1
|
Wang Y, Xie T, Ma C, Zhao Y, Li J, Li Z, Ye X. Biochemical characterization and antifungal activity of a recombinant β-1,3-glucanase FlGluA from Flavobacterium sp. NAU1659. Protein Expr Purif 2024; 224:106563. [PMID: 39122061 DOI: 10.1016/j.pep.2024.106563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/07/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
β-1,3-glucanases can degrade β-1,3-glucoside bonds in β-glucan which is the main cell-wall component of most of fungi, and have the crucial application potential in plant protection and food processing. Herein, a β-1,3-glucanase FlGluA from Flavobacterium sp. NAU1659 composed of 333 amino acids with a predicted molecular mass of 36.6 kDa was expressed in Escherichia coli BL21, purified and characterized. The deduced amino acid sequence of FlGluA showed the high identity with the β-1,3-glucanase belonging to glycoside hydrolase (GH) family 16. Enzymological characterization indicated FlGluA had the highest activity on zymosan A, with a specific activity of 3.87 U/mg, followed by curdlan (1.16 U/mg) and pachymaran (0.88 U/mg). It exhibited optimal catalytic activity at the pH 5.0 and 40 °C, and was stable when placed at 4 °C for 12 h in the range of pH 3.0-8.0 or at a temperature below 50 °C for 3 h. Its catalytic activity was enhanced by approximately 36 % in the presence of 1 mM Cr3+. The detection of thin-layer chromatography and mass spectrometry showed FlGluA hydrolyzed zymosan A mainly to glucose and disaccharide, and trace amounts of tetrasaccharide and pentasaccharide, however, it had no action on laminaribiose, indicating its endo-β-1,3-glucanase activity. The mycelium growth of F. oxysporum treated by FlGluA was inhibited, with approximately 37 % of inhibition rate, revealing the potential antifungal activity of the enzyme. These results revealed the hydrolytic properties and biocontrol activity of FlGluA, laying a crucial foundation for its potential application in agriculture and industry.
Collapse
Affiliation(s)
- Yanxin Wang
- College of Life Sciences of Liaocheng University, 252000, Liaocheng, PR China; Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China.
| | - Tingting Xie
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Chenlong Ma
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yujie Zhao
- College of Life Sciences of Liaocheng University, 252000, Liaocheng, PR China
| | - Jingchen Li
- College of Life Sciences of Liaocheng University, 252000, Liaocheng, PR China
| | - Zhendong Li
- College of Life Sciences of Liaocheng University, 252000, Liaocheng, PR China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China.
| |
Collapse
|
2
|
Jiang Y, Chang Z, Xu Y, Zhan X, Wang Y, Gao M. Advances in molecular enzymology of β-1,3-glucanases: A comprehensive review. Int J Biol Macromol 2024; 279:135349. [PMID: 39242004 DOI: 10.1016/j.ijbiomac.2024.135349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
β-1,3-Glucanases are essential enzymes involved in the hydrolysis of β-1,3-glucans, with significant biological and industrial relevance. These enzymes are derived from diverse sources, including bacteria, fungi, plants, and animals, each exhibiting unique substrate specificities and biochemical properties. This review provides an in-depth analysis of the natural sources and ecological roles of β-1,3-glucanases, exploring their enzymatic properties such as optimal pH, temperature, molecular weight, isoelectric points, and kinetic parameters, which are crucial for understanding their functionality and stability. Advances in molecular enzymology are discussed, focusing on gene cloning, expression in systems like Escherichia coli and Pichia pastoris, and structural-functional relationships. The reaction mechanisms and the role of non-catalytic carbohydrate-binding modules in enhancing substrate hydrolysis are examined. Industrial applications of β-1,3-glucanases are highlighted, including the production of β-1,3-glucooligosaccharides, uses in the food industry, biological control of plant pathogens, and nutritional roles. This review aims to provide a foundation for future research, improving the efficiency and robustness of β-1,3-glucanases for various industrial applications.
Collapse
Affiliation(s)
- Yun Jiang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zepeng Chang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ying Xu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuying Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Minjie Gao
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Monica P, Ranjan R, Kapoor M. Family 3 CBM improves the biochemical properties, substrate hydrolysis and coconut oil extraction by hemicellulolytic and holocellulolytic chimeras. Enzyme Microb Technol 2024; 174:110375. [PMID: 38157781 DOI: 10.1016/j.enzmictec.2023.110375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
To understand the influence of family 3 Carbohydrate Binding Module (hereafter CBM3), single (GH5 cellulase; CelB, CelBΔCBM), bi-chimeric [GH26 endo-mannanase (ManB-1601) and GH11 endo-xylanase (XynB); ManB-XynB [1], ManB-XynB-CBM] and tri-chimeric [ManB-XynB-CelB [1], ManB-XynB-CelBΔCBM] enzyme variants (fused or deleted of CBM) were produced and purified to homogeneity. CBM3 did not alter the pH and temperature optima of bi- and tri-chimeric enzymes but improved the pH and temperature stability of ManB in CBM variants of bi-/tri-chimeric enzymes. Truncation of CBM in CelB shifted the pH optimum and increased the melting temperature (Tm 65 ℃). CBM3 improved both substrate affinity (Km) and catalytic efficiency (kcat/Km) of fused enzymes in tri-chimera and CelB but only Km for bi-chimera. Far-UV CD of CelB and bi- and tri-chimeric enzymes suggested that CBM3 improved the α-helical content and compactness in the native state but did not prevent disintegration of secondary structural contents at acidic pH. Steady-state fluorescence studies suggested that under acidic conditions CBM3 prevented the exposure of hydrophobic patches in bi-chimeric protein but could not avert the opening up of chimeric enzyme structure. Aqueous enzyme assisted treatment of mature coconut kernel using single, bi- and tri-chimeric enzymes led to cracks, peeling and fracturing of the matrix and improved the oil yield by up to 22%.
Collapse
Affiliation(s)
- P Monica
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Ritesh Ranjan
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - Mukesh Kapoor
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India.
| |
Collapse
|
4
|
Two GH16 Endo-1,3-β-D-Glucanases from Formosa agariphila and F. algae Bacteria Have Complete Different Modes of Laminarin Digestion. Mol Biotechnol 2021; 64:434-446. [PMID: 34724141 DOI: 10.1007/s12033-021-00421-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/26/2021] [Indexed: 10/20/2022]
Abstract
There is a comparative analysis of primary structures and catalytic properties of two recombinant endo-1,3-β-D-glucanases from marine bacteria Formosa agariphila KMM 3901 and previously reported F. algae KMM 3553. Both enzymes had the same molecular mass 61 kDa, temperature optimum 45 °C, and comparable ranges of thermal stability and Km. While the set of products of laminarin hydrolysis with endo-1,3-β-D-glucanase from F. algae was stable of the reaction with pH 4-9, the pH stability of the products of laminarin hydrolysis with endo-1,3-β-D-glucanase from F. agariphila varied at pH 5-6 for DP 2, at pH 4 and 7-8 for DP 5, and at pH 9 for DP 3. There were differences in modes of action of these enzymes on laminarin and 4-methylumbelliferyl-β-D-glucoside (Umb), indicating the presence of transglycosylating activity of endo-1,3-β-D-glucanase from F. algae and its absence in endo-1,3-β-D-glucanase from F. agariphila. While endo-1,3-β-D-glucanase from F. algae produced transglycosylated laminarioligosaccharides with a degree of polymerization 2-10 (predominately 3-4), endo-1,3-β-D-glucanase from F. agariphila did not catalyze transglycosylation in our lab parameters.
Collapse
|
5
|
Expression of a thermostable β-1,3-glucanase from Trichoderma harzianum in Pichia pastoris and use in oligoglucosides hydrolysis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Jia X, Wang C, Du X, Peng H, Liu L, Xiao Y, He C. Specific hydrolysis of curdlan with a novel glycoside hydrolase family 128 β-1,3-endoglucanase containing a carbohydrate-binding module. Carbohydr Polym 2021; 253:117276. [DOI: 10.1016/j.carbpol.2020.117276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 01/07/2023]
|
7
|
Niki D, Higashitani A, Osada H, Bito T, Shimizu K, Arima J. Chitinolytic proteins secreted by Cellulosimicrobium sp. NTK2. FEMS Microbiol Lett 2020; 367:5815077. [PMID: 32239207 DOI: 10.1093/femsle/fnaa055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Cellulosimicrobium sp. NTK2 (NTK2 strain) was isolated as a chitinolytic bacterium from mature compost derived from chitinous waste. The growth of the NTK2 strain was enhanced by supplementation of the culture medium with 2% crystalline chitin. Approximately 70% of the supplemented crystalline chitin was degraded during cultivation. Whole genome analysis of the NTK2 strain identified eight chitinases and two chitin-binding proteins. The NTK2 strain secreted two bacterial extracellular solute-binding proteins, three family 18 glycosyl hydrolases and one lytic polysaccharide monooxygenase specifically in the presence of crystalline chitin. A chitinolytic enzyme with a molecular mass of 29 kDa on SDS-PAGE under native conditions was also secreted. This chitinolytic enzyme exhibited the largest band upon zymography but could not be identified. In an attempt to identify all the chitinases secreted by the NTK2 strain, we expressed recombinant versions of the proteins exhibiting chitinolytic activity in Escherichia coli. Our results suggest that the 29 kDa protein belonging to family 19 glycosyl hydrolase was expressed specifically in the presence of 2% crystalline chitin.
Collapse
Affiliation(s)
- Daisuke Niki
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Akari Higashitani
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Haruki Osada
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Tomohiro Bito
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Katsuhiko Shimizu
- Platform for Community-Based Research and Education, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
| | - Jiro Arima
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| |
Collapse
|
8
|
Rahnama M, Maclean P, Fleetwood DJ, Johnson RD. VelA and LaeA are Key Regulators of Epichloë festucae Transcriptomic Response during Symbiosis with Perennial Ryegrass. Microorganisms 2019; 8:microorganisms8010033. [PMID: 31878026 PMCID: PMC7023048 DOI: 10.3390/microorganisms8010033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/29/2022] Open
Abstract
VelA (or VeA) is a key global regulator in fungal secondary metabolism and development which we previously showed is required during the symbiotic interaction of Epichloë festucae with perennial ryegrass. In this study, comparative transcriptomic analyses of ∆velA mutant compared to wild-type E. festucae, under three different conditions (in culture, infected seedlings, and infected mature plants), were performed to investigate the impact of VelA on E. festucae transcriptome. These comparative transcriptomic studies showed that VelA regulates the expression of genes encoding proteins involved in membrane transport, fungal cell wall biosynthesis, host cell wall degradation, and secondary metabolism, along with a number of small secreted proteins and a large number of proteins with no predictable functions. In addition, these results were compared with previous transcriptomic experiments that studied the impact of LaeA, another key global regulator of secondary metabolism and development that we have shown is important for E. festucae–perennial ryegrass interaction. The results showed that although VelA and LaeA regulate a subset of E. festucae genes in a similar manner, they also regulated many other genes independently of each other suggesting specialised roles.
Collapse
Affiliation(s)
- Mostafa Rahnama
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand; (P.M.); (D.J.F.)
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Correspondence: (M.R.); (R.D.J.)
| | - Paul Maclean
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand; (P.M.); (D.J.F.)
| | - Damien J. Fleetwood
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand; (P.M.); (D.J.F.)
- Biotelliga Ltd, Auckland 1052, New Zealand
| | - Richard D. Johnson
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand; (P.M.); (D.J.F.)
- Correspondence: (M.R.); (R.D.J.)
| |
Collapse
|
9
|
Yu P, Zhou F, Yang D. Curdlan conformation change during its hydrolysis by multi-domain β-1,3-glucanases. Food Chem 2019; 287:20-27. [PMID: 30857690 DOI: 10.1016/j.foodchem.2019.02.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 12/27/2022]
Abstract
Enzymatic curdlan hydrolysis is gaining more attention for the value of oligo-β-glucans in many aspects. Currently, the triple-helical conformation of curdlan fiber was imposed to the structure of β-1,3-glucanase as its substrate without experimental evidence. Here, solution conformation of differently treated curdlan and each hydrolysis rate by a variety of β-1,3-glucanases were systematically examined. Results showed that different enzymes exhibited preferences over the trajectories of pH change that curdlan solution went through, and all enzymes hydrolyzed heat treated curdlan solution at their maximum rates where most of the higher ordered helices were diminished. Combined with molecular docking studies, a multi-step hydrolysis process was proposed. Recognition of triple-helical curdlan by their ancillary region of β-1,3-glucanase occurred before its unwinding into single- and double-helical forms, and the later ones fitted better to the catalytic cavity of the enzyme where the polysaccharides chain eventually got hydrolyzed into oligo-β-glucans.
Collapse
Affiliation(s)
- Peixuan Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, PR China
| | - Feng Zhou
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, PR China
| | - Dong Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, PR China.
| |
Collapse
|
10
|
Wu Q, Dou X, Wang Q, Guan Z, Cai Y, Liao X. Isolation of β-1,3-Glucanase-Producing Microorganisms from Poria cocos Cultivation Soil via Molecular Biology. Molecules 2018; 23:molecules23071555. [PMID: 29954113 PMCID: PMC6100237 DOI: 10.3390/molecules23071555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 11/26/2022] Open
Abstract
β-1,3-Glucanase is considered as a useful enzymatic tool for β-1,3-glucan degradation to produce (1→3)-linked β-glucan oligosaccharides with pharmacological activity properties. To validly isolate β-1,3-glucanase-producing microorganisms, the soil of Wolfiporia extensa, considered an environment rich in β-1,3-glucan-degrading microorganisms, was subjected to high throughput sequencing. The results demonstrated that the genera Streptomyces (1.90%) and Arthrobacter (0.78%) belonging to the order Actinomycetales (8.64%) in the phylum Actinobacteria (18.64%) were observed in soil for P. cocos cultivation (FTL1). Actinomycetes were considered as the candidates for isolation of glucan-degrading microorganisms. Out of 58 isolates, only 11 exhibited β-1,3-glucan-degrading activity. The isolate SYBCQL belonging to the genus Kitasatospora with β-1,3-glucan-degrading activity was found and reported for the first time and the isolate SYBC17 displayed the highest yield (1.02 U/mg) among the isolates. To check the β-1,3-glucanase contribution to β-1,3-glucan-degrading activity, two genes, 17-W and 17-Q, encoding β-1,3-glucanase in SYBC17 and one gene QLK1 in SYBCQL were cloned and expressed for verification at the molecular level. Our findings collectively showed that the isolates able to secrete β-1,3-glucanase could be obtained with the assistance of high-throughput sequencing and genes expression analysis. These methods provided technical support for isolating β-1,3-glucanase-producing microorganisms.
Collapse
Affiliation(s)
- Qiulan Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Xin Dou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Qi Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Zhengbing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Xiangru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
11
|
Oda M, Inaba S, Kamiya N, Bekker GJ, Mikami B. Structural and thermodynamic characterization of endo-1,3-β-glucanase: Insights into the substrate recognition mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:415-425. [DOI: 10.1016/j.bbapap.2017.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/24/2017] [Accepted: 12/11/2017] [Indexed: 11/25/2022]
|
12
|
Santana ML, Maciel Paulo E, Bispo JA, de Sena AR, de Assis SA. Production and partial characterization of β-1,3-glucanase obtained from Rhodotorula oryzicola. Prep Biochem Biotechnol 2018; 48:165-171. [PMID: 29313463 DOI: 10.1080/10826068.2017.1421962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The current study aims to assess the kinetics of population growth of Rhodotorula oryzicola and the production of β-1,3-glucanase (EC 3.2.1.39) enzyme by this yeast. It also aims to obtain the optimum conditions of β-1,3-glucanase enzymatic activity by varying the pH as well as to study the enzyme thermostability. R. oryzicola population doubled within 12 hr. During this period, 9.26 generations were obtained, with 1 hr and 29 min of interval from one generation to the other, with specific growth rate (µ) of 0.15 (hr-1). The entire microorganism growth process was monitored during β-1,3-glucanases production, and the maximum value was obtained in the stationary phase in the 48-hr fermentation period. pH and temperature optimum values were 4.7 and 96°C, respectively. The enzyme maintained 88% of its activity when submitted to the temperature of 90°C for an incubation period of 1 hr. The results show that the enzyme can be used in industrial processes that require high temperatures and acidic pH.
Collapse
Affiliation(s)
- Mona Liza Santana
- a Health Department, State University of Feira de Santana (UEFS) , Feira de Santana , Brazil
| | - Elinalva Maciel Paulo
- b Department of Biological Sciences, LAMASP , State University of Feira de Santana (UEFS) , Feira de Santana, Brazil
| | - José Ailton Bispo
- c Department of Technology , State University of Feira de Santana (UEFS) , Feira de Santana , Brazil
| | - Amanda Reges de Sena
- d Microbiology Laboratory, Federal Institute of Education, Science and Technology of Pernambuco , Barreiros , PE , Brazil
| | | |
Collapse
|
13
|
Yuan Y, Xu F, Yao J, Hu Y, Wang J, Zhao T, Zhou Y, Gao J. Cloning, expression and biochemical characterization of a GH1 β-glucosidase from Cellulosimicrobium cellulans. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1395415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ye Yuan
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Fenghua Xu
- Department of Pharmaceutics, PLA General Hospital, Beijing, PR China
| | - Jianzhuang Yao
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Yanho Hu
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Jiao Wang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Tianjiao Zhao
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Yifa Zhou
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| |
Collapse
|
14
|
Genome sequencing of strain Cellulosimicrobium sp. TH-20 with ginseng biotransformation ability. 3 Biotech 2017; 7:237. [PMID: 28698996 DOI: 10.1007/s13205-017-0850-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
Biotransformation for increasing the pharmaceutical effect of ginsenosides is getting more and more attractions. Strain Cellulosimicrobium sp. TH-20 isolated from ginseng soil samples was identified to produce enzymes contributing to its excellent biotransformation activity against ginsenosides, the main active components of ginseng. Based on phylogenetic tree and homology analysis, the strain can be designated as Cellulosimicrobium sp. Genome sequencing was performed using the Illumina Miseq to explore the functional genes involved in ginsenoside transformation. The draft genome of Cellulosimicrobium sp. TH-20 encoded 3450 open reading frames, 51 tRNA, and 9 rRNA. All ORFs were annotated using NCBI BLAST with non-redundant proteins, Gene Ontology, Cluster of Orthologous Gene, and Kyoto Encyclopedia of Genes and Genomes databases. A total of 11 genes were selected based on the functional annotation analysis. These genes are relevant to ginsenoside biotransformation, including 6 for beta-glucosidase, 1 for alpha-N-arabinofuranosidase, 1 for alpha-1,6-glucosidase, 1 for endo-1,4-beta-xylanase, 1 for alpha-L-arabinofuranosidase, and 1 for beta-galactosidase. These glycosidases were predicted to catalyze the hydrolysis of sugar moieties attached to the aglycon of ginsenosides and led to the transformation of PPD-type and PPT-type ginsenosides.
Collapse
|
15
|
Miki A, Inaba S, Maruno T, Kobayashi Y, Oda M. Tryptophan introduction can change β-glucan binding ability of the carbohydrate-binding module of endo-1,3-β-glucanase. Biosci Biotechnol Biochem 2017; 81:951-957. [PMID: 28388361 DOI: 10.1080/09168451.2017.1285687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
Abstract
Endo-1,3-β-glucanase from Cellulosimicrobium cellulans DK-1 has a carbohydrate-binding module (CBM-DK) at the C-terminal side of a catalytic domain. Out of the imperfect tandem α-, β-, and γ-repeats in CBM-DK, the α-repeat primarily contributes to β-glucan binding. This unique feature is derived from Trp273 in α-repeat, whose corresponding residues in β- and γ-repeats are Asp314 and Gly358, respectively. In this study, we generated Trp-switched mutants, W273A/D314W, D270A/W273A/D314W, W273A/G358W, and D270A/W273A/G358W, and analyzed their binding abilities toward laminarioligosaccharides and laminarin. While the binding affinities of D270A/W273A and W273A mutants were either lost or much lower than that of the wild-type, those of Trp-switched mutants recovered, indicating that a Trp introduction in β- or γ-repeat can substitute the α-repeat by primarily contributing to β-glucan binding. Thus, we have successfully engineered a CBM-DK that binds to laminarin by a mechanism different from that of the wild-type, but with similar affinity.
Collapse
Affiliation(s)
- Ayako Miki
- a Graduate School of Life and Environmental Sciences, Kyoto Prefectural University , Kyoto , Japan
| | - Satomi Inaba
- a Graduate School of Life and Environmental Sciences, Kyoto Prefectural University , Kyoto , Japan
| | - Takahiro Maruno
- b Graduate School of Engineering, Osaka University , Suita , Japan
| | - Yuji Kobayashi
- b Graduate School of Engineering, Osaka University , Suita , Japan
| | - Masayuki Oda
- a Graduate School of Life and Environmental Sciences, Kyoto Prefectural University , Kyoto , Japan
| |
Collapse
|
16
|
Mouyna I, Aimanianda V, Hartl L, Prevost MC, Sismeiro O, Dillies MA, Jagla B, Legendre R, Coppee JY, Latgé JP. GH16 and GH81 family β-(1,3)-glucanases in Aspergillus fumigatus are essential for conidial cell wall morphogenesis. Cell Microbiol 2016; 18:1285-93. [PMID: 27306610 DOI: 10.1111/cmi.12630] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 12/01/2022]
Abstract
The fungal cell wall is a rigid structure because of fibrillar and branched β-(1,3)-glucan linked to chitin. Softening of the cell wall is an essential phenomenon during fungal morphogenesis, wherein rigid cell wall structures are cleaved by glycosylhydrolases. During the search for glycosylhydrolases acting on β-(1,3)-glucan, we identified seven genes in the Aspergillus fumigatus genome coding for potential endo-β-(1,3)-glucanase. ENG1 (previously characterized and named ENGL1, Mouyna et al., ), belongs to the Glycoside-Hydrolase 81 (GH81) family, while ENG2 to ENG7, to GH16 family. ENG1 and four GH16 genes (ENG2-5) were expressed in the resting conidia as well as during germination, suggesting an essential role during A. fumigatus morphogenesis. Here, we report the effect of sequential deletion of AfENG2-5 (GH16) followed by AfENG1 (GH81) deletion in the Δeng2,3,4,5 mutant. The Δeng1,2,3,4,5 mutant showed conidial defects, with linear chains of conidia unable to separate while the germination rate was not affected. These results show, for the first time in a filamentous fungus, that endo β-(1,3)-glucanases are essential for proper conidial cell wall assembly and thus segregation of conidia during conidiation.
Collapse
Affiliation(s)
| | | | - Lukas Hartl
- Unité des Aspergillus, Département de Mycologie, France.,Microsynth Austria Leberstrasse, 20 1110, Vienna, Austria
| | | | - Odile Sismeiro
- Transcriptome and EpiGenome Platform, Institut Pasteur, 25-28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marie-Agnès Dillies
- Transcriptome and EpiGenome Platform, Institut Pasteur, 25-28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Bernd Jagla
- Transcriptome and EpiGenome Platform, Institut Pasteur, 25-28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Rachel Legendre
- Transcriptome and EpiGenome Platform, Institut Pasteur, 25-28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Jean-Yves Coppee
- Transcriptome and EpiGenome Platform, Institut Pasteur, 25-28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | | |
Collapse
|
17
|
Purification and characterization of a new endo-β-1,3-glucanase exhibiting a high specificity for curdlan for production of β-1,3-glucan oligosaccharides. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0108-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
18
|
Cheng R, Chen J, Yu X, Wang Y, Wang S, Zhang J. Recombinant production and characterization of full-length and truncated β-1,3-glucanase PglA from Paenibacillus sp. S09. BMC Biotechnol 2013; 13:105. [PMID: 24283345 PMCID: PMC4219603 DOI: 10.1186/1472-6750-13-105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/24/2013] [Indexed: 11/12/2022] Open
Abstract
Background β-1,3-Glucanases catalyze the hydrolysis of glucan polymers containing β-1,3-linkages. These enzymes are of great biotechnological, agricultural and industrial interest. The applications of β-1,3-glucanases is well established in fungal disease biocontrol, yeast extract production and wine extract clarification. Thus, the identification and characterization of novel β-1,3-glucanases with high catalytic efficiency and stability is of particular interest. Results A β-1,3-glucanase gene designated PglA was cloned from a newly isolated strain Paenibacillus sp. S09. The gene PglA contained a 2631-bp open reading frame encoding a polypeptide of 876 amino acids which shows 76% identity with the β-1,3-glucanase (BglH) from Bacillus circulans IAM1165. The encoded protein PglA is composed of a signal peptide, an N-terminal leader region, a glycoside hydrolase family 16 (GH16) catalytic domain and a C-terminal immunoglobulin like (Ig-like) domain. The Escherichia coli expression system of PglA and five truncated derivatives containing one or two modules was constructed to investigate the role of catalytic and non-catalytic modules. The pH for optimal activity of the enzymes was slightly affected (pH 5.5-6.5) by the presence of different modules. However, the temperature for optimal activity was strongly influenced by the C-terminal domain and ranged from 50 to 60°C. Deletion of C-terminal domain resulted in obviously enhancing enzymatic thermostability. Specific activity assay indicated that PglA specifically hydrolyzes β-1,3-glucan. Insoluble β-1,3-glucan binding and hydrolysis were boosted by the presence of N-and C-terminal domains. Kinetic analysis showed that the presence of N-and C-terminus enhances the substrate affinity and catalytic efficiency of the catalytic domain toward laminarin. Carbohydrate-binding assay directly confirmed the binding capabilities of the N-and C-terminal domains. Conclusions This study provides new insight into the impacts of non-catalytic modules on enzymatic properties of β-1,3-glucanase. Activity comparison of full-length PglA and truncated forms revealed the negative effect of C-terminal region on thermal stability of the enzyme. Both the N-and C-terminal domains exerted strong binding activity toward insoluble β-1,3-glucan, and could be classified into CBM families.
Collapse
Affiliation(s)
- Rui Cheng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing 210094, China.
| | | | | | | | | | | |
Collapse
|
19
|
Critical roles of Asp270 and Trp273 in the α-repeat of the carbohydrate-binding module of endo-1,3-β-glucanase for laminarin-binding avidity. Glycoconj J 2011; 29:77-85. [PMID: 22198269 DOI: 10.1007/s10719-011-9366-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
A carbohydrate-binding module from family 13 (CBM13), appended to the catalytic domain of endo-1,3-β-glucanase from Cellulosimicrobium cellulans, was overexpressed in E. coli, and its interactions with β-glucans, laminarin and laminarioligosaccharides, were analyzed using surface plasmon resonance biosensor and isothermal titration calorimetry. The association constants for laminarin and laminarioligosaccharides were determined to be approximately 10(6) M(-1) and 10(4) M(-1), respectively, indicating that 2 or 3 binding sites in the α-, β-, and γ-repeats of CBM13 are involved in laminarin binding in a cooperative manner. The binding avidity is approximately 2-orders higher than the monovalent binding affinity. Mutational analysis of the conserved Asp residues in the respective repeats showed that the α-repeat primarily contributes to β-glucan binding. A Trp residue is predicted to be exposed to the solvent only in the α-repeat and would contribute to β-glucan binding. The α-repeat bound β-glucan with an affinity of approximately 10(4) M(-1), and the other repeats additionally bound laminarin, resulting in the increased binding avidity. This binding is unique compared to the recognition mode of another CBM13 from Streptomyces lividans xylanase.
Collapse
|