1
|
Soto-Caballero MC, Cano-Monge EE, Cano-Monge SM, Welti-Chanes J, Escobedo-Avellaneda Z. Effect of high hydrostatic pressures on microorganisms, total phenolic content and enzyme activity of mamey (Pouteria sapota) nectar. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2599-2604. [PMID: 35734125 PMCID: PMC9206978 DOI: 10.1007/s13197-021-05278-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/13/2021] [Accepted: 09/13/2021] [Indexed: 06/01/2023]
Abstract
Mamey (Pouteria sapota) is a Mexican native fruit of sweet flavor and high content of antioxidants. Some of these antioxidants are sensitive to high temperatures. Nonthermal technologies such as high hydrostatic pressures (HHP) could be an adequate alternative to traditional thermal pasteurization. Mamey nectars were treated under different HHP conditions and the effects on native microorganisms (mesophilic bacteria, molds and yeast), pectinmethylesterase (PME) and polyphenoloxidase (PPO) activities as well as on total phenolic content (TPC), were evaluated. Most HHP treatments conditions were equally effective to inactive native microorganisms. The application of HHP improved the extraction of TPC showing increments of 24% (400 MPa/2 min) to 64% (500 MPa/2 min) compared with the control samples. At 500 MPa/5 and 10 min maximum inactivation levels of PPO of about 40% were obtained, while PME activity showed decrements up to 70% at 400 MPa/5 min. HHP showed to be a potential technology to preserve mamey nectar, but more conditions should be tested to reach higher enzyme inactivation.
Collapse
Affiliation(s)
- Mayra Cristina Soto-Caballero
- Facultad de Ciencias Agrotecnologicas, Universidad Autonoma de Chihuahua, Av. Presa de la Amistad 2015, Col. Barrio La Presa., 31510 Cuauhtémoc, Chihuahua, Mexico
| | - Erick Eduardo Cano-Monge
- Facultad de Ciencias Agrotecnologicas, Universidad Autonoma de Chihuahua, Av. Presa de la Amistad 2015, Col. Barrio La Presa., 31510 Cuauhtémoc, Chihuahua, Mexico
| | - Sayra Mayret Cano-Monge
- Facultad de Ciencias Agrotecnologicas, Universidad Autonoma de Chihuahua, Av. Presa de la Amistad 2015, Col. Barrio La Presa., 31510 Cuauhtémoc, Chihuahua, Mexico
| | - Jorge Welti-Chanes
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico
| | - Zamantha Escobedo-Avellaneda
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico
| |
Collapse
|
2
|
Chen ZL, Xu JQ. Purification of quantum dot-based bioprobes with a salting out strategy. NANOSCALE ADVANCES 2022; 4:393-396. [PMID: 36132697 PMCID: PMC9417310 DOI: 10.1039/d1na00569c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/08/2021] [Indexed: 06/16/2023]
Abstract
A salting out strategy is reported for purification of IgG-conjugated QD (IgG-QD) bioprobes. Adding NaCl can precipitate free IgG selectively, while the IgG-QD maintains good colloidal stability. The dynamic light scattering technique reveals that this is due to the relatively positive zeta potential of free IgG than that of the IgG-QD.
Collapse
Affiliation(s)
- Zhi-Liang Chen
- School of Pharmacy, Shaoyang University Shaoyang 422000 P. R. China
| | - Jia-Quan Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology Nanchang 330013 China +86-739-5308282
| |
Collapse
|
3
|
Roobab U, Abida A, Afzal R, Madni GM, Zeng X, Rahaman A, Aadil RM. Impact of high‐pressure treatments on enzyme activity of fruit‐based beverages: an overview. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ume Roobab
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 China
| | - Afeera Abida
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Rehan Afzal
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Ghulam Muhammad Madni
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 China
| | - Abdul Rahaman
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| |
Collapse
|
4
|
Timpmann K, Linnanto JM, Yadav D, Kangur L, Freiberg A. Hydrostatic High-Pressure-Induced Denaturation of LH2 Membrane Proteins. J Phys Chem B 2021; 125:9979-9989. [PMID: 34460261 DOI: 10.1021/acs.jpcb.1c05789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The denaturation of globular proteins by high pressure is frequently associated with the release of internal voids and/or the exposure of the hydrophobic protein interior to a polar aqueous solvent. Similar evidence with respect to membrane proteins is not available. Here, we investigate the impact of hydrostatic pressures reaching 12 kbar on light-harvesting 2 integral membrane complexes of purple photosynthetic bacteria using two types of innate chromophores in separate strategic locations: bacteriochlorophyll-a in the hydrophobic interior and tryptophan at both protein-solvent interfacial gateways to internal voids. The complexes from mutant Rhodobacter sphaeroides with low resilience against pressure were considered in parallel with the naturally robust complexes of Thermochromatium tepidum. In the former case, a firm correlation was established between the abrupt blue shift of the bacteriochlorophyll-a exciton absorption, a known indicator of the breakage of tertiary structure pigment-protein hydrogen bonds, and the quenching of tryptophan fluorescence, a supposed result of further protein solvation. No such effects were observed in the reference complex. While these data may be naively taken as supporting evidence of the governing role of hydration, the analysis of atomistic model structures of the complexes confirmed the critical part of the structure in the pressure-induced denaturation of the membrane proteins studied.
Collapse
Affiliation(s)
- Kõu Timpmann
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
| | - Juha Matti Linnanto
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
| | - Dheerendra Yadav
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
| | - Liina Kangur
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
| | - Arvi Freiberg
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia.,Estonian Academy of Sciences, Kohtu Str. 6, Tallinn 10130, Estonia
| |
Collapse
|
5
|
Yang D, Reyes-De-Corcuera JI. Increased activity of alcohol oxidase at high hydrostatic pressure. Enzyme Microb Technol 2021; 145:109751. [PMID: 33750541 DOI: 10.1016/j.enzmictec.2021.109751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Alcohol oxidase (AOx) from P. pastoris has potential applications in the production of carbonyl compounds and for the detection and quantification of alcohols. However, AOx's poor stability and low activity have hindered its practical application. There are two fractions of AOx in P. pastoris with different thermal stability. High hydrostatic pressure (HHP) increased the activity of the labile (L) + resistant (R) combined fractions but not of the R fraction alone. The activity of the L + R fractions increased 2.4-fold at 160 MPa and 30 °C compared to the activity at 0.1 MPa. At higher temperatures, the increase in activity with pressure was greater due to the combined stabilization and activation effects. The reaction rate of the R fraction at 50 °C was 17.9 ± 3.6 or 17.7 ± 0.8 μM min-1 at 80 or 160 MPa, respectively, and was not significantly different from the activity of the L + R fractions under the same conditions (18.4 ± 2.7 μM min-1). The activation energy of the R fraction was not significantly different between 80 MPa (41.5 ± 10.5 kJ mol-1) and 160 MPa (43.8 ± 7.8 kJ mol-1). The combined increase in the stability of the R fraction at HHP enables the use of the enzyme at 50 °C with little loss of activity and an increased catalytic rate.
Collapse
Affiliation(s)
- Daoyuan Yang
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
6
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|
7
|
Roche J, Royer CA. Lessons from pressure denaturation of proteins. J R Soc Interface 2018; 15:rsif.2018.0244. [PMID: 30282759 DOI: 10.1098/rsif.2018.0244] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/13/2018] [Indexed: 12/26/2022] Open
Abstract
Although it is now relatively well understood how sequence defines and impacts global protein stability in specific structural contexts, the question of how sequence modulates the configurational landscape of proteins remains to be defined. Protein configurational equilibria are generally characterized by using various chemical denaturants or by changing temperature or pH. Another thermodynamic parameter which is less often used in such studies is high hydrostatic pressure. This review discusses the basis for pressure effects on protein structure and stability, and describes how the unique mechanisms of pressure-induced unfolding can provide unique insights into protein conformational landscapes.
Collapse
Affiliation(s)
- Julien Roche
- Department of Biochemistry, Biophysics and Molecular Biology Iowa State University, Ames, IA 50011, USA
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
8
|
Nakajima T, Kuroi K, Nakasone Y, Okajima K, Ikeuchi M, Tokutomi S, Terazima M. Anomalous pressure effects on the photoreaction of a light-sensor protein from Synechocystis, PixD (Slr1694), and the compressibility change of its intermediates. Phys Chem Chem Phys 2018; 18:25915-25925. [PMID: 27711633 DOI: 10.1039/c6cp05091c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
SyPixD (Slr1694) is a blue-light receptor that contains a BLUF (blue-light sensor using a flavin chromophore) domain for the function of phototaxis. The key reaction of this protein is a light-induced conformational change and subsequent dissociation reaction from the decamer to the dimer. In this study, anomalous effects of pressure on this reaction were discovered, and changes in the compressibility of its short-lived intermediates were investigated. While the absorption spectra of the dark and light states are not sensitive to pressure, the formation yield of the first intermediate decreases with pressure to about 40% at 150 MPa. Upon blue-light illumination with a sufficiently strong intensity, the transient grating signal, which represents the dissociation of the SyPixD decamer, was observed at 0.1 MPa, and the signal intensity significantly decreased with increasing pressure. This behavior shows that the dissociation of the decamer from the second intermediate state is suppressed by pressure. However, while the decamer undergoes no dissociation upon excitation of one monomer unit at 0.1 MPa, dissociation is gradually induced with increasing pressure. For solving this strange behavior, the compressibility changes of the intermediates were measured as a function of pressure at weak light intensity. Interestingly, the compressibility change was negative at low pressure, but became positive with increasing pressure. Because the compressibility is related to the volume fluctuation, this observation suggests that the driving force for this reaction is fluctuation of the protein. The relationship between the cavities at the interfaces of the monomer units and the reactivity was also discussed.
Collapse
Affiliation(s)
- Tsubasa Nakajima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Kunisato Kuroi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Koji Okajima
- Research Institute for Advanced Science and Technology, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Satoru Tokutomi
- Research Institute for Advanced Science and Technology, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
9
|
Jacchetti E, Gabellieri E, Cioni P, Bizzarri R, Nifosì R. Temperature and pressure effects on GFP mutants: explaining spectral changes by molecular dynamics simulations and TD-DFT calculations. Phys Chem Chem Phys 2016; 18:12828-38. [PMID: 27102429 DOI: 10.1039/c6cp01274d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
By combining spectroscopic measurements under high pressure with molecular dynamics simulations and quantum mechanics calculations we investigate how sub-angstrom structural perturbations are able to tune protein function. We monitored the variations in fluorescence output of two green fluorescent protein mutants (termed Mut2 and Mut2Y, the latter containing the key T203Y mutation) subjected to pressures up to 600 MPa, at various temperatures in the 280-320 K range. By performing 150 ns molecular dynamics simulations of the protein structures at various pressures, we evidenced subtle changes in conformation and dynamics around the light-absorbing chromophore. Such changes explain the measured spectral tuning in the case of the sizable 120 cm(-1) red-shift observed for pressurized Mut2Y, but absent in Mut2. Previous work [Barstow et al., Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 13362] on pressure effects on GFP also involved a T203Y mutant. On the basis of cryocooling X-ray crystallography, the pressure-induced fluorescence blue shift at low temperature (77 K) was attributed to key changes in relative conformation of the chromophore and Tyr203 phenol ring. At room temperature, however, a red shift was observed at high pressure, analogous to the one we observe in Mut2Y. Our investigation of structural variations in compressed Mut2Y also explains their result, bridging the gap between low-temperature and room-temperature high-pressure effects.
Collapse
|
10
|
Yamada H, Nagae T, Watanabe N. High-pressure protein crystallography of hen egg-white lysozyme. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:742-53. [PMID: 25849385 PMCID: PMC4388261 DOI: 10.1107/s1399004715000292] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/07/2015] [Indexed: 11/16/2022]
Abstract
Crystal structures of hen egg-white lysozyme (HEWL) determined under pressures ranging from ambient pressure to 950 MPa are presented. From 0.1 to 710 MPa, the molecular and internal cavity volumes are monotonically compressed. However, from 710 to 890 MPa the internal cavity volume remains almost constant. Moreover, as the pressure increases to 950 MPa, the tetragonal crystal of HEWL undergoes a phase transition from P43212 to P43. Under high pressure, the crystal structure of the enzyme undergoes several local and global changes accompanied by changes in hydration structure. For example, water molecules penetrate into an internal cavity neighbouring the active site and induce an alternate conformation of one of the catalytic residues, Glu35. These phenomena have not been detected by conventional X-ray crystal structure analysis and might play an important role in the catalytic activity of HEWL.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya, Aichi 464-8603, Japan
| | - Takayuki Nagae
- Synchrotron Radiation Research Center, Nagoya University, Chikusa, Nagoya, Aichi 464-8603, Japan
| | - Nobuhisa Watanabe
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya, Aichi 464-8603, Japan
- Synchrotron Radiation Research Center, Nagoya University, Chikusa, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
11
|
The effects of heat activation on Bacillus spore germination, with nutrients or under high pressure, with or without various germination proteins. Appl Environ Microbiol 2015; 81:2927-38. [PMID: 25681191 DOI: 10.1128/aem.00193-15] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nutrient germination of spores of Bacillus species occurs through germinant receptors (GRs) in spores' inner membrane (IM) in a process stimulated by sublethal heat activation. Bacillus subtilis spores maximum germination rates via different GRs required different 75 °C heat activation times: 15 min for l-valine germination via the GerA GR and 4 h for germination with the L-asparagine-glucose-fructose-K(+) mixture via the GerB and GerK GRs, with GerK requiring the most heat activation. In some cases, optimal heat activation decreased nutrient concentrations for half-maximal germination rates. Germination of spores via various GRs by high pressure (HP) of 150 MPa exhibited heat activation requirements similar to those of nutrient germination, and the loss of the GerD protein, required for optimal GR function, did not eliminate heat activation requirements for maximal germination rates. These results are consistent with heat activation acting primarily on GRs. However, (i) heat activation had no effects on GR or GerD protein conformation, as probed by biotinylation by an external reagent; (ii) spores prepared at low and high temperatures that affect spores' IM properties exhibited large differences in heat activation requirements for nutrient germination; and (iii) spore germination by 550 MPa of HP was also affected by heat activation, but the effects were relatively GR independent. The last results are consistent with heat activation affecting spores' IM and only indirectly affecting GRs. The 150- and 550-MPa HP germinations of Bacillus amyloliquefaciens spores, a potential surrogate for Clostridium botulinum spores in HP treatments of foods, were also stimulated by heat activation.
Collapse
|
12
|
Kuroi K, Okajima K, Ikeuchi M, Tokutomi S, Kamiyama T, Terazima M. Pressure-Sensitive Reaction Yield of the TePixD Blue-Light Sensor Protein. J Phys Chem B 2015; 119:2897-907. [DOI: 10.1021/jp511946u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kunisato Kuroi
- Department of Chemistry, Graduate School
of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Koji Okajima
- Department of Life Sciences (Biology),
Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai,
Osaka 599-8531, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology),
Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Satoru Tokutomi
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai,
Osaka 599-8531, Japan
| | - Tadashi Kamiyama
- Department of Chemistry, School of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School
of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
13
|
Abstract
Hydrostatic pressure leads to nonuniform compression of proteins. The structural change is on average only about 0.1 Å kbar(-1), and is therefore within the range of fluctuations at ambient pressure. The largest changes are around cavities and buried water molecules. Sheets distort much more than helices. Hydrogen bonds compress about 0.012 Å kbar(-1), although there is a wide range, including some hydrogen bonds that lengthen. In the presence of ligands and inhibitors, structural changes are smaller. Pressure has little effect on rapid fluctuations, but with larger scale slower motions, pressure increases the population of excited states (if they have smaller overall volume), and slows the fluctuations. In barnase, pressure is shown to be a useful way to characterise fluctuations on the timescale of microseconds, and helps to show that fluctuations in barnase are hierarchical, with the faster fluctuations providing a platform for the slower ones. The excited states populated at high pressure are probably functionally important.
Collapse
Affiliation(s)
- Mike P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK,
| |
Collapse
|
14
|
Abedi Karjiban R, Lim WZ, Basri M, Abdul Rahman MB. Molecular Dynamics of Thermoenzymes at High Temperature and Pressure: A Review. Protein J 2014; 33:369-76. [DOI: 10.1007/s10930-014-9568-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Temperature and pressure effects on C112S azurin: Volume, expansivity, and flexibility changes. Proteins 2014; 82:1787-98. [DOI: 10.1002/prot.24532] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/10/2014] [Accepted: 01/28/2014] [Indexed: 11/07/2022]
|
16
|
Thermodynamic and functional characteristics of deep-sea enzymes revealed by pressure effects. Extremophiles 2014; 17:701-9. [PMID: 23798033 DOI: 10.1007/s00792-013-0556-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/13/2013] [Indexed: 01/14/2023]
Abstract
Hydrostatic pressure analysis is an ideal approach for studying protein dynamics and hydration. The development of full ocean depth submersibles and high pressure biological techniques allows us to investigate enzymes from deep-sea organisms at the molecular level. The aim of this review was to overview the thermodynamic and functional characteristics of deep-sea enzymes as revealed by pressure axis analysis after giving a brief introduction to the thermodynamic principles underlying the effects of pressure on the structural stability and function of enzymes.
Collapse
|
17
|
Tognotti D, Gabellieri E, Morelli E, Cioni P. Temperature and pressure dependence of azurin stability as monitored by tryptophan fluorescence and phosphorescence. The case of F29A mutant. Biophys Chem 2013; 182:44-50. [PMID: 23816248 DOI: 10.1016/j.bpc.2013.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/07/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
The effects of a single-point, F29A, cavity-forming mutation on the unfolding thermodynamic parameters of azurin from Pseudomonas aeruginosa and on the internal dynamics of the protein fold under pressure were probed by the fluorescence and phosphorescence emission of Trp48, deeply buried in the compact hydrophobic core of the macromolecule. Pressure-induced unfolding, monitored by the shift in the fluorescence spectrum, led to a volume change of 70-90mlmol(-1). The difference in the unfolding volume between F29A and wild type azurin was smaller than the volume of the space theoretically created in the mutant, indicating that the cavity is, at least partially, filled with water molecules. The complex temperature dependence of the unfolding volume, for temperatures up to 20°C, suggests the formation of an expanded form of the protein and highlights how the packing efficiency of azurin appears to contribute to the magnitude of internal void volume at any given temperature. Changes in flexibility of the protein matrix around the chromophore were monitored by the intrinsic phosphorescence lifetime. At 40°C the application of pressure in the predenaturation range initially decreases the internal flexibility of azurin, the trend eventually reverting on approaching unfolding. The main difference between wild type and the cavity mutant is the inversion point which happens at 300MPa for wild type and at 150MPa for F29A. This suggests that, for the cavity mutant, pressure-induced internal hydration is more dominant than any compaction of the globular fold at relatively low pressures.
Collapse
Affiliation(s)
- Danika Tognotti
- Istituto di Biofisica, CNR, via G. Moruzzi 1, 56124 Pisa, Italy.
| | | | | | | |
Collapse
|
18
|
Comparative study of enzymes, phenolics, carotenoids and color of apricot nectars treated by high hydrostatic pressure and high temperature short time. INNOV FOOD SCI EMERG 2013. [DOI: 10.1016/j.ifset.2013.01.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Davydov DR, Sineva EV, Davydova NY, Bartlett DH, Halpert JR. CYP261 enzymes from deep sea bacteria: a clue to conformational heterogeneity in cytochromes P450. Biotechnol Appl Biochem 2013; 60:30-40. [PMID: 23586990 DOI: 10.1002/bab.1083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 12/14/2012] [Indexed: 11/12/2022]
Abstract
We have explored the adaptation of the cytochromes P450 (P450) of deep-sea bacteria to high hydrostatic pressures. Strict conservation of the protein fold and functional importance of protein-bound water make P450 a unique subject for the studies of high-pressure adaptation. Earlier, we expressed and purified a fatty-acid binding P450 from the deep-sea bacteria Photobacterium profundum SS9 (CYP261C1). Here, we report purification and initial characterization of its mesophilic ortholog from the shallow-water P. profundum 3TCK (CYP261C2), as well as another piezophilic enzyme, CYP261D1, from deep-sea Moritella sp. PE36. Comparison of the three enzymes revealed a striking peculiarity of the piezophilic enzymes. Both CYP261C1 and CYP261D1 possess an apparent pressure-induced conformational toggle actuated at the pressures commensurate with the physiological pressure of habitation of the host bacteria. Furthermore, in contrast to CYP261C2, the piezophilic CYP261 enzymes may be chromatographically separated into two fractions with different properties, and different thermodynamic parameters of spin equilibrium in particular. According to our concept, the changes in the energy landscape that evolved in pressure-tolerant enzymes must stabilize the less-hydrated, closed conformers, which may be transient in the catalytic mechanisms of nonpiezophilic enzymes. The studies of enzymes of piezophiles should help unravel the mechanisms that control water access during the catalytic cycle.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA.
| | | | | | | | | |
Collapse
|
20
|
Effect of pressure on the solution structure and hydrogen bond properties of aqueous N-methylacetamide. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2012.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Nellas RB, Glover MM, Hamelberg D, Shen T. High-pressure effect on the dynamics of solvated peptides. J Chem Phys 2012; 136:145103. [DOI: 10.1063/1.3700183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Bettati S, Luque FJ, Viappiani C. Protein dynamics: experimental and computational approaches. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1814:913-915. [PMID: 21600317 DOI: 10.1016/j.bbapap.2011.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Stefano Bettati
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, and Istituto Nazionale di Biostrutture e Biosistemi, Italy.
| | | | | |
Collapse
|