1
|
Lukose B, Maruno T, Faidh M, Uchiyama S, Naganathan A. Molecular and thermodynamic determinants of self-assembly and hetero-oligomerization in the enterobacterial thermo-osmo-regulatory protein H-NS. Nucleic Acids Res 2024; 52:2157-2173. [PMID: 38340344 PMCID: PMC10954469 DOI: 10.1093/nar/gkae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Environmentally regulated gene expression is critical for bacterial survival under stress conditions, including extremes in temperature, osmolarity and nutrient availability. Here, we dissect the thermo- and osmo-responsory behavior of the transcriptional repressor H-NS, an archetypal nucleoid-condensing sensory protein, ubiquitous in enterobacteria that infect the mammalian gut. Through experiments and thermodynamic modeling, we show that H-NS exhibits osmolarity, temperature and concentration dependent self-association, with a highly polydisperse native ensemble dominated by monomers, dimers, tetramers and octamers. The relative population of these oligomeric states is determined by an interplay between dimerization and higher-order oligomerization, which in turn drives a competition between weak homo- versus hetero-oligomerization of protein-protein and protein-DNA complexes. A phosphomimetic mutation, Y61E, fully eliminates higher-order self-assembly and preserves only dimerization while weakening DNA binding, highlighting that oligomerization is a prerequisite for strong DNA binding. We further demonstrate the presence of long-distance thermodynamic connectivity between dimerization and oligomerization sites on H-NS which influences the binding of the co-repressor Cnu, and switches the DNA binding mode of the hetero-oligomeric H-NS:Cnu complex. Our work thus uncovers important organizational principles in H-NS including a multi-layered thermodynamic control, and provides a molecular framework broadly applicable to other thermo-osmo sensory proteins that employ similar mechanisms to regulate gene expression.
Collapse
Affiliation(s)
- Bincy Lukose
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Mohammed A Faidh
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
2
|
Modelling the reaction kinetics of β-lactoglobulin and κ-casein heat-induced interactions in skim milk. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Bui D, Li Z, Kitov PI, Han L, Kitova EN, Fortier M, Fuselier C, Granger Joly de Boissel P, Chatenet D, Doucet N, Tompkins SM, St-Pierre Y, Mahal LK, Klassen JS. Quantifying Biomolecular Interactions Using Slow Mixing Mode (SLOMO) Nanoflow ESI-MS. ACS CENTRAL SCIENCE 2022; 8:963-974. [PMID: 35912341 PMCID: PMC9335916 DOI: 10.1021/acscentsci.2c00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is a powerful label-free assay for detecting noncovalent biomolecular complexes in vitro and is increasingly used to quantify binding thermochemistry. A common assumption made in ESI-MS affinity measurements is that the relative ion signals of free and bound species quantitatively reflect their relative concentrations in solution. However, this is valid only when the interacting species and their complexes have similar ESI-MS response factors (RFs). For many biomolecular complexes, such as protein-protein interactions, this condition is not satisfied. Existing strategies to correct for nonuniform RFs are generally incompatible with static nanoflow ESI (nanoESI) sources, which are typically used for biomolecular interaction studies, thereby significantly limiting the utility of ESI-MS. Here, we introduce slow mixing mode (SLOMO) nanoESI-MS, a direct technique that allows both the RF and affinity (K d) for a biomolecular interaction to be determined from a single measurement using static nanoESI. The approach relies on the continuous monitoring of interacting species and their complexes under nonhomogeneous solution conditions. Changes in ion signals of free and bound species as the system approaches or moves away from a steady-state condition allow the relative RFs of the free and bound species to be determined. Combining the relative RF and the relative abundances measured under equilibrium conditions enables the K d to be calculated. The reliability of SLOMO and its ease of use is demonstrated through affinity measurements performed on peptide-antibiotic, protease-protein inhibitor, and protein oligomerization systems. Finally, affinities measured for the binding of human and bacterial lectins to a nanobody, a viral glycoprotein, and glycolipids displayed within a model membrane highlight the tremendous power and versatility of SLOMO for accurately quantifying a wide range of biomolecular interactions important to human health and disease.
Collapse
Affiliation(s)
- Duong
T. Bui
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Zhixiong Li
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Pavel I. Kitov
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ling Han
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N. Kitova
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Marlène Fortier
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Camille Fuselier
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Philippine Granger Joly de Boissel
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - David Chatenet
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Nicolas Doucet
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Stephen M. Tompkins
- Center
for Vaccines and Immunology, University
of Georgia, Athens, Georgia 30605, United States
- Emory-UGA
Centers of Excellence for Influenza Research and Surveillance (CEIRS), Emory University School of Medicine, Athens, Georgia 30322, United States
| | - Yves St-Pierre
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Lara K. Mahal
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S. Klassen
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- . Telephone: (780) 492-3501. Fax: (780) 492-8231
| |
Collapse
|
4
|
Towards understanding the interaction of β-lactoglobulin with capsaicin: Multi-spectroscopic, thermodynamic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105767] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Rodrigues RM, Claro B, Bastos M, Pereira RN, Vicente AA, Petersen SB. Multi-step thermally induced transitions of β-lactoglobulin – An in situ spectroscopy approach. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2019.104562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Torres PB, Quiroga E, Ramirez-Pastor AJ, Boeris V, Narambuena CF. Interaction between β-Lactoglobuline and Weak Polyelectrolyte Chains: A Study Using Monte Carlo Simulation. J Phys Chem B 2019; 123:8617-8627. [DOI: 10.1021/acs.jpcb.9b03276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paola B. Torres
- Facultad Regional San Rafael, Universidad Tecnológica Nacional, San Rafael 5600, Argentina
| | - Evelina Quiroga
- Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis-CONICET, San Luis 5700, Argentina
| | - Antonio J. Ramirez-Pastor
- Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis-CONICET, San Luis 5700, Argentina
| | - Valeria Boeris
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Área Fisicoquímica, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Claudio F. Narambuena
- Facultad Regional San Rafael, Universidad Tecnológica Nacional, San Rafael 5600, Argentina
- Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis-CONICET, San Luis 5700, Argentina
| |
Collapse
|
7
|
Garg DK, Kundu B. Hyperthermophilic l -asparaginase bypasses monomeric intermediates during folding to retain cooperativity and avoid amyloid assembly. Arch Biochem Biophys 2017; 622:36-46. [DOI: 10.1016/j.abb.2017.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 10/19/2022]
|
8
|
Gomaa AI, Nsonzi F, Sedman J, Ismail AA. Enhanced Unfolding of Bovine β-Lactoglobulin Structure Using Microwave Treatment: a Multi-Spectroscopic Study. FOOD BIOPHYS 2016. [DOI: 10.1007/s11483-016-9451-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Bello M, Fragoso-Vázquez MJ, Correa Basurto J. Energetic and conformational features linked to the monomeric and dimeric states of bovine BLG. Int J Biol Macromol 2016; 92:625-636. [PMID: 27456117 DOI: 10.1016/j.ijbiomac.2016.07.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 11/16/2022]
Abstract
Bovine β-lactoglobulin (BLG) belong to the lipocalin family. This is a group of proteins involved in the binding and transporting of hydrophobic molecules. Experimental and theoretical reports have stated its complex structural behavior in solution, with coupled effects between homodimerization and ligand recognition. Nonetheless, structural evidence at the atomic level about the cause of this coupled effect has not been reported to date. To address this issue microsecond molecular dynamics (MD) simulations were combined with the molecular mechanics generalized Born surface area (MM/GBSA) approach, clustering analysis and principal component analysis (PCA), to explore the conformational complexity of BLG protein-protein self-association and palmitic acid (PLM) or dodecyl sulfate (SDS) ligand recognition in the monomeric and dimeric state. MD simulations, coupled to the MM/GBSA method, revealed that dimerization exerts contrasting effects on the ligand-binding capacity of BLG. Protein dimerization decreases PLM affinity, promoting dimer association. For SDS the dimeric state increases affinity, enhancing dimer dissociation. MD simulations based on PCA revealed that while few differences in the conformational subspace are observed between the free and bound monomer and dimer coupling for PLM, substantial changes are observed between the free and bound monomer and dimer coupling for SDS.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City CP: 11340, Mexico.
| | - M Jonathan Fragoso-Vázquez
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City CP: 11340, Mexico
| | - José Correa Basurto
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City CP: 11340, Mexico
| |
Collapse
|
10
|
Broom HR, Vassall KA, Rumfeldt JAO, Doyle CM, Tong MS, Bonner JM, Meiering EM. Combined Isothermal Titration and Differential Scanning Calorimetry Define Three-State Thermodynamics of fALS-Associated Mutant Apo SOD1 Dimers and an Increased Population of Folded Monomer. Biochemistry 2016; 55:519-33. [PMID: 26710831 DOI: 10.1021/acs.biochem.5b01187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many proteins are naturally homooligomers, homodimers most frequently. The overall stability of oligomeric proteins may be described in terms of the stability of the constituent monomers and the stability of their association; together, these stabilities determine the populations of different monomer and associated species, which generally have different roles in the function or dysfunction of the protein. Here we show how a new combined calorimetry approach, using isothermal titration calorimetry to define monomer association energetics together with differential scanning calorimetry to measure total energetics of oligomer unfolding, can be used to analyze homodimeric unmetalated (apo) superoxide dismutase (SOD1) and determine the effects on the stability of structurally diverse mutations associated with amyotrophic lateral sclerosis (ALS). Despite being located throughout the protein, all mutations studied weaken the dimer interface, while concomitantly either decreasing or increasing the marginal stability of the monomer. Analysis of the populations of dimer, monomer, and unfolded monomer under physiological conditions of temperature, pH, and protein concentration shows that all mutations promote the formation of folded monomers. These findings may help rationalize the key roles proposed for monomer forms of SOD1 in neurotoxic aggregation in ALS, as well as roles for other forms of SOD1. Thus, the results obtained here provide a valuable approach for the quantitative analysis of homooligomeric protein stabilities, which can be used to elucidate the natural and aberrant roles of different forms of these proteins and to improve methods for predicting protein stabilities.
Collapse
Affiliation(s)
- Helen R Broom
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Kenrick A Vassall
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Jessica A O Rumfeldt
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Colleen M Doyle
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Ming Sze Tong
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Julia M Bonner
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Elizabeth M Meiering
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
11
|
Li Y, Wu Z, He W, Qin C, Yao J, Zhou J, Yin L. Globular Protein-Coated Paclitaxel Nanosuspensions: Interaction Mechanism, Direct Cytosolic Delivery, and Significant Improvement in Pharmacokinetics. Mol Pharm 2015; 12:1485-500. [DOI: 10.1021/mp5008037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yongji Li
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhannan Wu
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei He
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chao Qin
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lifang Yin
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
12
|
Gutiérrez-Magdaleno G, Bello M, Portillo-Téllez MC, Rodríguez-Romero A, García-Hernández E. Ligand binding and self-association cooperativity of β-lactoglobulin. J Mol Recognit 2013; 26:67-75. [PMID: 23334914 DOI: 10.1002/jmr.2249] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 11/10/2022]
Abstract
Unlike most small globular proteins, lipocalins lack a compact hydrophobic core. Instead, they present a large central cavity that functions as the primary binding site for hydrophobic molecules. Not surprisingly, these proteins typically exhibit complex structural dynamics in solution, which is intricately modified by intermolecular recognition events. Although many lipocalins are monomeric, an increasing number of them have been proven to form oligomers. The coupling effects between self-association and ligand binding in these proteins are largely unknown. To address this issue, we have calorimetrically characterized the recognition of dodecyl sulfate by bovine β-lactoglobulin, which forms weak homodimers at neutral pH. A thermodynamic analysis based on coupled-equilibria revealed that dimerization exerts disparate effects on the ligand-binding capacity of β-lactoglobulin. Protein dimerization decreases ligand affinity (or, reciprocally, ligand binding promotes dimer dissociation). The two subunits in the dimer exhibit a positive, entropically driven cooperativity. To investigate the structural determinants of the interaction, the crystal structure of β-lactoglobulin bound to dodecyl sulfate was solved at 1.64 Å resolution.
Collapse
Affiliation(s)
- Gabriel Gutiérrez-Magdaleno
- Instituto de Química Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, DF 04630, México
| | | | | | | | | |
Collapse
|
13
|
Zhang Y, Zhong Q. Probing the binding between norbixin and dairy proteins by spectroscopy methods. Food Chem 2013; 139:611-6. [DOI: 10.1016/j.foodchem.2013.01.073] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/20/2012] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
|
14
|
Yan Y, Seeman D, Zheng B, Kizilay E, Xu Y, Dubin PL. pH-Dependent aggregation and disaggregation of native β-lactoglobulin in low salt. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4584-4593. [PMID: 23458495 DOI: 10.1021/la400258r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aggregation of β-lactoglobulin (BLG) near its isoelectric point was studied as a function of ionic strength and pH. We compared the behavior of native BLG with those of its two isoforms, BLG-A and BLG-B, and with that of a protein with a very similar pI, bovine serum albumin (BSA). Rates of aggregation were obtained through a highly precise and convenient pH/turbidimetric titration that measures transmittance to ±0.05 %T. A comparison of BLG and BSA suggests that the difference between pHmax (the pH of the maximum aggregation rate) and pI is systematically related to the nature of protein charge asymmetry, as further supported by the effect of localized charge density on the dramatically different aggregation rates of the two BLG isoforms. Kinetic measurements including very short time periods show well-differentiated first and second steps. BLG was analyzed by light scattering under conditions corresponding to maxima in the first and second steps. Dynamic light scattering (DLS) was used to monitor the kinetics, and static light scattering (SLS) was used to evaluate the aggregate structure fractal dimensions at different quench points. The rate of the first step is relatively symmetrical around pHmax and is attributed to the local charges within the negative domain of the free protein. In contrast, the remarkably linear pH dependence of the second step is related to the uniform reduction in global protein charge with increasing pH below pI, accompanied by an attractive force due to surface charge fluctuations.
Collapse
Affiliation(s)
- Yunfeng Yan
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | |
Collapse
|
15
|
de Kort BJ, de Jong GJ, Somsen GW. Potential of capillary electrophoresis with wavelength-resolved fluorescence detection for protein unfolding studies using β-lactoglobulin B as a test compound. Analyst 2013; 138:4550-7. [DOI: 10.1039/c3an00357d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Doyle CM, Rumfeldt JA, Broom HR, Broom A, Stathopulos PB, Vassall KA, Almey JJ, Meiering EM. Energetics of oligomeric protein folding and association. Arch Biochem Biophys 2012; 531:44-64. [PMID: 23246784 DOI: 10.1016/j.abb.2012.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022]
Abstract
In nature, proteins most often exist as complexes, with many of these consisting of identical subunits. Understanding of the energetics governing the folding and misfolding of such homooligomeric proteins is central to understanding their function and misfunction, in disease or biotechnology. Much progress has been made in defining the mechanisms and thermodynamics of homooligomeric protein folding. In this review, we outline models as well as calorimetric and spectroscopic methods for characterizing oligomer folding, and describe extensive results obtained for diverse proteins, ranging from dimers to octamers and higher order aggregates. To our knowledge, this area has not been reviewed comprehensively in years, and the collective progress is impressive. The results provide evolutionary insights into the development of subunit interfaces, mechanisms of oligomer folding, and contributions of oligomerization to protein stability, function and regulation. Thermodynamic analyses have also proven valuable for understanding protein misfolding and aggregation mechanisms, suggesting new therapeutic avenues. Successful recent designs of novel, functional proteins demonstrate increased understanding of oligomer folding. Further rigorous analyses using multiple experimental and computational approaches are still required, however, to achieve consistent and accurate prediction of oligomer folding energetics. Modeling the energetics remains challenging but is a promising avenue for future advances.
Collapse
Affiliation(s)
- Colleen M Doyle
- Guelph-Waterloo Centre for Graduate Studies in Chemistry and Biochemistry, and Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang Y, Zhong Q. Effects of thermal denaturation on binding between bixin and whey protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7526-7531. [PMID: 22784187 DOI: 10.1021/jf3021656] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Heating is commonly used in the manufacture of dairy products, but impacts of thermal denaturation on binding between whey protein and molecules such as pigments are poorly understood. The objective of this work was to study the impacts of thermal denaturation on binding between bixin, a pigment relevant to colored cheeses, and whey proteins using several complementary techniques. Fluorescence spectroscopy data showed that heat treatment caused tryptophan in β-lactoglobulin and α-lactalbumin to be exposed to a more polar environment, but the opposite was observed for bovine serum albumin. The fluorescence quenching study indicated that the quenching of whey protein fluorescence by bixin was static quenching, and the affinity of binding with bixin was enhanced after thermal denaturation, caused by a higher extent of unordered structures, as revealed by results from circular dichroism and Fourier transform infrared spectra. β-Lactoglobulin was responsible for overall impacts of thermal denaturation on binding between bixin and whey protein isolate.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Food Science and Technology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | | |
Collapse
|