1
|
The Role of α-Synuclein in the Regulation of Serotonin System: Physiological and Pathological Features. Biomedicines 2023; 11:biomedicines11020541. [PMID: 36831077 PMCID: PMC9953742 DOI: 10.3390/biomedicines11020541] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
In patients affected by Parkinson's disease (PD), up to 50% of them experience cognitive changes, and psychiatric disturbances, such as anxiety and depression, often precede the onset of motor symptoms and have a negative impact on their quality of life. Pathologically, PD is characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc) and the presence of intracellular inclusions, called Lewy bodies and Lewy neurites, composed mostly of α-synuclein (α-Syn). Much of PD research has focused on the role of α-Syn aggregates in the degeneration of SNc DA neurons due to the impact of striatal DA deficits on classical motor phenotypes. However, abundant Lewy pathology is also found in other brain regions including the midbrain raphe nuclei, which may contribute to non-motor symptoms. Indeed, dysfunction of the serotonergic (5-HT) system, which regulates mood and emotional pathways, occurs during the premotor phase of PD. However, little is known about the functional consequences of α-Syn inclusions in this neuronal population other than DA neurons. Here, we provide an overview of the current knowledge of α-Syn and its role in regulating the 5-HT function in health and disease. Understanding the relative contributions to α-Syn-linked alterations in the 5-HT system may provide a basis for identifying PD patients at risk for developing depression and could lead to a more targeted therapeutic approach.
Collapse
|
2
|
Roy R, Paul S. Illustrating the Effect of Small Molecules Derived from Natural Resources on Amyloid Peptides. J Phys Chem B 2023; 127:600-615. [PMID: 36638829 DOI: 10.1021/acs.jpcb.2c07607] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The onset of amyloidogenic diseases is associated with the misfolding and aggregation of proteins. Despite extensive research, no effective therapeutics are yet available to treat these chronic degenerative diseases. Targeting the aggregation of disease-specific proteins is regarded as a promising new approach to treat these diseases. In the past few years, rapid progress in this field has been made in vitro, in vivo, and in silico to generate potential drug candidates, ranging from small molecules to polymers to nanoparticles. Small molecular probes, mostly those derived from natural sources, have been of particular interest among amyloid inhibitors. Here, we summarize some of the most important natural small molecular probes which can inhibit the aggregation of Aβ, hIAPP, and α-syn peptides and discuss how their binding efficacy and preference for the peptides vary with their structure and conformation. This provides a comprehensive idea of the crucial factors which should be incorporated into the future design of novel drug candidates useful for the treatment of amyloid diseases.
Collapse
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam-781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam-781039, India
| |
Collapse
|
3
|
Caligiore D, Giocondo F, Silvetti M. The Neurodegenerative Elderly Syndrome (NES) hypothesis: Alzheimer and Parkinson are two faces of the same disease. IBRO Neurosci Rep 2022; 13:330-343. [PMID: 36247524 PMCID: PMC9554826 DOI: 10.1016/j.ibneur.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Increasing evidence suggests that Alzheimer's disease (AD) and Parkinson's disease (PD) share monoamine and alpha-synuclein (αSyn) dysfunctions, often beginning years before clinical manifestations onset. The triggers for these impairments and the causes leading these early neurodegenerative processes to become AD or PD remain unclear. We address these issues by proposing a radically new perspective to frame AD and PD: they are different manifestations of one only disease we call "Neurodegenerative Elderly Syndrome (NES)". NES goes through three phases. The seeding stage, which starts years before clinical signs, and where the part of the brain-body affected by the initial αSyn and monoamine dysfunctions, influences the future possible progression of NES towards PD or AD. The compensatory stage, where the clinical symptoms are still silent thanks to compensatory mechanisms keeping monoamine concentrations homeostasis. The bifurcation stage, where NES becomes AD or PD. We present recent literature supporting NES and discuss how this hypothesis could radically change the comprehension of AD and PD comorbidities and the design of novel system-level diagnostic and therapeutic actions.
Collapse
Affiliation(s)
- Daniele Caligiore
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, Rome 00185, Italy
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, Rome 00199, Italy
| | - Flora Giocondo
- Laboratory of Embodied Natural and Artificial Intelligence, Institute of Cognitive Sciences and Technologies, National Research Council (LENAI-ISTC-CNR), Via San Martino della Battaglia 44, Rome 00185, Italy
| | - Massimo Silvetti
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, Rome 00185, Italy
| |
Collapse
|
4
|
Sunny LP, Srikanth P, Sunitha AK, Tembulkar N, Abraham JN. Tryptophan-cardanol fluorescent nanoparticles inhibit α-synuclein aggregation and disrupt amyloid fibrils. J Pept Sci 2021; 28:e3374. [PMID: 34651357 DOI: 10.1002/psc.3374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/11/2022]
Abstract
Protein misfolding and aggregation play a vital role in several human diseases such as Parkinson's, Alzheimer's, and prion diseases. The development of nanoparticles that modulate aggregation could be potential drug candidates for these neurodegenerative disorders. Parkinson's disease pathogenesis is closely associated with the accumulation of α-synuclein oligomers and fibrils in the substantia nigra of the brain. This report discusses the interactions of novel tryptophan-cardanol nanoparticles with α-synuclein protein monomers and fibrils. These nanoparticles could effectively disrupt α-synuclein fibrils and inhibit fibril formation at low concentrations such as 5 μM. The tryptophan-cardanol nanoparticles inhibit fibril formation from unstructured protein resulting in spherical nanostructures. These nanoparticles could also disassemble amyloid fibrils; the complete disappearance of fibrils was evident after 48 h of incubation with tryptophan-cardanol. The transmission electron microscopy (TEM) micrographs after the incubation did not show any remnants of the peptide aggregates or oligomers. The thioflavin T fluorescence after the disassembly was diminished compared with that of fibrils also supports the inhibitory effect of the nanoparticles. Also, these nanoparticles did not reduce the viability of the SH-SY5Y cells. These findings suggest that the tryptophan-cardanol nanoparticles showed sufficiently high inhibitory activity and may have therapeutic potential for synucleinopathies.
Collapse
Affiliation(s)
- Lisni P Sunny
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, India
| | - Priya Srikanth
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | | | - Niyoti Tembulkar
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Jancy Nixon Abraham
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, India
| |
Collapse
|
5
|
Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, Ahadi R, Joghataei MT. The Roles of Serotonin in Neuropsychiatric Disorders. Cell Mol Neurobiol 2021; 42:1671-1692. [PMID: 33651238 DOI: 10.1007/s10571-021-01064-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
The serotonergic system extends throughout the central nervous system (CNS) and the gastrointestinal (GI) tract. In the CNS, serotonin (5-HT, 5-hydroxytryptamine) modulates a broad spectrum of functions, including mood, cognition, anxiety, learning, memory, reward processing, and sleep. These processes are mediated through 5-HT binding to 5-HT receptors (5-HTRs), are classified into seven distinct groups. Deficits in the serotonergic system can result in various pathological conditions, particularly depression, schizophrenia, mood disorders, and autism. In this review, we outlined the complexity of serotonergic modulation of physiologic and pathologic processes. Moreover, we provided experimental and clinical evidence of 5-HT's involvement in neuropsychiatric disorders and discussed the molecular mechanisms that underlie these illnesses and contribute to the new therapies.
Collapse
Affiliation(s)
- Mahsa Pourhamzeh
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ghasemi Moravej
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Arabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Radiology and Medical Physics, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Shahriari
- Faculty of Medicine, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Faculty of Medicine, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Richard Ward
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taghi Joghataei
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Yang N, Li Z, Han D, Mi X, Tian M, Liu T, Li Y, He J, Kuang C, Cao Y, Li L, Ni C, Wang JQ, Guo X. Autophagy prevents hippocampal α-synuclein oligomerization and early cognitive dysfunction after anesthesia/surgery in aged rats. Aging (Albany NY) 2020; 12:7262-7281. [PMID: 32335546 PMCID: PMC7202547 DOI: 10.18632/aging.103074] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/29/2020] [Indexed: 12/13/2022]
Abstract
Stress-induced α-synuclein aggregation, especially the most toxic species (oligomers), may precede synaptic and cognitive dysfunction. Under pathological conditions, α-synuclein is degraded primarily through the autophagic/lysosomal pathway. We assessed the involvement of autophagy in α-synuclein aggregation and cognitive impairment following general anesthesia and surgical stress. Autophagy was found to be suppressed in the aged rat hippocampus after either 4-h propofol anesthesia alone or 2-h propofol anesthesia during a laparotomy surgery. This inhibition of autophagy was accompanied by profound α-synuclein oligomer aggregation and neurotransmitter imbalances in the hippocampus, along with hippocampus-dependent cognitive deficits. These events were not observed 18 weeks after propofol exposure with or without surgical stress. The pharmacological induction of autophagy using rapamycin markedly suppressed α-synuclein oligomerization, restored neurotransmitter equilibrium, and improved cognitive behavior after prolonged anesthesia or anesthesia combined with surgery. Thus, both prolonged propofol anesthesia alone and propofol anesthesia during surgery impaired autophagy, which may have induced abnormal hippocampal α-synuclein aggregation and neurobehavioral deficits in aged rats. These findings suggest that the activation of autophagy and the clearance of pathological α-synuclein oligomers may be novel strategies to ameliorate the common occurrence of postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Dengyang Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Miao Tian
- Chinese Traditional and Herbal Drugs Editorial Office, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Jindan He
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Chongshen Kuang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Yiyun Cao
- Department of Anesthesiology, Shanghai Sixth People's Hospital East Affiliated with Shanghai University of Medicine and Health Sciences, Shanghai 200233, China
| | - Lunxu Li
- Department of Anesthesiology, Peking University International Hospital, Beijing 102200, China
| | - Cheng Ni
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - John Q Wang
- Department of Anesthesiology, University of Missouri Kansas City, School of Medicine, Kansas, MO 64110, USA
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
7
|
Saffari B, Amininasab M, Sheikhi S, Davoodi J. An efficient method for recombinant production of human alpha synuclein in Escherichia coli using thioredoxin as a fusion partner. Prep Biochem Biotechnol 2020; 50:723-734. [PMID: 32129160 DOI: 10.1080/10826068.2020.1734938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Herein, we describe a simple and efficient approach to produce recombinant human α-synuclein (hAS) with high purity from Escherichia coli (E. coli). The cDNA for hAS was inserted into plasmid pET32a and expressed in E. coli BL21 (DE3) with an N-terminal tag containing E. coli thioredoxin (trx), followed by a histidine hexapeptide, and a tobacco etch virus (TEV) protease cleavage site (trx-6His-TEV). The fusion protein, trx-hAS, was initially released by osmotic shock treatment from the host cells and subsequently purified using a nickel affinity chromatography. A TEV protease cleavage step was performed to liberate the target protein, hAS, from the fusion partner, trx. Finally, an additional nickel affinity chromatography was performed to further purify the digested product. The yield of this method is ∼25 mg of tag-less protein (with ∼99% purity) per liter of culture volume. Reverse phase HPLC (RP-HPLC) and electrospray ionization (ESI) mass spectrometry confirmed the purity and authenticity of the purified protein. Thioflavin T (ThT) fluorescence assay, transmission electron microscopy (TEM), and circular dichroism (CD) spectroscopy demonstrated that the purified proteins form fibrils. Our protocol not only provides a convenient procedure for preparing highly pure hAS, but also requires very little specialized laboratory techniques.
Collapse
Affiliation(s)
- Babak Saffari
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sara Sheikhi
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Jamshid Davoodi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Hartlmüller C, Spreitzer E, Göbl C, Falsone F, Madl T. NMR characterization of solvent accessibility and transient structure in intrinsically disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2019; 73:305-317. [PMID: 31297688 PMCID: PMC6692294 DOI: 10.1007/s10858-019-00248-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/11/2019] [Indexed: 05/12/2023]
Abstract
In order to understand the conformational behavior of intrinsically disordered proteins (IDPs) and their biological interaction networks, the detection of residual structure and long-range interactions is required. However, the large number of degrees of conformational freedom of disordered proteins require the integration of extensive sets of experimental data, which are difficult to obtain. Here, we provide a straightforward approach for the detection of residual structure and long-range interactions in IDPs under near-native conditions using solvent paramagnetic relaxation enhancement (sPRE). Our data indicate that for the general case of an unfolded chain, with a local flexibility described by the overwhelming majority of available combinations, sPREs of non-exchangeable protons can be accurately predicted through an ensemble-based fragment approach. We show for the disordered protein α-synuclein and disordered regions of the proteins FOXO4 and p53 that deviation from random coil behavior can be interpreted in terms of intrinsic propensity to populate local structure in interaction sites of these proteins and to adopt transient long-range structure. The presented modification-free approach promises to be applicable to study conformational dynamics of IDPs and other dynamic biomolecules in an integrative approach.
Collapse
Affiliation(s)
- Christoph Hartlmüller
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 87548, Garching, Germany
| | - Emil Spreitzer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Institute of Molecular Biology & Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Christoph Göbl
- The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Fabio Falsone
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstrasse 1, 8010, Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Institute of Molecular Biology & Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
9
|
Parappurath A, Abraham JN. Novel Pentadecyl Phenol-Tagged L-Tryptophan Molecules: Synthesis, Self- Assembly and Liquid Crystalline Properties. ChemistrySelect 2018. [DOI: 10.1002/slct.201702171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Akhil Parappurath
- Polymer Science and Engineering Division CSIR-National Chemical Laboratory; Dr. Homibhabha road Pune India - 411008
| | - Jancy Nixon Abraham
- Polymer Science and Engineering Division CSIR-National Chemical Laboratory; Dr. Homibhabha road Pune India - 411008
| |
Collapse
|
10
|
Mollenhauer B, Parnetti L, Rektorova I, Kramberger MG, Pikkarainen M, Schulz-Schaeffer WJ, Aarsland D, Svenningsson P, Farotti L, Verbeek MM, Schlossmacher MG. Biological confounders for the values of cerebrospinal fluid proteins in Parkinson's disease and related disorders. J Neurochem 2016; 139 Suppl 1:290-317. [DOI: 10.1111/jnc.13390] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Brit Mollenhauer
- Paracelsus-Elena-Klinik; Kassel Germany
- University Medical Center (Department of Neuropathology); Georg-August University Goettingen; Goettingen Germany
| | - Lucilla Parnetti
- Centro Disturbi della Memoria- Unità Valutativa Alzheimer; Clinica Neurologica; Università di Perugia; Perugia Italy
| | - Irena Rektorova
- Applied Neuroscience Group; CEITEC MU; Masaryk University; Brno Czech Republic
| | - Milica G. Kramberger
- Department of Neurology; University Medical Center Ljubljana; Ljubljana Slovenia
- Division for Neurogeriatrics; Department of NVS; Karolinska Institutet; Center for Alzheimer Research; Stockholm Sweden
- Centre for Age-Related Medicine; Stavanger University Hospital; Stavanger Norway
| | - Maria Pikkarainen
- Institute of Clinical Medicine / Neurology; University of Eastern Finland; Kuopio Finland
| | - Walter J. Schulz-Schaeffer
- University Medical Center (Department of Neuropathology); Georg-August University Goettingen; Goettingen Germany
| | - Dag Aarsland
- Division for Neurogeriatrics; Department of NVS; Karolinska Institutet; Center for Alzheimer Research; Stockholm Sweden
- Centre for Age-Related Medicine; Stavanger University Hospital; Stavanger Norway
| | - Per Svenningsson
- Department for Clinical Neuroscience; Karolinska Institute; Stockholm Sweden
| | - Lucia Farotti
- Centro Disturbi della Memoria- Unità Valutativa Alzheimer; Clinica Neurologica; Università di Perugia; Perugia Italy
| | - Marcel M. Verbeek
- Department of Neurology; Department of Laboratory Medicine; Donders Institute for Brain, Cognition and Behaviour; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Michael G. Schlossmacher
- Program in Neuroscience and Division of Neurology; The Ottawa Hospital; University of Ottawa Brain & Mind Research Institute; Ottawa Ontario Canada
| |
Collapse
|
11
|
Insulin-degrading enzyme is activated by the C-terminus of α-synuclein. Biochem Biophys Res Commun 2015; 466:192-5. [PMID: 26343304 DOI: 10.1016/j.bbrc.2015.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 09/01/2015] [Indexed: 11/22/2022]
Abstract
The insulin-degrading enzyme (IDE) plays a key role in type-2 diabetes and typically degrades small peptides such as insulin, amyloid β and islet amyloid polypeptide. We recently reported a novel non-proteolytical interaction in vitro between IDE and the Parkinson's disease 140-residue protein α-synuclein that resulted in dual effects: arrested α-synuclein oligomers and, simultaneously, increased IDE proteolysis activity. Here we demonstrate that these outcomes arise due to IDE interactions with the C-terminus of α-synuclein. Whereas a peptide containing the first 97 residues of α-synuclein did not improve IDE activity and its aggregation was not blocked by IDE, a peptide with the C-terminal 44 residues of α-synuclein increased IDE proteolysis to the same degree as full-length α-synuclein. Because the α-synuclein C-terminus is acidic, the interaction appears to involve electrostatic attraction with IDE's basic exosite, known to be involved in activation.
Collapse
|
12
|
Nors Perdersen M, Foderà V, Horvath I, van Maarschalkerweerd A, Nørgaard Toft K, Weise C, Almqvist F, Wolf-Watz M, Wittung-Stafshede P, Vestergaard B. Direct Correlation Between Ligand-Induced α-Synuclein Oligomers and Amyloid-like Fibril Growth. Sci Rep 2015; 5:10422. [PMID: 26020724 PMCID: PMC4603703 DOI: 10.1038/srep10422] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/13/2015] [Indexed: 01/22/2023] Open
Abstract
Aggregation of proteins into amyloid deposits is the hallmark of several neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The suggestion that intermediate oligomeric species may be cytotoxic has led to intensified investigations of pre-fibrillar oligomers, which are complicated by their transient nature and low population. Here we investigate alpha-synuclein oligomers, enriched by a 2-pyridone molecule (FN075), and the conversion of oligomers into fibrils. As probed by leakage assays, the FN075 induced oligomers potently disrupt vesicles in vitro, suggesting a potential link to disease related degenerative activity. Fibrils formed in the presence and absence of FN075 are indistinguishable on microscopic and macroscopic levels. Using small angle X-ray scattering, we reveal that FN075 induced oligomers are similar, but not identical, to oligomers previously observed during alpha-synuclein fibrillation. Since the levels of FN075 induced oligomers correlate with the amounts of fibrils among different FN075:protein ratios, the oligomers appear to be on-pathway and modeling supports an 'oligomer stacking model' for alpha-synuclein fibril elongation.
Collapse
Affiliation(s)
- Martin Nors Perdersen
- Department of Drug Design and Pharmacology, University of Copenhagen Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Vito Foderà
- Department of Drug Design and Pharmacology, University of Copenhagen Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Istvan Horvath
- Department of Chemistry, Umeå University, S-901 87 Umeå, Sweden
| | - Andreas van Maarschalkerweerd
- Department of Drug Design and Pharmacology, University of Copenhagen Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Katrine Nørgaard Toft
- Department of Drug Design and Pharmacology, University of Copenhagen Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christoph Weise
- Department of Chemistry, Umeå University, S-901 87 Umeå, Sweden
| | - Fredrik Almqvist
- Department of Chemistry, Umeå University, S-901 87 Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå Sweden
| | | | | | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
13
|
SERF protein is a direct modifier of amyloid fiber assembly. Cell Rep 2012; 2:358-71. [PMID: 22854022 PMCID: PMC3807654 DOI: 10.1016/j.celrep.2012.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/17/2012] [Accepted: 06/12/2012] [Indexed: 12/19/2022] Open
Abstract
The inherent cytotoxicity of aberrantly folded protein aggregates contributes substantially to the pathogenesis of amyloid diseases. It was recently shown that a class of evolutionary conserved proteins, called MOAG-4/SERF, profoundly alter amyloid toxicity via an autonomous but yet unexplained mode. We show that the biological function of human SERF1a originates from its atypical ability to specifically distinguish between amyloid and nonamyloid aggregation. This inherently unstructured protein directly affected the aggregation kinetics of a broad range of amyloidogenic proteins in vitro, while being inactive against nonamyloid aggregation. A representative biophysical analysis of the SERF1a:α-synuclein (aSyn) complex revealed that the amyloid-promoting activity resulted from an early and transient interaction, which was sufficient to provoke a massive increase of soluble aSyn amyloid nucleation templates. Therefore, the autonomous amyloid-modifying activity of SERF1a observed in living organisms relies on a direct and dedicated manipulation of the early stages in the amyloid aggregation pathway.
Collapse
|
14
|
Abstract
Aggregated a-synuclein is the major component of inclusions in Parkinson's disease and other synucleinopathy brains indicating that a-syn aggregation is associated with the pathogenesis of neurodegenerative disorders. Although the mechanisms underlying a-syn aggregation and toxicity are not fully elucidated, it is clear that a-syn undergoes post-translational modifications and interacts with numerous proteins and other macromolecules, metals, hormones, neurotransmitters, drugs and poisons that can all modulate its aggregation propensity. The current and most recent findings regarding the factors modulating a-syn aggregation process are discussed in detail.
Collapse
|
15
|
Huot P, Fox SH, Brotchie JM. The serotonergic system in Parkinson's disease. Prog Neurobiol 2011; 95:163-212. [PMID: 21878363 DOI: 10.1016/j.pneurobio.2011.08.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/05/2011] [Accepted: 08/15/2011] [Indexed: 01/23/2023]
Abstract
Although the cardinal manifestations of Parkinson's disease (PD) are attributed to a decline in dopamine levels in the striatum, a breadth of non-motor features and treatment-related complications in which the serotonergic system plays a pivotal role are increasingly recognised. Serotonin (5-HT)-mediated neurotransmission is altered in PD and the roles of the different 5-HT receptor subtypes in disease manifestations have been investigated. The aims of this article are to summarise and discuss all published preclinical and clinical studies that have investigated the serotonergic system in PD and related animal models, in order to recapitulate the state of the current knowledge and to identify areas that need further research and understanding.
Collapse
Affiliation(s)
- Philippe Huot
- Toronto Western Research Institute, MCL 11-419, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, Ontario, Canada M5T 2S8
| | | | | |
Collapse
|