions. High aberrant expression of CSF1 has been implicated in the development of TGCT and recent studies have shown promising activity of several CSF1R inhibitors against benign diffuse-type TGCT; however, little is known about their effects in malignant TGCT. Case presentation Information from six consenting patients (3 men, 3 women) with malignant TGCT presenting to Dana-Farber Cancer Institute for initial or subsequent consultation was collected. Median age at initial diagnosis of TGCT was 49.5 years (range 12–55), and median age at diagnosis of malignant TGCT was 50 years (range 34–55). Two patients developed malignant TGCT de novo, while four other cases showed metachronous malignant transformation. All tumors arose in the lower extremities (3 knee, 2 thigh, 1 hip). Five patients underwent surgery for the primary tumors, and four developed local recurrence. All six patients developed lung metastases, and four of five evaluable tumors developed inguinal and pelvic lymph node metastases. All six patients received systemic therapy. Five patients were treated with at least one tyrosine kinase inhibitor with inhibitory activity against CSF1R; however, only one patient showed clinical benefit (SD or PR). Five patients were treated with conventional cytotoxic agents. Doxorubicin-based treatment showed clinical benefit in all four evaluable patients, and gemcitabine/docetaxel showed clinical benefit in two patients. All six patients died of disease after a median of 21.5 months from diagnosis of malignant TGCT. Conclusions This study confirms that TGCT may transform into an aggressive malignant tumor. Lymph node and pulmonary metastases are common. Local recurrence rates are exceedingly high. Conventional cytotoxic chemotherapy showed clinical benefit, whereas tyrosine kinase inhibitors against CSF1R showed limited activity. Given its rarity, a prospective registry of malignant TGCT patients is needed to further understand the entity and to develop effective strategies for systemic treatment.
Collapse
Affiliation(s)
- Robert Nakayama
- Ludwig Center at Dana-Farber/Harvard and Center for Sarcoma and Bone Oncology, Department of Medical Oncology, Harvard Medical School, Boston, MA, USA.,Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | | | - Nikhil Ramaiya
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Marco L Ferrone
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John E Ready
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew J Wagner
- Ludwig Center at Dana-Farber/Harvard and Center for Sarcoma and Bone Oncology, Department of Medical Oncology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Abstract
Nilotinib, a second-generation tyrosine kinase inhibitor, was designed to overcome resistance of a wide range of BCR-ABL mutants to imatinib. When used in the first-line treatment in newly diagnosed chronic myeloid leukemia (CML), it induces faster and deeper molecular responses in higher than imatinib percentage of patients. Treatment-free remission after achievement of sustained deep molecular response represents an emerging treatment goal for a proportion of patients with CML in chronic phase. The pharmacologic properties, and the role of nilotinib in the current treatment of CML in the context of considered optimal end point of therapy including the discontinuation trial and durable treatment-free remission achievement is discussed in the article.
Collapse
Affiliation(s)
- Tomasz Sacha
- Department of Hematology, Jagiellonian University Hospital, ul. Kopernika 17, 31-501 Kraków, Poland
| | - Giuseppe Saglio
- Division of Hematology & Internal Medicine, Department of Clinical & Biological Sciences of the University of Turin, 'San Luigi Gonzaga' University Hospital, 10043 Orbassano-Turin, Italy
| |
Collapse
|
46
|
Kramer B, Polit M, Birk R, Rotter N, Aderhold C. HIF-1α and mTOR - Possible Novel Strategies of Targeted Therapies in p16-positive and -negative HNSCC. Cancer Genomics Proteomics 2018; 15:175-184. [PMID: 29695399 DOI: 10.21873/cgp.20075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Targeted therapy in head and neck squamous cell carcinoma (HNSCC) is limited. HIF-1α and mTOR are involved in the formation of local tumor progression and distant metastasis. The present study analyzed the influence of well-established tyrosine kinase inhibitors nilotinib, dasatinib, erlotinib and gefitinib on the expression of HIF-1α and mTOR in p16-positive and -negative squamous cancer cells (SCC) in vitro in order to develop novel strategies in the treatment of HNSCC. MATERIALS AND METHODS Expression of HIF-1α and mTOR was analyzed by using Sandwich-ELISA in p16-negative and p16-positive SCC after treatment with nilotinib, dasatinib, erlotinib and gefitinib (20 μmol/l, 24-96 h of incubation). RESULTS All substances significantly reduced mTOR expression in both, p16-negative and p16-positive SCC (p<0.05). HIF-1α expression was significantly reduced by all tested substances in p16-negative SCC. However, a statistically significant increase of HIF-1α was observed in p16-positive SCC. CONCLUSION This is the first study to investigate the alteration of expression levels of HIF-1α and mTOR under selective tyrosine kinase inhibition in both p16-positive and -negative SCC. Our findings provide novel insights for a better understanding of HIF-1α and mTOR in the tumor biology of HNSCC and their interaction with selective small-molecule inhibitors.
Collapse
Affiliation(s)
- Benedikt Kramer
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Max Polit
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Richard Birk
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philips-Universität, Marburg, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Christoph Aderhold
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| |
Collapse
|
47
|
Seiter K, Latremouille-Viau D, Guerin A, Ndife B, Habucky K, Tang DH, Pivneva I, Gagnon-Sanschagrin P, Joseph GJ. Burden of Infections Among Chronic Myeloid Leukemia Patients Receiving Dasatinib or Nilotinib: A Real-World Retrospective Healthcare Claims Study in the United States. Adv Ther 2018; 35:1671-1685. [PMID: 30155792 DOI: 10.1007/s12325-018-0772-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Tyrosine kinase inhibitors (TKI) have been demonstrated to prolong survival in patients with chronic myeloid leukemia (CML). However, TKIs may be associated with an increased risk of infections. This study compared healthcare resource utilization (HRU) and costs among patients with CML receiving dasatinib or nilotinib, with a focus on infection-related economic outcomes. METHODS Two large administrative databases were used to identify adult patients newly diagnosed with CML who initiated dasatinib or nilotinib as first- (1L) or second-line (2L) therapy and were classified into the following 1L (dasatinib 1L/nilotinib 1L cohorts) or 2L (dasatinib 2L/nilotinib 2L) cohorts based on the initiated 1L/2L TKI therapy. Infection-related HRU and healthcare costs were compared between cohorts, separately for 1L and 2L. RESULTS Cohorts included 1156 patients in the dasatinib 1L and 677 patients in the nilotinib 1L cohorts, 322 patients in the dasatinib 2L, and 207 in the nilotinib 2L cohorts. In 1L and 2L, infection-related HRU was higher for dasatinib than nilotinib cohorts. Infection-related inpatient (IP) days constituted a larger proportion of all-cause IP days in the 1L/2L dasatinib than 1L/2L nilotinib cohorts (dasatinib 1L/2L: 53%/58%; nilotinib 1L/2L: 50%/46%). Compared to the nilotinib cohort, the dasatinib cohort had higher all-cause total costs per patient per year by US$17,901 in 1L and $28,625 in 2L. Of the total cost difference, infection-related were $6048 (34%) in 1L and $28,192 (99%) in 2L, largely driven by IP cost differences (1L/2L: 96%/98%). CONCLUSIONS Dasatinib was associated with higher HRU and healthcare costs compared to nilotinib, particularly related to infections. FUNDING Novartis Pharmaceutical Corporation.
Collapse
Affiliation(s)
| | | | | | - Briana Ndife
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Karen Habucky
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Derek H Tang
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | | | | |
Collapse
|
48
|
Manley PW, Caravatti G, Furet P, Roesel J, Tran P, Wagner T, Wartmann M. Comparison of the Kinase Profile of Midostaurin (Rydapt) with That of Its Predominant Metabolites and the Potential Relevance of Some Newly Identified Targets to Leukemia Therapy. Biochemistry 2018; 57:5576-5590. [PMID: 30148617 DOI: 10.1021/acs.biochem.8b00727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The multitargeted protein kinase inhibitor midostaurin is approved for the treatment of both newly diagnosed FLT3-mutated acute myeloid leukemia (AML) and KIT-driven advanced systemic mastocytosis. AML is a heterogeneous malignancy, and investigational drugs targeting FLT3 have shown disparate effects in patients with FLT3-mutated AML, probably as a result of their inhibiting different targets and pathways at the administered doses. However, the efficacy and side effects of drugs do not just reflect the biochemical and pharmacodynamic properties of the parent compound but are often comprised of complex cooperative effects between the properties of the parent and active metabolites. Following chronic dosing, two midostaurin metabolites attain steady-state plasma trough levels greater than that of the parent drug. In this study, we characterized these metabolites and determined their profiles as kinase inhibitors using radiometric transphosphorylation assays. Like midostaurin, the metabolites potently inhibit mutant forms of FLT3 and KIT and several additional kinases that either are directly involved in the deregulated signaling pathways or have been implicated as playing a role in AML via stromal support, such as IGF1R, LYN, PDPK1, RET, SYK, TRKA, and VEGFR2. Consequently, a complex interplay between the kinase activities of midostaurin and its metabolites is likely to contribute to the efficacy of midostaurin in AML and helps to engender the distinctive effects of the drug compared to those of other FLT3 inhibitors in this malignancy.
Collapse
Affiliation(s)
- Paul W Manley
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research , Novartis International AG , CH-4002 Basel , Switzerland
| | - Giorgio Caravatti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research , Novartis International AG , CH-4002 Basel , Switzerland
| | - Pascal Furet
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research , Novartis International AG , CH-4002 Basel , Switzerland
| | - Johannes Roesel
- Oncology Disease Area, Novartis Institutes for Biomedical Research , Novartis International AG , CH-4002 Basel , Switzerland
| | - Phi Tran
- Department of Drug Metabolism and Pharmacokinetics , Novartis Institutes for Biomedical Research , East Hanover , New Jersey 07936 , United States
| | - Trixie Wagner
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research , Novartis International AG , CH-4002 Basel , Switzerland
| | - Markus Wartmann
- Oncology Disease Area, Novartis Institutes for Biomedical Research , Novartis International AG , CH-4002 Basel , Switzerland
| |
Collapse
|
49
|
Tian X, Zhang H, Heimbach T, He H, Buchbinder A, Aghoghovbia M, Hourcade-Potelleret F. Clinical Pharmacokinetic and Pharmacodynamic Overview of Nilotinib, a Selective Tyrosine Kinase Inhibitor. J Clin Pharmacol 2018; 58:1533-1540. [PMID: 30179260 DOI: 10.1002/jcph.1312] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/10/2018] [Indexed: 01/13/2023]
Abstract
Nilotinib, an oral inhibitor of the tyrosine kinase activity of Abelson protein, is approved for the treatment of patients with newly diagnosed chronic myeloid leukemia (CML) in chronic phase and patients with CML in chronic phase or accelerated phase resistant or intolerant to prior therapies. This review describes the pharmacokinetic and pharmacodynamic data of nilotinib in patients with CML and in healthy volunteers. Nilotinib is rapidly absorbed, with a peak serum concentration approximately 3 hours after dosing. The area under the plasma drug concentration-time curve over 24 hours and the peak serum concentration of nilotinib were dose proportional from 50-400 mg once daily. The metabolism of nilotinib is primarily via hepatic cytochrome P450 (CYP) 3A4 according to in vitro studies. In the clinical setting, exposure to nilotinib was significantly reduced by the induction of CYP3A4 with rifampicin and significantly increased by the inhibition of CYP3A with ketoconazole. Additionally, nilotinib is a competitive inhibitor of CYP3A4/5, CYP2C8, CYP2C9, CYP2D6, and uridine diphosphate glucuronosyltransferase 1A1. The bioavailability of nilotinib is increased by up to 82% when given with a high-fat meal compared with fasted state. There is a positive correlation between the occurrences of all-grade total bilirubin elevations and the steady-state nilotinib trough concentrations. Fredericia method corrected QT interval change from baseline was observed to have a correlation with nilotinib exposure. No significant relationship between nilotinib exposure and major molecular response at 12 months was seen at therapeutic doses of nilotinib 300-400 mg, probably due to the narrow range of the doses investigated.
Collapse
Affiliation(s)
- Xianbin Tian
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, USA
| | - Hefei Zhang
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, USA
| | - Tycho Heimbach
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, USA
| | - Handan He
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, USA
| | - Aby Buchbinder
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, USA
| | - Mary Aghoghovbia
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, USA
| | | |
Collapse
|
50
|
Schoepfer J, Jahnke W, Berellini G, Buonamici S, Cotesta S, Cowan-Jacob SW, Dodd S, Drueckes P, Fabbro D, Gabriel T, Groell JM, Grotzfeld RM, Hassan AQ, Henry C, Iyer V, Jones D, Lombardo F, Loo A, Manley PW, Pellé X, Rummel G, Salem B, Warmuth M, Wylie AA, Zoller T, Marzinzik AL, Furet P. Discovery of Asciminib (ABL001), an Allosteric Inhibitor of the Tyrosine Kinase Activity of BCR-ABL1. J Med Chem 2018; 61:8120-8135. [DOI: 10.1021/acs.jmedchem.8b01040] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Joseph Schoepfer
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | | | - Simona Cotesta
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Sandra W. Cowan-Jacob
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Stephanie Dodd
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Peter Drueckes
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | - Tobias Gabriel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Jean-Marc Groell
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Robert M. Grotzfeld
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | - Chrystèle Henry
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | - Darryl Jones
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | - Alice Loo
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Paul W. Manley
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Xavier Pellé
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Gabriele Rummel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Bahaa Salem
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | | | - Thomas Zoller
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas L. Marzinzik
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Pascal Furet
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| |
Collapse
|