1
|
D'Alonzo D, De Fenza M, Pavone V, Lombardi A, Nastri F. Selective Oxidation of Halophenols Catalyzed by an Artificial Miniaturized Peroxidase. Int J Mol Sci 2023; 24:ijms24098058. [PMID: 37175773 PMCID: PMC10178546 DOI: 10.3390/ijms24098058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The development of artificial enzymes for application in sustainable technologies, such as the transformation of environmental pollutants or biomass, is one of the most challenging goals in metalloenzyme design. In this work, we describe the oxidation of mono-, di-, tri- and penta-halogenated phenols catalyzed by the artificial metalloenzyme Fe-MC6*a. It promoted the dehalogenation of 4-fluorophenol into the corresponding 1,4-benzoquinone, while under the same experimental conditions, 4-chloro, 4-bromo and 4-iodophenol were selectively converted into higher molecular weight compounds. Analysis of the 4-chlorophenol oxidation products clarified that oligomers based on C-O bonds were exclusively formed in this case. All results show that Fe-MC6*a holds intriguing enzymatic properties, as it catalyzes halophenol oxidation with substrate-dependent chemoselectivity.
Collapse
Affiliation(s)
- Daniele D'Alonzo
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Maria De Fenza
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| |
Collapse
|
2
|
Siriboe MG, Vargas DA, Fasan R. Dehaloperoxidase Catalyzed Stereoselective Synthesis of Cyclopropanol Esters. J Org Chem 2022. [PMID: 36542602 DOI: 10.1021/acs.joc.2c02030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chiral cyclopropanols are highly desirable building blocks for medicinal chemistry, but the stereoselective synthesis of these molecules remains challenging. Here, a novel strategy is reported for the diastereo- and enantioselective synthesis of cyclopropanol derivatives via the biocatalytic asymmetric cyclopropanation of vinyl esters with ethyl diazoacetate (EDA). A dehaloperoxidase enzyme from Amphitrite ornata was repurposed to catalyze this challenging cyclopropanation reaction, and its activity and stereoselectivity were optimized via protein engineering. Using this system, a broad range of electron-deficient vinyl esters were efficiently converted to the desired cyclopropanation products with up to 99.5:0.5 diastereomeric and enantiomeric ratios. In addition, the engineered dehaloperoxidase-based biocatalyst is able to catalyze a variety of other abiological carbene transfer reactions, including N-H/S-H carbene insertion with EDA as well as cyclopropanation with diazoacetonitrile, thus adding to the multifunctionality of this enzyme and defining it as a valuable new scaffold for the development of novel carbene transferases.
Collapse
Affiliation(s)
- Mary G Siriboe
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York14627, United States
| | - David A Vargas
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York14627, United States
| |
Collapse
|
3
|
Moreno-Chicano T, Carey LM, Axford D, Beale JH, Doak RB, Duyvesteyn HME, Ebrahim A, Henning RW, Monteiro DCF, Myles DA, Owada S, Sherrell DA, Straw ML, Šrajer V, Sugimoto H, Tono K, Tosha T, Tews I, Trebbin M, Strange RW, Weiss KL, Worrall JAR, Meilleur F, Owen RL, Ghiladi RA, Hough MA. Complementarity of neutron, XFEL and synchrotron crystallography for defining the structures of metalloenzymes at room temperature. IUCRJ 2022; 9:610-624. [PMID: 36071813 PMCID: PMC9438502 DOI: 10.1107/s2052252522006418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Room-temperature macromolecular crystallography allows protein structures to be determined under close-to-physiological conditions, permits dynamic freedom in protein motions and enables time-resolved studies. In the case of metalloenzymes that are highly sensitive to radiation damage, such room-temperature experiments can present challenges, including increased rates of X-ray reduction of metal centres and site-specific radiation-damage artefacts, as well as in devising appropriate sample-delivery and data-collection methods. It can also be problematic to compare structures measured using different crystal sizes and light sources. In this study, structures of a multifunctional globin, dehaloperoxidase B (DHP-B), obtained using several methods of room-temperature crystallographic structure determination are described and compared. Here, data were measured from large single crystals and multiple microcrystals using neutrons, X-ray free-electron laser pulses, monochromatic synchrotron radiation and polychromatic (Laue) radiation light sources. These approaches span a range of 18 orders of magnitude in measurement time per diffraction pattern and four orders of magnitude in crystal volume. The first room-temperature neutron structures of DHP-B are also presented, allowing the explicit identification of the hydrogen positions. The neutron data proved to be complementary to the serial femtosecond crystallography data, with both methods providing structures free of the effects of X-ray radiation damage when compared with standard cryo-crystallography. Comparison of these room-temperature methods demonstrated the large differences in sample requirements, data-collection time and the potential for radiation damage between them. With regard to the structure and function of DHP-B, despite the results being partly limited by differences in the underlying structures, new information was gained on the protonation states of active-site residues which may guide future studies of DHP-B.
Collapse
Affiliation(s)
- Tadeo Moreno-Chicano
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Leiah M. Carey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - John H. Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - R. Bruce Doak
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Helen M. E. Duyvesteyn
- Division of Structural Biology (STRUBI), University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Ali Ebrahim
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Robert W. Henning
- BioCARS, University of Chicago, Building 434B, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Diana C. F. Monteiro
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203-1102, USA
| | - Dean A. Myles
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Darren A. Sherrell
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Megan L. Straw
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Vukica Šrajer
- BioCARS, University of Chicago, Building 434B, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | | | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Ivo Tews
- Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - Martin Trebbin
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203-1102, USA
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Richard W. Strange
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Kevin L. Weiss
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jonathan A. R. Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Flora Meilleur
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Michael A. Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
4
|
Thompson MK, Shay MR, de Serrano V, Dumarieh R, Ghiladi RA, Franzen S. A new inhibition mechanism in the multifunctional catalytic hemoglobin dehaloperoxidase as revealed by the DHP A(V59W) mutant: A spectroscopic and crystallographic study. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As multifunctional catalytic hemoglobins, dehaloperoxidase isoenzymes A and B (DHP A and B) are among the most versatile hemoproteins in terms of activities displayed. The ability of DHP to bind over twenty different substrates in the distal pocket might appear to resemble the promiscuousness of monooxygenase enzymes, yet there are identifiable substrate-specific interactions that can steer the type of oxidation (O-atom vs. electron transfer) that occurs inside the DHP distal pocket. Here, we have investigated the DHP A(V59W) mutant in order to probe the limits of conformational flexibility in the distal pocket as it relates to the genesis of this substrate-dependent activity differentiation. The X-ray crystal structure of the metaquo DHP A(V59W) mutant (PDB 3K3U) and the V59W mutant in complex with fluoride [denoted as DHP A(V59W-F)] (PDB 7MNH) show significant mobility of the tryptophan in the distal pocket, with two parallel conformations having W59-N[Formula: see text] H-bonded to a heme-bound ligand (H2O or F[Formula: see text], and another conformation [observed only in DHP A(V59W-F)] that brings W59 sufficiently close to the heme as to preclude axial ligand binding. UV-vis and resonance Raman spectroscopic studies show that DHP A(V59W) is 5-coordinate high spin (5cHS) at pH 5 and 6-coordinate high spin (6cHS) at pH 7, whereas DHP A(V59W-F) is 6cHS from pH 5 to 7. Enzyme assays confirm robust peroxidase activity at pH 5, but complete loss of activity at pH 7. We find no evidence that tryptophan plays a role in the oxidation mechanism ([Formula: see text]. radical formation). Instead, the data reveal a new mechanism of DHP inhibition, namely a shift towards a non-reactive form by OH[Formula: see text] ligation to the heme-Fe that is strongly stabilized (presumably through H-bonding interactions) by the presence of W59 in the distal cavity.
Collapse
Affiliation(s)
- Matthew K. Thompson
- Department of Chemistry & Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Madeline R. Shay
- Department of Chemistry & Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Rania Dumarieh
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Lin YW. Biodegradation of aromatic pollutants by metalloenzymes: A structural-functional-environmental perspective. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Chen SF, Liu XC, Xu JK, Li L, Lang JJ, Wen GB, Lin YW. Conversion of Human Neuroglobin into a Multifunctional Peroxidase by Rational Design. Inorg Chem 2021; 60:2839-2845. [PMID: 33539081 DOI: 10.1021/acs.inorgchem.0c03777] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein design has received much attention in the last decades. With an additional disulfide bond to enhance the protein stability, human A15C neuroglobin (Ngb) is an ideal protein scaffold for heme enzyme design. In this study, we rationally converted A15C Ngb into a multifunctional peroxidase by replacing the heme axial His64 with an Asp residue, where Asp64 and the native Lys67 at the heme distal site were proposed to act as an acid-base catalytic couple for H2O2 activation. Kinetic studies showed that the catalytic efficiency of A15C/H64D Ngb was much higher (∼50-80-fold) than that of native dehaloperoxidase, which even exceeds (∼3-fold) that of the most efficient native horseradish peroxidase. Moreover, the dye-decolorizing peroxidase activity was also comparable to that of some native enzymes. Electron paramagnetic resonance, molecular docking, and isothermal titration calorimetry studies provided valuable information for the substrate-protein interactions. Therefore, this study presents the rational design of an efficient multifunctional peroxidase based on Ngb with potential applications such as in bioremediation for environmental sustainability.
Collapse
Affiliation(s)
- Shun-Fa Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xi-Chun Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia-Kun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jia-Jia Lang
- Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.,Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| |
Collapse
|
7
|
Sobrado P. Role of reduced flavin in dehalogenation reactions. Arch Biochem Biophys 2020; 697:108696. [PMID: 33245912 DOI: 10.1016/j.abb.2020.108696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Halogenated organic compounds are extensively used in the cosmetic, pharmaceutical, and chemical industries. Several naturally occurring halogen-containing natural products are also produced, mainly by marine organisms. These compounds accumulate in the environment due to their chemical stability and lack of biological pathways for their degradation. However, a few enzymes have been identified that perform dehalogenation reactions in specific biological pathways and others have been identified to have secondary activities toward halogenated compounds. Various mechanisms for dehalogenation of I, Cl, Br, and F containing compounds have been elucidated. These have been grouped into reductive, oxidative, and hydrolytic mechanisms. Flavin-dependent enzymes have been shown to catalyze oxidative dehalogenation reactions utilizing the C4a-hydroperoxyflavin intermediate. In addition, flavoenzymes perform reductive dehalogenation, forming transient flavin semiquinones. Recently, flavin-dependent enzymes have also been shown to perform dehalogenation reactions where the reduced form of the flavin produces a covalent intermediate. Here, recent studies on the reactions of flavoenzymes in dehalogenation reactions, with a focus on covalent catalytic dehalogenation mechanisms, are described.
Collapse
Affiliation(s)
- Pablo Sobrado
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
8
|
Fu Y, Jiang Z, Feng W. A peroxidase coordinating to Zn (II) preventing heme bleaching and resistant to the interference of H 2 O 2. Biotechnol Prog 2020; 37:e3075. [PMID: 32869526 DOI: 10.1002/btpr.3075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 01/14/2023]
Abstract
Dehaloperoxidase (DHP) catalyzes detoxifying halophenols. It is a heme-containing enzyme using H2 O2 as the oxidant. Heme bleaching from the active site is of great concern. In addition, the interference of DHP by H2 O2 leads to the inactivation of the enzyme. To solve these two problems, DHP is coordinated to Zn (II) in PBS buffer to form a biomineralized composite (DHP&Zn-CP). DHP&Zn-CP was characterized by measuring SEM and confocal images, as well as energy dispersive X-ray spectrometry mapping. Fluorescence spectra demonstrated that DHP&Zn-CP can prevent heme bleaching. Two-dimensional FTIR spectra were measured, dynamically providing insight into the structural change of DHP along the coordination process. Raman spectra were performed to analyze the structural change. The optical spectra confirmed that the forming of DHP&Zn-CP had a little effect on the structures of DHP. For the dehalogenation of 2,4,6-trichlorophenol, DHP&Zn-CP can tolerate the presence of H2 O2 and is resistant to the interference by H2 O2 . The catalytic efficiency of DHP&Zn-CP is much higher than that of free DHP.
Collapse
Affiliation(s)
- Yaqi Fu
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Zhengfeng Jiang
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Wei Feng
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
9
|
Chenprakhon P, Wongnate T, Chaiyen P. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases. Protein Sci 2020; 28:8-29. [PMID: 30311986 DOI: 10.1002/pro.3525] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Many flavoenzymes catalyze hydroxylation of aromatic compounds especially phenolic compounds have been isolated and characterized. These enzymes can be classified as either single-component or two-component flavin-dependent hydroxylases (monooxygenases). The hydroxylation reactions catalyzed by the enzymes in this group are useful for modifying the biological properties of phenolic compounds. This review aims to provide an in-depth discussion of the current mechanistic understanding of representative flavin-dependent monooxygenases including 3-hydroxy-benzoate 4-hydroxylase (PHBH, a single-component hydroxylase), 3-hydroxyphenylacetate 4-hydroxylase (HPAH, a two-component hydroxylase), and other monooxygenases which catalyze reactions in addition to hydroxylation, including 2-methyl-3-hydroxypyridine-5-carboxylate oxygenase (MHPCO, a single-component enzyme that catalyzes aromatic-ring cleavage), and HadA monooxygenase (a two-component enzyme that catalyzes additional group elimination reaction). These enzymes have different unique structural features which dictate their reactivity toward various substrates and influence their ability to stabilize flavin intermediates such as C4a-hydroperoxyflavin. Understanding the key catalytic residues and the active site environments important for governing enzyme reactivity will undoubtedly facilitate future work in enzyme engineering or enzyme redesign for the development of biocatalytic methods for the synthesis of valuable compounds.
Collapse
Affiliation(s)
- Pirom Chenprakhon
- Institute for Innovative Learning, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 14000, Thailand
| |
Collapse
|
10
|
Moreno-Chicano T, Ebrahim A, Axford D, Appleby MV, Beale JH, Chaplin AK, Duyvesteyn HME, Ghiladi RA, Owada S, Sherrell DA, Strange RW, Sugimoto H, Tono K, Worrall JAR, Owen RL, Hough MA. High-throughput structures of protein-ligand complexes at room temperature using serial femtosecond crystallography. IUCRJ 2019; 6:1074-1085. [PMID: 31709063 PMCID: PMC6830213 DOI: 10.1107/s2052252519011655] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/21/2019] [Indexed: 05/09/2023]
Abstract
High-throughput X-ray crystal structures of protein-ligand complexes are critical to pharmaceutical drug development. However, cryocooling of crystals and X-ray radiation damage may distort the observed ligand binding. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) can produce radiation-damage-free room-temperature structures. Ligand-binding studies using SFX have received only modest attention, partly owing to limited beamtime availability and the large quantity of sample that is required per structure determination. Here, a high-throughput approach to determine room-temperature damage-free structures with excellent sample and time efficiency is demonstrated, allowing complexes to be characterized rapidly and without prohibitive sample requirements. This yields high-quality difference density maps allowing unambiguous ligand placement. Crucially, it is demonstrated that ligands similar in size or smaller than those used in fragment-based drug design may be clearly identified in data sets obtained from <1000 diffraction images. This efficiency in both sample and XFEL beamtime opens the door to true high-throughput screening of protein-ligand complexes using SFX.
Collapse
Affiliation(s)
- Tadeo Moreno-Chicano
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Ali Ebrahim
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Martin V. Appleby
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - John H. Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Amanda K. Chaplin
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Helen M. E. Duyvesteyn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Division of Structural Biology (STRUBI), University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN, England
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Darren A. Sherrell
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Richard W. Strange
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | | | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Jonathan A. R. Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Michael A. Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| |
Collapse
|
11
|
Malewschik T, de Serrano V, McGuire AH, Ghiladi RA. The multifunctional globin dehaloperoxidase strikes again: Simultaneous peroxidase and peroxygenase mechanisms in the oxidation of EPA pollutants. Arch Biochem Biophys 2019; 673:108079. [PMID: 31445024 DOI: 10.1016/j.abb.2019.108079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 01/25/2023]
Abstract
The multifunctional catalytic hemoglobin dehaloperoxidase (DHP) from the terebellid polychaete Amphitrite ornata was found to catalyze the H2O2-dependent oxidation of EPA Priority Pollutants (4-Me-o-cresol, 4-Cl-m-cresol and pentachlorophenol) and EPA Toxic Substances Control Act compounds (o-, m-, p-cresol and 4-Cl-o-cresol). Biochemical assays (HPLC/LC-MS) indicated formation of multiple oxidation products, including the corresponding catechol, 2-methylbenzoquinone (2-MeBq), and oligomers with varying degrees of oxidation and/or dehalogenation. Using 4-Br-o-cresol as a representative substrate, labeling studies with 18O confirmed that the O-atom incorporated into the catechol was derived exclusively from H2O2, whereas the O-atom incorporated into 2-MeBq was from H2O, consistent with this single substrate being oxidized by both peroxygenase and peroxidase mechanisms, respectively. Stopped-flow UV-visible spectroscopic studies strongly implicate a role for Compound I in the peroxygenase mechanism leading to catechol formation, and for Compounds I and ES in the peroxidase mechanism that yields the 2-MeBq product. The X-ray crystal structures of DHP bound with 4-F-o-cresol (1.42 Å; PDB 6ONG), 4-Cl-o-cresol (1.50 Å; PDB 6ONK), 4-Br-o-cresol (1.70 Å; PDB 6ONX), 4-NO2-o-cresol (1.80 Å; PDB 6ONZ), o-cresol (1.60 Å; PDB 6OO1), p-cresol (2.10 Å; PDB 6OO6), 4-Me-o-cresol (1.35 Å; PDB 6ONR) and pentachlorophenol (1.80 Å; PDB 6OO8) revealed substrate binding sites in the distal pocket in close proximity to the heme cofactor, consistent with both oxidation mechanisms. The findings establish cresols as a new class of substrate for DHP, demonstrate that multiple oxidation mechanisms may exist for a given substrate, and provide further evidence that different substituents can serve as functional switches between the different activities performed by dehaloperoxidase. More broadly, the results demonstrate the complexities of marine pollution where both microbial and non-microbial systems may play significant roles in the biotransformations of EPA-classified pollutants, and further reinforces that heterocyclic compounds of anthropogenic origin should be considered as environmental stressors of infaunal organisms.
Collapse
Affiliation(s)
- Talita Malewschik
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Ashlyn H McGuire
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA.
| |
Collapse
|
12
|
Lin Y. Rational design of heme enzymes for biodegradation of pollutants toward a green future. Biotechnol Appl Biochem 2019; 67:484-494. [DOI: 10.1002/bab.1788] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/06/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Ying‐Wu Lin
- School of Chemistry and Chemical Engineering University of South China Hengyang People's Republic of China
- Laboratory of Protein Structure and Function University of South China Hengyang People's Republic of China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes University of South China Hengyang People's Republic of China
| |
Collapse
|
13
|
Yin L, Yuan H, Liu C, He B, Gao SQ, Wen GB, Tan X, Lin YW. A Rationally Designed Myoglobin Exhibits a Catalytic Dehalogenation Efficiency More than 1000-Fold That of a Native Dehaloperoxidase. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02979] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lu−Lu Yin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong Yuan
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Can Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Bo He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| |
Collapse
|
14
|
McGuire AH, Carey LM, de Serrano V, Dali S, Ghiladi RA. Peroxidase versus Peroxygenase Activity: Substrate Substituent Effects as Modulators of Enzyme Function in the Multifunctional Catalytic Globin Dehaloperoxidase. Biochemistry 2018; 57:4455-4468. [DOI: 10.1021/acs.biochem.8b00540] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ashlyn H. McGuire
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Leiah M. Carey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Safaa Dali
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
15
|
Carey LM, Gavenko R, Svistunenko DA, Ghiladi RA. How nature tunes isoenzyme activity in the multifunctional catalytic globin dehaloperoxidase from Amphitrite ornata. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:230-241. [DOI: 10.1016/j.bbapap.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 01/29/2023]
|
16
|
Selective tuning of activity in a multifunctional enzyme as revealed in the F21W mutant of dehaloperoxidase B from Amphitrite ornata. J Biol Inorg Chem 2017; 23:209-219. [DOI: 10.1007/s00775-017-1520-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/17/2017] [Indexed: 11/25/2022]
|
17
|
Van Doorslaer S, Cuypers B. Electron paramagnetic resonance of globin proteins – a successful match between spectroscopic development and protein research. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1392629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Bert Cuypers
- Department of Physics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Bindings of NO, CO, and O 2 to multifunctional globin type dehaloperoxidase follow the 'sliding scale rule'. Biochem J 2017; 474:3485-3498. [PMID: 28899945 DOI: 10.1042/bcj20170515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 01/09/2023]
Abstract
Dehaloperoxidase-hemoglobin (DHP), a multifunctional globin protein, not only functions as an oxygen carrier as typical globins such as myoglobin and hemoglobin, but also as a peroxidase, a mono- and dioxygenase, peroxygenase, and an oxidase. Kinetics of DHP binding to NO, CO, and O2 were characterized for wild-type DHP A and B and the H55D and H55V DHP A mutants using stopped-flow methods. All three gaseous ligands bind to DHP significantly more weakly than sperm whale myoglobin (SWMb). Both CO and NO bind to DHP in a one-step process to form a stable six-coordinate complex. Multiple-step NO binding is not observed in DHP, which is similar to observations in SWMb, but in contrast with many heme sensor proteins. The weak affinity of DHP for O2 is mainly due to a fast O2 dissociation rate, in accordance with a longer εN-Fe distance between the heme iron and distal histidine in DHP than that in Mb, and an open-distal pocket that permits ligand escape. Binding affinities in DHP show the same 3-4 orders separation between the pairs NO/CO and CO/O2, consistent with the 'sliding scale rule' hypothesis. Strong gaseous ligand discrimination by DHP is very different from that observed in typical peroxidases, which show poor gaseous ligand selectivity, correlating with a neutral proximal imidazole ligand rather than an imidazolate. The present study provides useful insights into the rationale for DHP to function both as mono-oxygenase and oxidase, and is the first example of a globin peroxidase shown to follow the 'sliding scale rule' hypothesis in gaseous ligand discrimination.
Collapse
|
19
|
Reeder BJ. Redox and Peroxidase Activities of the Hemoglobin Superfamily: Relevance to Health and Disease. Antioxid Redox Signal 2017; 26:763-776. [PMID: 27637274 DOI: 10.1089/ars.2016.6803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Erythrocyte hemoglobin (Hb) and myocyte myoglobin, although primarily oxygen-carrying proteins, have the capacity to do redox chemistry. Such redox activity in the wider family of globins now appears to have important associations with the mechanisms of cell stress response. In turn, an understanding of such mechanisms in vivo may have a potential in the understanding of cancer therapy resistance and neurodegenerative disorders such as Alzheimer's. Recent Advances: There has been an enhanced understanding of the redox chemistry of the globin superfamily in recent years, leading to advances in development of Hb-based blood substitutes and in hypotheses relating to specific disease mechanisms. Neuroglobin (Ngb) and cytoglobin (Cygb) have been linked to cell protection mechanisms against hypoxia and oxidative stress, with implications in the onset and progression of neurodegenerative diseases for Ngb and cancer for Cygb. CRITICAL ISSUES Despite advances in the understanding of redox chemistry of globins, the physiological roles of many of these proteins still remain ambiguous at best. Confusion over potential physiological roles may relate to multifunctional roles for globins, which may be modulated by surface-exposed cysteine pairs in some globins. Such roles may be critical in deciphering the relationships of these globins in human diseases. FUTURE DIRECTIONS Further studies are required to connect the considerable knowledge on the mechanisms of globin redox chemistry in vitro with the physiological and pathological roles of globins in vivo. In doing so, new therapies for neurodegenerative disorders and cancer therapy resistance may be targeted. Antioxid. Redox Signal. 26, 763-776.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Biological Sciences, University of Essex , Essex, United Kingdom
| |
Collapse
|
20
|
Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chem Rev 2017; 117:5619-5674. [PMID: 28106994 PMCID: PMC5575885 DOI: 10.1021/acs.chemrev.6b00571] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Zachary D. Miles
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
| | | | - Alessandra S. Eustáquio
- College of Pharmacy, Department of Medicinal Chemistry & Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago
| | - Abrahim A. El Gamal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Bradley S. Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
| |
Collapse
|
21
|
McCombs NL, Moreno-Chicano T, Carey LM, Franzen S, Hough MA, Ghiladi RA. Interaction of Azole-Based Environmental Pollutants with the Coelomic Hemoglobin from Amphitrite ornata: A Molecular Basis for Toxicity. Biochemistry 2017; 56:2294-2303. [PMID: 28387506 DOI: 10.1021/acs.biochem.7b00041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The toxicities of azole pollutants that have widespread agricultural and industrial uses are either poorly understood or unknown, particularly with respect to how infaunal organisms are impacted by this class of persistent organic pollutant. To identify a molecular basis by which azole compounds may have unforeseen toxicity on marine annelids, we examine here their impact on the multifunctional dehaloperoxidase (DHP) hemoglobin from the terebellid polychaete Amphitrite ornata. Ultraviolet-visible and resonance Raman spectroscopic studies showed an increase in the six-coordinate low-spin heme population in DHP isoenzyme B upon binding of imidazole, benzotriazole, and benzimidazole (Kd values of 52, 82, and 110 μM, respectively), suggestive of their direct binding to the heme-Fe. Accordingly, atomic-resolution X-ray crystal structures, supported by computational studies, of the DHP B complexes of benzotriazole (1.14 Å), benzimidazole (1.08 Å), imidazole (1.08 Å), and indazole (1.12 Å) revealed two ligand binding motifs, one with direct ligand binding to the heme-Fe, and another in which the ligand binds in the hydrophobic distal pocket without coordinating the heme-Fe. Taken together, the results demonstrate a new mechanism by which azole pollutants can potentially disrupt hemoglobin function, thereby improving our understanding of their impact on infaunal organisms in marine and aquatic environments.
Collapse
Affiliation(s)
- Nikolette L McCombs
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Tadeo Moreno-Chicano
- School of Biological Sciences, University of Essex , Wivenhoe Park, Colchester, Essex CO4 3SQ, U.K
| | - Leiah M Carey
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Michael A Hough
- School of Biological Sciences, University of Essex , Wivenhoe Park, Colchester, Essex CO4 3SQ, U.K
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
22
|
McCombs NL, D’Antonio J, Barrios DA, Carey LM, Ghiladi RA. Nonmicrobial Nitrophenol Degradation via Peroxygenase Activity of Dehaloperoxidase-Hemoglobin from Amphitrite ornata. Biochemistry 2016; 55:2465-78. [DOI: 10.1021/acs.biochem.6b00143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nikolette L. McCombs
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204
| | - Jennifer D’Antonio
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204
| | - David A. Barrios
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204
| | - Leiah M. Carey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204
| |
Collapse
|
23
|
Zhang Z, Santos AP, Zhou Q, Liang L, Wang Q, Wu T, Franzen S. Steered molecular dynamics study of inhibitor binding in the internal binding site in dehaloperoxidase-hemoglobin. Biophys Chem 2016; 211:28-38. [DOI: 10.1016/j.bpc.2016.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/24/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
|
24
|
Zhao J, Lu C, Franzen S. Distinct Enzyme–Substrate Interactions Revealed by Two Dimensional Kinetic Comparison between Dehaloperoxidase-Hemoglobin and Horseradish Peroxidase. J Phys Chem B 2015; 119:12828-37. [DOI: 10.1021/acs.jpcb.5b07126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Zhao
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Chang Lu
- Department
of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Stefan Franzen
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department
of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
25
|
Zhao J, Moretto J, Le P, Franzen S. Measurement of Internal Substrate Binding in Dehaloperoxidase–Hemoglobin by Competition with the Heme–Fluoride Binding Equilibrium. J Phys Chem B 2015; 119:2827-38. [DOI: 10.1021/jp512996v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jing Zhao
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Justin Moretto
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Peter Le
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
26
|
Wang C, Lovelace LL, Sun S, Dawson JH, Lebioda L. Structures of K42N and K42Y sperm whale myoglobins point to an inhibitory role of distal water in peroxidase activity. ACTA ACUST UNITED AC 2014; 70:2833-9. [DOI: 10.1107/s1399004714017787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/01/2014] [Indexed: 11/10/2022]
Abstract
Sperm whale myoglobin (Mb) functions as an oxygen-storage protein, but in the ferric state it possesses a weak peroxidase activity which enables it to carry out H2O2-dependent dehalogenation reactions. Hemoglobin/dehaloperoxidase fromAmphitrite ornata(DHP) is a dual-function protein represented by two isoproteins DHP A and DHP B; its peroxidase activity is at least ten times stronger than that of Mb and plays a physiological role. The `DHP A-like' K42Y Mb mutant (K42Y) and the `DHP B-like' K42N mutant (K42N) were engineered in sperm whale Mb to mimic the extended heme environments of DHP A and DHP B, respectively. The peroxidase reaction rates increased ∼3.5-fold and ∼5.5-fold in K42Y and K42NversusMb, respectively. The crystal structures of the K42Y and K42N mutants revealed that the substitutions at position 42 slightly elongate not only the distances between the distal His55 and the heme iron but also the hydrogen-bonding distances between His55 and the Fe-coordinated water. The enhanced peroxidase activity of K42Y and K42N thus might be attributed in part to the weaker binding of the axial water molecule that competes with hydrogen peroxide for the binding site at the heme in the ferric state. This is likely to be the mechanism by which the relationship `longer distal histidine to Fe distance – better peroxidase activity', which was previously proposed for heme proteins by Matsuiet al.(1999) (J. Biol. Chem.274, 2838–2844), works. Furthermore, positive cooperativity in K42N was observed when its dehaloperoxidase activity was measured as a function of the concentration of the substrate trichlorophenol. This serendipitously engineered cooperativity was rationalized by K42N dimerization through the formation of a dityrosine bond induced by excess H2O2.
Collapse
|
27
|
Sun S, Sono M, Du J, Dawson JH. Evidence of the Direct Involvement of the Substrate TCP Radical in Functional Switching from Oxyferrous O2 Carrier to Ferric Peroxidase in the Dual-Function Hemoglobin/Dehaloperoxidase from Amphitrite ornata. Biochemistry 2014; 53:4956-69. [DOI: 10.1021/bi5002757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shengfang Sun
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Masanori Sono
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jing Du
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - John H. Dawson
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- School
of Medicine, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
28
|
Barrios DA, D'Antonio J, McCombs NL, Zhao J, Franzen S, Schmidt AC, Sombers LA, Ghiladi RA. Peroxygenase and oxidase activities of dehaloperoxidase-hemoglobin from Amphitrite ornata. J Am Chem Soc 2014; 136:7914-25. [PMID: 24791647 PMCID: PMC4063182 DOI: 10.1021/ja500293c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
The marine globin dehaloperoxidase-hemoglobin
(DHP) from Amphitrite ornata was found to catalyze
the H2O2-dependent oxidation of monohaloindoles,
a previously
unknown class of substrate for DHP. Using 5-Br-indole as a representative
substrate, the major monooxygenated products were found to be 5-Br-2-oxindole
and 5-Br-3-oxindolenine. Isotope labeling studies confirmed that the
oxygen atom incorporated was derived exclusively from H2O2, indicative of a previously unreported peroxygenase
activity for DHP. Peroxygenase activity could be initiated from either
the ferric or oxyferrous states with equivalent substrate conversion
and product distribution. It was found that 5-Br-3-oxindole, a precursor
of the product 5-Br-3-oxindolenine, readily reduced the ferric enzyme
to the oxyferrous state, demonstrating an unusual product-driven reduction
of the enzyme. As such, DHP returns to the globin-active oxyferrous
form after peroxygenase activity ceases. Reactivity with 5-Br-3-oxindole
in the absence of H2O2 also yielded 5,5′-Br2-indigo above the expected reaction stoichiometry under aerobic
conditions, and O2-concentration studies demonstrated dioxygen
consumption. Nonenzymatic and anaerobic controls both confirmed the
requirements for DHP and molecular oxygen in the catalytic generation
of 5,5′-Br2-indigo, and together suggest a newly
identified oxidase activity for DHP.
Collapse
Affiliation(s)
- David A Barrios
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhao J, de Serrano V, Franzen S. A model for the flexibility of the distal histidine in dehaloperoxidase-hemoglobin A based on X-ray crystal structures of the carbon monoxide adduct. Biochemistry 2014; 53:2474-82. [PMID: 24670063 PMCID: PMC4203366 DOI: 10.1021/bi5001905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Dehaloperoxidase
hemoglobin A (DHP A) is a multifunctional hemoglobin
that appears to have evolved oxidative pathways for the degradation
of xenobiotics as a protective function that complements the oxygen
transport function. DHP A possesses at least two internal binding
sites, one for substrates and one for inhibitors, which include various
halogenated phenols and indoles. Herein, we report the X-ray crystallographic
structure of the carbonmonoxy complex (DHPCO). Unlike other DHP structures
with 6-coordinated heme, the conformation of the distal histidine
(H55) in DHPCO is primarily external or solvent exposed, despite the
fact that the heme Fe is 6-coordinated. As observed generally in globins,
DHP exhibits two distal histidine conformations (one internal and
one external). In previous structural studies, we have shown that
the distribution of H55 conformations is weighted strongly toward
the external position when the DHP heme Fe is 5-coordinated. The large
population of the external conformation of the distal histidine observed
in DHPCO crystals at pH 6.0 indicates that some structural factor
in DHP must account for the difference from other globins, which exhibit
a significant external conformation only when pH < 4.5. While the
original hypothesis suggested that interaction with a heme-Fe-bound
ligand was the determinant of H55 conformation, the current study
forces a refinement of that hypothesis. The external or open conformation
of H55 is observed to have interactions with two propionate groups
in heme, at distances of 3.82 and 2.73 Å, respectively. A relatively
weak hydrogen bonding interaction between H55 and CO, combined with
strong interactions with heme propionate (position 6), is hypothesized
to strengthen the external conformation of H55. Density function theory
(DFT) calculations were conducted to test whether there is a weaker
hydrogen bond interaction between H55 and heme bonded CO or O2. Molecular dynamics simulations were conducted to examine
how the tautomeric forms of H55 affect the dynamic motions of the
distal histidine that govern the switching between open and closed
conformations. The calculations support the modified hypothesis suggesting
a competition between the strength of interactions with heme ligand
and the heme propionates as the factors that determine the conformation
of the distal histidine.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | |
Collapse
|
30
|
Sun S, Sono M, Wang C, Du J, Lebioda L, Dawson JH. Influence of heme environment structure on dioxygen affinity for the dual function Amphitrite ornata hemoglobin/dehaloperoxidase. Insights into the evolutional structure-function adaptations. Arch Biochem Biophys 2014; 545:108-15. [PMID: 24440609 DOI: 10.1016/j.abb.2014.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 11/28/2022]
Abstract
Sea worm, Amphitrite ornata, has evolved its globin (an O(2) carrier) also to serves as a dehaloperoxidase (DHP) to detoxify haloaromatic pollutants generated by competing species. A previous mutagenesis study by our groups on both DHP and sperm whale myoglobin (SW Mb) revealed some structural factors that influence the dehaloperoxidase activities (significantly lower for Mb) of both proteins. Using an isocyanide/O(2) partition constant measurement method in this study, we have examined the effects of these structural factors on the O(2) equilibrium constants (KO2) of DHP, SW Mb, and their mutants. A clear trend of decreasing O(2) affinity and increasing catalytic activity along with the increase in the distal His N(ε)-heme iron distance is observed. An H93K/T95H Mb double mutant mimicking the DHP proximal His positioning exhibited markedly enhanced O(2) affinity, confirming the essential effect of proximal His rotation on the globin function of DHP. For DHP, the L100F, T56G and M86E variants showed the effects of distal volume, distal His flexibility and proximal electronic push, respectively, on the O(2) affinity. This study provides insights into how DHP has evolved its heme environment to gain significantly enhanced peroxidase capability without compromising its primary function as an O(2) carrier.
Collapse
Affiliation(s)
- Shengfang Sun
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Masanori Sono
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States.
| | - Chunxue Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Jing Du
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Lukasz Lebioda
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States.
| | - John H Dawson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States; School of Medicine, University of South Carolina, United States.
| |
Collapse
|
31
|
Zhao J, Zhao J, Franzen S. The Regulatory Implications of Hydroquinone for the Multifunctional Enzyme Dehaloperoxidase-Hemoglobin from Amphitrite ornata. J Phys Chem B 2013; 117:14615-24. [DOI: 10.1021/jp407663n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jing Zhao
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Junjie Zhao
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
32
|
Zhao J, Srajer V, Franzen S. Functional consequences of the open distal pocket of dehaloperoxidase-hemoglobin observed by time-resolved X-ray crystallography. Biochemistry 2013; 52:7943-50. [PMID: 24116924 DOI: 10.1021/bi401118q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using time-resolved X-ray crystallography, we contrast a bifunctional dehaloperoxidase-hemoglobin (DHP) with previously studied examples of myoglobin and hemoglobin to understand the functional role of the distal pocket of globins. One key functional difference between DHP and other globins is the requirement that H2O2 enter the distal pocket of oxyferrous DHP to displace O2 from the heme Fe atom and thereby activate the heme for the peroxidase function. The open architecture of DHP permits more than one molecule to simultaneously enter the distal pocket of the protein above the heme to facilitate the unique peroxidase cycle starting from the oxyferrous state. The time-resolved X-ray data show that the distal pocket of DHP lacks a protein valve found in the two other globins that have been studied previously. The photolyzed CO ligand trajectory in DHP does not have a docking site; rather, the CO moves immediately to the Xe-binding site. From there, CO can escape but can also recombine an order of magnitude more rapidly than in other globins. The contrast with DHP dynamics and function more precisely defines the functional role of the multiple conformational states of myoglobin. Taken together with the high reduction potential of DHP, the open distal site helps to explain how a globin can also function as a peroxidase.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | |
Collapse
|
33
|
Dumarieh R, D'Antonio J, Deliz-Liang A, Smirnova T, Svistunenko DA, Ghiladi RA. Tyrosyl radicals in dehaloperoxidase: how nature deals with evolving an oxygen-binding globin to a biologically relevant peroxidase. J Biol Chem 2013; 288:33470-82. [PMID: 24100039 DOI: 10.1074/jbc.m113.496497] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dehaloperoxidase (DHP) from Amphitrite ornata, having been shown to catalyze the hydrogen peroxide-dependent oxidation of trihalophenols to dihaloquinones, is the first oxygen binding globin that possesses a biologically relevant peroxidase activity. The catalytically competent species in DHP appears to be Compound ES, a reactive intermediate that contains both a ferryl heme and a tyrosyl radical. By simulating the EPR spectra of DHP activated by H2O2, Thompson et al. (Thompson, M. K., Franzen, S., Ghiladi, R. A., Reeder, B. J., and Svistunenko, D. A. (2010) J. Am. Chem. Soc. 132, 17501-17510) proposed that two different radicals, depending on the pH, are formed, one located on either Tyr-34 or Tyr-28 and the other on Tyr-38. To provide additional support for these simulation-based assignments and to deduce the role(s) that tyrosyl radicals play in DHP, stopped-flow UV-visible and rapid-freeze-quench EPR spectroscopic methods were employed to study radical formation in DHP when three tyrosine residues, Tyr-28, Tyr-34, and Tyr-38, were replaced either individually or in combination with phenylalanines. The results indicate that radicals form on all three tyrosines in DHP. Evidence for the formation of DHP Compound I in several tyrosine mutants was obtained. Variants that formed Compound I showed an increase in the catalytic rate for substrate oxidation but also an increase in heme bleaching, suggesting that the tyrosines are necessary for protecting the enzyme from oxidizing itself. This protective role of tyrosines is likely an evolutionary adaptation allowing DHP to avoid self-inflicted damage in the oxidative environment.
Collapse
Affiliation(s)
- Rania Dumarieh
- From the Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204 and
| | | | | | | | | | | |
Collapse
|
34
|
The role of T56 in controlling the flexibility of the distal histidine in dehaloperoxidase-hemoglobin from Amphitrite ornata. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2020-9. [DOI: 10.1016/j.bbapap.2013.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 11/23/2022]
|
35
|
Zhao J, Franzen S. Kinetic Study of the Inhibition Mechanism of Dehaloperoxidase-Hemoglobin A by 4-Bromophenol. J Phys Chem B 2013; 117:8301-9. [DOI: 10.1021/jp3116353] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Zhao
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| |
Collapse
|
36
|
Plummer A, Thompson MK, Franzen S. Role of Polarity of the Distal Pocket in the Control of Inhibitor Binding in Dehaloperoxidase-Hemoglobin. Biochemistry 2013; 52:2218-27. [DOI: 10.1021/bi301509r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ashlee Plummer
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
27695, United States
| | - Matthew K. Thompson
- Department
of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee
37232, United States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
27695, United States
| |
Collapse
|
37
|
Zhao J, de Serrano V, Dumarieh R, Thompson M, Ghiladi RA, Franzen S. The Role of the Distal Histidine in H2O2 Activation and Heme Protection in both Peroxidase and Globin Functions. J Phys Chem B 2012; 116:12065-77. [DOI: 10.1021/jp300014b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junjie Zhao
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| | - Rania Dumarieh
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| | - Matt Thompson
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| |
Collapse
|