1
|
Yao W, Hu X, Wang X. Crossing epigenetic frontiers: the intersection of novel histone modifications and diseases. Signal Transduct Target Ther 2024; 9:232. [PMID: 39278916 PMCID: PMC11403012 DOI: 10.1038/s41392-024-01918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 09/18/2024] Open
Abstract
Histone post-translational modifications (HPTMs), as one of the core mechanisms of epigenetic regulation, are garnering increasing attention due to their close association with the onset and progression of diseases and their potential as targeted therapeutic agents. Advances in high-throughput molecular tools and the abundance of bioinformatics data have led to the discovery of novel HPTMs which similarly affect gene expression, metabolism, and chromatin structure. Furthermore, a growing body of research has demonstrated that novel histone modifications also play crucial roles in the development and progression of various diseases, including various cancers, cardiovascular diseases, infectious diseases, psychiatric disorders, and reproductive system diseases. This review defines nine novel histone modifications: lactylation, citrullination, crotonylation, succinylation, SUMOylation, propionylation, butyrylation, 2-hydroxyisobutyrylation, and 2-hydroxybutyrylation. It comprehensively introduces the modification processes of these nine novel HPTMs, their roles in transcription, replication, DNA repair and recombination, metabolism, and chromatin structure, as well as their involvement in promoting the occurrence and development of various diseases and their clinical applications as therapeutic targets and potential biomarkers. Moreover, this review provides a detailed overview of novel HPTM inhibitors targeting various targets and their emerging strategies in the treatment of multiple diseases while offering insights into their future development prospects and challenges. Additionally, we briefly introduce novel epigenetic research techniques and their applications in the field of novel HPTM research.
Collapse
Affiliation(s)
- Weiyi Yao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Jia K, Yang M, Liu X, Zhang Q, Cao G, Ge F, Zhao J. Deciphering the structure, function, and mechanism of lysine acetyltransferase cGNAT2 in cyanobacteria. PLANT PHYSIOLOGY 2024; 194:634-661. [PMID: 37770070 DOI: 10.1093/plphys/kiad509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023]
Abstract
Lysine acetylation is a conserved regulatory posttranslational protein modification that is performed by lysine acetyltransferases (KATs). By catalyzing the transfer of acetyl groups to substrate proteins, KATs play critical regulatory roles in all domains of life; however, no KATs have yet been identified in cyanobacteria. Here, we tested all predicted KATs in the cyanobacterium Synechococcus sp. PCC 7002 (Syn7002) and demonstrated that A1596, which we named cyanobacterial Gcn5-related N-acetyltransferase (cGNAT2), can catalyze lysine acetylation in vivo and in vitro. Eight amino acid residues were identified as the key residues in the putative active site of cGNAT2, as indicated by structural simulation and site-directed mutagenesis. The loss of cGNAT2 altered both growth and photosynthetic electron transport in Syn7002. In addition, quantitative analysis of the lysine acetylome identified 548 endogenous substrates of cGNAT2 in Syn7002. We further demonstrated that cGNAT2 can acetylate NAD(P)H dehydrogenase J (NdhJ) in vivo and in vitro, with the inability to acetylate K89 residues, thus decreasing NdhJ activity and affecting both growth and electron transport in Syn7002. In summary, this study identified a KAT in cyanobacteria and revealed that cGNAT2 regulates growth and photosynthesis in Syn7002 through an acetylation-mediated mechanism.
Collapse
Affiliation(s)
- Kun Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430070, China
| | - Qi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoxiang Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jindong Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Scumaci D, Zheng Q. Epigenetic meets metabolism: novel vulnerabilities to fight cancer. Cell Commun Signal 2023; 21:249. [PMID: 37735413 PMCID: PMC10512595 DOI: 10.1186/s12964-023-01253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023] Open
Abstract
Histones undergo a plethora of post-translational modifications (PTMs) that regulate nucleosome and chromatin dynamics and thus dictate cell fate. Several evidences suggest that the accumulation of epigenetic alterations is one of the key driving forces triggering aberrant cellular proliferation, invasion, metastasis and chemoresistance pathways. Recently a novel class of histone "non-enzymatic covalent modifications" (NECMs), correlating epigenome landscape and metabolic rewiring, have been described. These modifications are tightly related to cell metabolic fitness and are able to impair chromatin architecture. During metabolic reprogramming, the high metabolic flux induces the accumulation of metabolic intermediate and/or by-products able to react with histone tails altering epigenome homeostasis. The accumulation of histone NECMs is a damaging condition that cancer cells counteracts by overexpressing peculiar "eraser" enzymes capable of removing these modifications preserving histones architecture. In this review we explored the well-established NECMs, emphasizing the role of their corresponding eraser enzymes. Additionally, we provide a parterre of drugs aiming to target those eraser enzymes with the intent to propose novel routes of personalized medicine based on the identification of epi-biomarkers which might be selectively targeted for therapy. Video Abstract.
Collapse
Affiliation(s)
- Domenica Scumaci
- Research Center On Advanced Biochemistry and Molecular Biology, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy.
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Rong Y, Dong F, Zhang G, Tang M, Zhao X, Zhang Y, Tao P, Cai H. The crosstalking of lactate-Histone lactylation and tumor. Proteomics Clin Appl 2023; 17:e2200102. [PMID: 36853081 DOI: 10.1002/prca.202200102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
Lactate was once considered to be a by-product of energy metabolism, but its unique biological value was only gradually explored with the advent of the Warburg effect. As an end product of glycolysis, lactate can act as a substrate for energy metabolism, a signal transduction molecule, a regulator of the tumor microenvironment and immune cells, and a regulator of the deubiquitination of specific enzymes, and is involved in various biological aspects of tumor regulation, including energy shuttling, growth and invasion, angiogenesis and immune escape. Furthermore, we describe a novel lactate-dependent epigenetic modification, namely histone lactylation modification, and review the progress of its study in tumors, mainly involving the reprogramming of tumor phenotypes, regulation of related gene expression, mediation of the glycolytic process in tumor stem cells (CSCs) and influence on the tumor immune microenvironment. The study of epigenetic regulation of tumor genes by histone modification is still in its infancy, and we expect that by summarizing the effects of lactate and histone modification on tumor and related gene regulation, we will clarify the scientific significance of future histone modification studies and the problems to be solved, and open up new fields for targeted tumor therapy.
Collapse
Affiliation(s)
- Yao Rong
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Fengyuan Dong
- Geriatrics Department, Lianyungang First People's Hospital, Lianyugang, China
| | - Guiqian Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Mingzheng Tang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Xiashuang Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Yan Zhang
- Cadre Ward of General Surgery Department, Gansu Provincial Hospital, Lanzhou, China
| | - Pengxian Tao
- Cadre Ward of General Surgery Department, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Cai
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
5
|
Fu Y, Yu J, Li F, Ge S. Oncometabolites drive tumorigenesis by enhancing protein acylation: from chromosomal remodelling to nonhistone modification. J Exp Clin Cancer Res 2022; 41:144. [PMID: 35428309 PMCID: PMC9013066 DOI: 10.1186/s13046-022-02338-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/21/2022] [Indexed: 02/02/2023] Open
Abstract
AbstractMetabolites are intermediate products of cellular metabolism catalysed by various enzymes. Metabolic remodelling, as a biochemical fingerprint of cancer cells, causes abnormal metabolite accumulation. These metabolites mainly generate energy or serve as signal transduction mediators via noncovalent interactions. After the development of highly sensitive mass spectrometry technology, various metabolites were shown to covalently modify proteins via forms of lysine acylation, including lysine acetylation, crotonylation, lactylation, succinylation, propionylation, butyrylation, malonylation, glutarylation, 2-hydroxyisobutyrylation and β-hydroxybutyrylation. These modifications can regulate gene expression and intracellular signalling pathways, highlighting the extensive roles of metabolites. Lysine acetylation is not discussed in detail in this review since it has been broadly investigated. We focus on the nine aforementioned novel lysine acylations beyond acetylation, which can be classified into two categories: histone acylations and nonhistone acylations. We summarize the characteristics and common functions of these acylation types and, most importantly, provide a glimpse into their fine-tuned control of tumorigenesis and potential value in tumour diagnosis, monitoring and therapy.
Collapse
|
6
|
Melnik BS, Katina NS, Ryabova NA, Marchenkov VV, Melnik TN, Karuzina NE, Nemtseva EV. Relationship between Changes in the Protein Folding Pathway and the Process of Amyloid Formation: The Case of Bovine Carbonic Anhydrase II. Int J Mol Sci 2022; 23:ijms232314645. [PMID: 36498970 PMCID: PMC9735599 DOI: 10.3390/ijms232314645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Many proteins form amyloid fibrils only under conditions when the probability of transition from a native (structured, densely packed) to an intermediate (labile, destabilized) state is increased. It implies the assumption that some structural intermediates are more convenient for amyloid formation than the others. Hence, if a mutation affects the protein folding pathway, one should expect that this mutation could affect the rate of amyloid formation as well. In the current work, we have compared the effects of amino acid substitutions of bovine carbonic anhydrase II on its unfolding pathway and on its ability to form amyloids at acidic pH and an elevated temperature. Wild-type protein and four mutant forms (L78A, L139A, I208A, and M239A) were studied. We analyzed the change of the protein unfolding pathway by the time-resolved fluorescence technique and the process of amyloid formation by thioflavin T fluorescence assay and electron microscopy. It was revealed that I208A substitution accelerates amyloid formation and affects the structure of the late (molten globule-like)-intermediate state of carbonic anhydrase, whereas the other mutations slow down the growth of amyloids and have either no effect on the unfolding pathway (L78A, L139A) or alter the conformational states arising at the early unfolding stage (M239A).
Collapse
Affiliation(s)
- Bogdan S. Melnik
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: ; Tel.: +7-(4967)-318271; Fax: +7-(4967)-318435
| | - Natalya S. Katina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Natalya A. Ryabova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Victor V. Marchenkov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Tatiana N. Melnik
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Natalya E. Karuzina
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Elena V. Nemtseva
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
| |
Collapse
|
7
|
Ryabova N, Fakhranurova L, Balobanov V, Marchenkov V, Glukhov A, Ilyina N, Kochetov A, Suvorina M, Surin A, Katina N. Carbonic anhydrase amyloid fibrils composed of laterally associated protofilaments show reduced cytotoxicity. Biochem Biophys Res Commun 2022; 593:46-51. [DOI: 10.1016/j.bbrc.2022.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 11/26/2022]
|
8
|
Tomar DS, Licari G, Bauer J, Singh SK, Li L, Kumar S. Stress-dependent flexibility of a full-length human monoclonal antibody: Insights from molecular dynamics to support biopharmaceutical development. J Pharm Sci 2021; 111:628-637. [PMID: 34742728 DOI: 10.1016/j.xphs.2021.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/30/2021] [Accepted: 10/30/2021] [Indexed: 01/15/2023]
Abstract
After several decades of advancements in drug discovery, product development of biopharmaceuticals remains a time- and resource-consuming endeavor. One of the main reasons is associated to the lack of fundamental understanding of conformational dynamics of such biologic entities, and how they respond to various stresses encountered during manufacturing. In this work, we have studied the conformational dynamics of human IgG1κ b12 monoclonal antibody (mAb) using molecular dynamics simulations. The hundreds of nanoseconds long trajectories reveal that b12 mAb is highly flexible. Its variable domains show greater conformational fluctuations than the constant domains. Additionally, it collapses towards a more globular shape in response to thermal stress, leading to decrease in the total solvent exposed surface area and radius of gyration. This behavior is more pronounced for the deglycosylated b12 mAb, and it appears to correlate with increase in inter-domain contacts between specific regions of the antibody. Conformational fluctuations also cause temporary formation and disruption of hydrophobic and charged patches on the antibody surface, which is particularly important for the prediction of CMC properties during development phases of antibody-based biotherapeutics. The insights gained through these simulations may help the development of biologic drugs, especially with regards to manufacturing processes where antibodies may undergo significant thermal stress.
Collapse
Affiliation(s)
- Dheeraj S Tomar
- Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Giuseppe Licari
- Pharmaceuticals Development Biologicals, Boehringer Ingelheim Pharmaceuticals, Inc., D-88397 Biberach an der Riss, Germany
| | - Joschka Bauer
- Pharmaceuticals Development Biologicals, Boehringer Ingelheim Pharmaceuticals, Inc., D-88397 Biberach an der Riss, Germany
| | - Satish K Singh
- Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Li Li
- Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc., 1 Burtt Road, Andover, Massachusetts, 01810, USA
| | - Sandeep Kumar
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877.
| |
Collapse
|
9
|
Marchenkov V, Ryabova N, Balobanov V, Glukhov A, Ilyina N, Katina N. Under Conditions of Amyloid Formation Bovine Carbonic Anhydrase B Undergoes Fragmentation by Acid Hydrolysis. Biomolecules 2021; 11:1608. [PMID: 34827606 PMCID: PMC8615856 DOI: 10.3390/biom11111608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
The development of many severe human diseases is associated with the formation of amyloid fibrils. Most of the available information on the process of amyloid formation has been obtained from studies of small proteins and peptides, wherein the features of complex proteins' aggregation remain insufficiently investigated. Our work aimed to research the amyloid aggregation of a large model protein, bovine carbonic anhydrase B (BCAB). It has previously been demonstrated that, when exposed to an acidic pH and elevated temperature, this protein forms amyloid fibrils. Here, we show that, under these conditions and before amyloid formation, BCAB undergoes fragmentation by acid hydrolysis to give free individual peptides and associated peptides. Fragments in associates contain a pronounced secondary structure and act as the main precursor of amyloid fibrils, wherein free peptides adopt mostly unstructured conformation and form predominantly irregular globular aggregates. Reduced acidity decreases the extent of acid hydrolysis, causing BCAB to form amorphous aggregates lacking the thioflavin T binding β-structure. The presented results provide new information on BCAB amyloid formation and show the importance of protein integrity control when working even in mildly acidic conditions.
Collapse
Affiliation(s)
| | | | | | | | - Nelly Ilyina
- Institute of Protein Research RAS, 142290 Pushchino, Russia
| | - Natalya Katina
- Institute of Protein Research RAS, 142290 Pushchino, Russia
| |
Collapse
|
10
|
Fakhranurova L, Balobanov V, Ryabova N, Glukhov A, Ilyina N, Markelova N, Marchenkov V, Katina N. The presence of cross-β-structure as a key determinant of carbonic anhydrase amyloid fibrils cytotoxicity. Biochem Biophys Res Commun 2020; 524:453-458. [PMID: 32007272 DOI: 10.1016/j.bbrc.2020.01.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022]
Abstract
In most cases high cytotoxicity is characteristic of aggregates formed during lag phase of amyloid formation, whereas mature fibrils represent the depot of protein molecules incapable of damaging cell membranes. However, new experimental data show that in cases of some proteins the fibrils are the most toxic type of aggregates. Meanwhile, structural characteristics of cytotoxic fibrils and mechanisms of their cell damaging action are insufficiently explored. This work is dedicated to studying amyloid aggregation of bovine carbonic anhydrase (BCA) and effect of aggregates formed at different stages of amyloid formation on viability of the cells. Here we demonstrate that oligomers formed during lag phase do not decrease cell viability, whereas protofibrils and amyloids of BCA are cytotoxic. Obtained results allow concluding that toxicity of BCA aggregates is associated with the presence of amyloid cross-β-structure, which signature is absorbance peak at low wavenumbers at FTIR spectra (1615-1630 cm-1). Our data suppose that cross-β-core of ВСА amyloid fibrils is responsible for their cytotoxicity.
Collapse
Affiliation(s)
- Liliia Fakhranurova
- Institute of Theoretical and Experimental Biophysics RAS, Institutskaya st., 3, Russia.
| | - Vitaly Balobanov
- Institute of Protein Research RAS, Institutskaya st., 4, Russia.
| | - Natalya Ryabova
- Institute of Protein Research RAS, Institutskaya st., 4, Russia.
| | - Anatoly Glukhov
- Institute of Protein Research RAS, Institutskaya st., 4, Russia.
| | - Nelly Ilyina
- Institute of Protein Research RAS, Institutskaya st., 4, Russia.
| | | | | | - Natalya Katina
- Institute of Protein Research RAS, Institutskaya st., 4, Russia.
| |
Collapse
|
11
|
Es-haghi A, Jahedi Moghaddam M, Shahpasand K. Role of Pre-molten Globule Structure in Protein Amyloid Fibril Formation. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2019. [DOI: 10.34172/ajmb.2019.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The conversion of a protein from its native conformation to the pathogenic form is a critical event in the pathogenesis of several neurodegenerative disorders such as Alzheimer’s (AD), Parkinson’s, and Huntington’s diseases, along with type II diabetic mellitus. Although there are several reports on the mechanism of protein aggregation, the actual conformation playing a part in the pathogenicity is yet unclear. Accordingly, the present study summarizes the early pathogenic conformation resulting in several protein aggregations. It is well-documented that a pre-molten globule (MG) structure appears at the early stages of some proteins. Pre-MG is one of the intermediate structures, which is formed during some protein unfolding processes. In addition, it is shown that the pre-molten structure is more flexible than the mature MG one and thus, protein easily rearranges to form amyloid fibrils in this conformation. Therefore, protein aggregation is halted by preventing the pre-MG structure. The strategy of protein aggregation prevention has profound implications in fighting the devastating disorder.
Collapse
Affiliation(s)
- Ali Es-haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Centre of Education, Culture and Research, Tehran, Iran
| |
Collapse
|
12
|
Es-haghi A, Ebrahim-Habibi A. Inhibition of amyloid fibrillation of apo-carbonic anhydrase by flavonoid compounds. J Biosci 2019. [DOI: 10.1007/s12038-019-9866-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Azami-Movahed M, Meratan AA, Ghasemi A, Ebrahim-Habibi A, Nemat-Gorgani M. Acetylation of lysine residues in apomyoglobin: Structural changes, amyloid fibrillation, and role of surface charge. Int J Biol Macromol 2018; 107:626-634. [DOI: 10.1016/j.ijbiomac.2017.09.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/21/2022]
|
14
|
Ullah N, Wang X, Chen L, Xu X, Li Z, Feng X. Influence of biofilm surface layer protein A (BslA) on the gel structure of myofibril protein from chicken breast. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4712-4720. [PMID: 28374425 DOI: 10.1002/jsfa.8339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/11/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Different techniques have been applied to alter myofibril protein (MP) structure, which further promotes protein-protein interactions and influencing the MP gelling characteristics. Influence of BslA from natto food (protein concentration, 30 mg mL-1 ; at 0.001, 0.005, 0.01, 0.05 and 0.1 g kg-1 ) on the characteristics of MP gel of chicken breast was investigated. RESULTS Results show that cooking loss significantly (P < 0.05) decreased with increased percentage of BslA. Hardness of MP gel did not significantly change at 0.01 g kg-1 BslA. Differential scanning calorimetry disclosed that MP was modified by the addition of BslA. Moreover, BslA produced a high value of storage modulus (G') and low value of phase angle (tan δ) during heating, especially at 0.01 g kg-1 . Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis proved the formation of higher-molecular-weight polymers by developing non-disulfide covalent bonds between MP at 0.01 g kg-1 BslA. Surface hydrophobicity of the MP gel was decreased with increased percentage of BslA. Scanning electron microscopy confirmed the increasing number of uniform cavities of MP gel with the increased percentage of BslA. CONCLUSION Addition of 0.01 g kg-1 BslA significantly improved the water holding capacity and rheological properties of MP by developing non-disulfide covalent bonds. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Niamat Ullah
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Department of Human Nutrition, The University Of Agriculture Peshawar, Khyber, Pakhtunkhwa, Pakistan
| | - Xuejiao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhixi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Amyloid-like aggregates formation by bovine apo-carbonic anhydrase in various alcohols: A comparative study. Int J Biol Macromol 2016; 92:573-580. [DOI: 10.1016/j.ijbiomac.2016.07.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/11/2016] [Accepted: 07/24/2016] [Indexed: 12/31/2022]
|
16
|
Højgaard C, Kofoed C, Espersen R, Johansson KE, Villa M, Willemoës M, Lindorff-Larsen K, Teilum K, Winther JR. A Soluble, Folded Protein without Charged Amino Acid Residues. Biochemistry 2016; 55:3949-56. [PMID: 27307139 DOI: 10.1021/acs.biochem.6b00269] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Charges are considered an integral part of protein structure and function, enhancing solubility and providing specificity in molecular interactions. We wished to investigate whether charged amino acids are indeed required for protein biogenesis and whether a protein completely free of titratable side chains can maintain solubility, stability, and function. As a model, we used a cellulose-binding domain from Cellulomonas fimi, which, among proteins of more than 100 amino acids, presently is the least charged in the Protein Data Bank, with a total of only four titratable residues. We find that the protein shows a surprising resilience toward extremes of pH, demonstrating stability and function (cellulose binding) in the pH range from 2 to 11. To ask whether the four charged residues present were required for these properties of this protein, we altered them to nontitratable ones. Remarkably, this chargeless protein is produced reasonably well in Escherichia coli, retains its stable three-dimensional structure, and is still capable of strong cellulose binding. To further deprive this protein of charges, we removed the N-terminal charge by acetylation and studied the protein at pH 2, where the C-terminus is effectively protonated. Under these conditions, the protein retains its function and proved to be both soluble and have a reversible folding-unfolding transition. To the best of our knowledge, this is the first time a soluble, functional protein with no titratable side chains has been produced.
Collapse
Affiliation(s)
- Casper Højgaard
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , DK-2200 Copenhagen N, Denmark
| | - Christian Kofoed
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , DK-2200 Copenhagen N, Denmark
| | - Roall Espersen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , DK-2200 Copenhagen N, Denmark
| | - Kristoffer Enøe Johansson
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , DK-2200 Copenhagen N, Denmark
| | - Mara Villa
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , DK-2200 Copenhagen N, Denmark
| | - Martin Willemoës
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , DK-2200 Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , DK-2200 Copenhagen N, Denmark
| | - Kaare Teilum
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , DK-2200 Copenhagen N, Denmark
| | - Jakob R Winther
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , DK-2200 Copenhagen N, Denmark
| |
Collapse
|
17
|
Garg DK, Kundu B. Clues for divergent, polymorphic amyloidogenesis through dissection of amyloid forming steps of bovine carbonic anhydrase and its critical amyloid forming stretch. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:794-804. [PMID: 27045222 DOI: 10.1016/j.bbapap.2016.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/12/2016] [Accepted: 03/31/2016] [Indexed: 01/23/2023]
Abstract
Certain amino acid stretches are considered 'critical' to trigger amyloidogenesis in a protein. Synthetic peptides corresponding to these stretches are often used as experimental mimics for studying the amyloidogenesis of their parent protein. Here we provide evidence that such simple extrapolation is misleading. We scrutinized each step of amyloid progression of full length bovine carbonic anhydrase (BCA) and compared it with the amyloidogenic process of its critical peptide stretch 201-227 (PepB). We found that under similar solution conditions amyloidogenesis of BCA followed surface-catalyzed secondary nucleation, whereas, that of PepB followed classical nucleation-dependent pathway. AFM images showed that while BCA formed short, thick and branched fibrils, PepB formed thin, long and unbranched fibrils. Structural information obtained by ATR-FTIR spectroscopy suggested parallel arrangement of intermolecular β-sheet in BCA amyloids in contrast to PepB amyloids which arranged into antiparallel β sheets. Amyloids formed by BCA were unable to seed the fibrillation of PepB and vice versa. Even the intermediates formed during lag phase revealed contrasting FTIR and far UV CD signature, hydrophobicity, morphology and cell cytotoxicity. Thus, we propose that sequences other than critical amyloidogenic stretches may significantly influence the initiation, polymerization and final fibrillar morphology of amyloid forming protein. The results have been discussed in light of primary sequence mediated amyloid polymorphism and its importance in the rational design of amyloid nanomaterials possessing desired physico-chemical properties.
Collapse
Affiliation(s)
- Dushyant Kumar Garg
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
18
|
Baler K, Martin OA, Carignano MA, Ameer GA, Vila JA, Szleifer I. Electrostatic unfolding and interactions of albumin driven by pH changes: a molecular dynamics study. J Phys Chem B 2014; 118:921-30. [PMID: 24393011 PMCID: PMC3983335 DOI: 10.1021/jp409936v] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/04/2014] [Indexed: 01/22/2023]
Abstract
A better understanding of protein aggregation is bound to translate into critical advances in several areas, including the treatment of misfolded protein disorders and the development of self-assembling biomaterials for novel commercial applications. Because of its ubiquity and clinical potential, albumin is one of the best-characterized models in protein aggregation research; but its properties in different conditions are not completely understood. Here, we carried out all-atom molecular dynamics simulations of albumin to understand how electrostatics can affect the conformation of a single albumin molecule just prior to self-assembly. We then analyzed the tertiary structure and solvent accessible surface area of albumin after electrostatically triggered partial denaturation. The data obtained from these single protein simulations allowed us to investigate the effect of electrostatic interactions between two proteins. The results of these simulations suggested that hydrophobic attractions and counterion binding may be strong enough to effectively overcome the electrostatic repulsions between the highly charged monomers. This work contributes to our general understanding of protein aggregation mechanisms, the importance of explicit consideration of free ions in protein solutions, provides critical new insights about the equilibrium conformation of albumin in its partially denatured state at low pH, and may spur significant progress in our efforts to develop biocompatible protein hydrogels driven by electrostatic partial denaturation.
Collapse
Affiliation(s)
- K. Baler
- Department of Biomedical Engineering, Chemistry
of Life Processes Institute, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - O. A. Martin
- Universidad
Nacional de San Luis, Instituto de Matemática
Aplicada San Luis, CONICET, Avenida
Italia 1556-s5700, San Luis-Argentina
| | - M. A. Carignano
- Department of Biomedical Engineering, Chemistry
of Life Processes Institute, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Qatar
Environment and Energy Research Institute, P.O. Box 5825, Doha, Qatar
| | - G. A. Ameer
- Department of Biomedical Engineering, Chemistry
of Life Processes Institute, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - J. A. Vila
- Universidad
Nacional de San Luis, Instituto de Matemática
Aplicada San Luis, CONICET, Avenida
Italia 1556-s5700, San Luis-Argentina
| | - I. Szleifer
- Department of Biomedical Engineering, Chemistry
of Life Processes Institute, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
19
|
Lee S. Post-translational modification of proteins in toxicological research: focus on lysine acylation. Toxicol Res 2013; 29:81-6. [PMID: 24278632 PMCID: PMC3834447 DOI: 10.5487/tr.2013.29.2.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/03/2013] [Accepted: 06/07/2013] [Indexed: 01/01/2023] Open
Abstract
Toxicoproteomics integrates the proteomic knowledge into toxicology by enabling protein quantification in biofluids and tissues, thus taking toxicological research to the next level. Post-translational modification (PTM) alters the three-dimensional (3D) structure of proteins by covalently binding small molecules to them and therefore represents a major protein function diversification mechanism. Because of the crucial roles PTM plays in biological systems, the identification of novel PTMs and study of the role of PTMs are gaining much attention in proteomics research. Of the 300 known PTMs, protein acylation, including lysine formylation, acetylation, propionylation, butyrylation, malonylation, succinylation, and crotonylation, regulates the crucial functions of many eukaryotic proteins involved in cellular metabolism, cell cycle, aging, growth, angiogenesis, and cancer. Here, I reviewed recent studies regarding novel types of lysine acylation, their biological functions, and their applicationsin toxicoproteomics research.
Collapse
Affiliation(s)
- Sangkyu Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
20
|
Azami-Movahed M, Shariatizi S, Sabbaghian M, Ghasemi A, Ebrahim-Habibi A, Nemat-Gorgani M. Heme binding site in apomyoglobin may be effectively targeted with small molecules to control aggregation. Int J Biochem Cell Biol 2013; 45:299-307. [DOI: 10.1016/j.biocel.2012.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 12/31/2022]
|
21
|
Liaw C, Tung CW, Ho SY. Prediction and analysis of antibody amyloidogenesis from sequences. PLoS One 2013; 8:e53235. [PMID: 23308169 PMCID: PMC3538782 DOI: 10.1371/journal.pone.0053235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 11/27/2012] [Indexed: 11/23/2022] Open
Abstract
Antibody amyloidogenesis is the aggregation of soluble proteins into amyloid fibrils that is one of major causes of the failures of humanized antibodies. The prediction and prevention of antibody amyloidogenesis are helpful for restoring and enhancing therapeutic effects. Due to a large number of possible germlines, the existing method is not practical to predict sequences of novel germlines, which establishes individual models for each known germline. This study proposes a first automatic and across-germline prediction method (named AbAmyloid) capable of predicting antibody amyloidogenesis from sequences. Since the amyloidogenesis is determined by a whole sequence of an antibody rather than germline-dependent properties such as mutated residues, this study assess three types of germline-independent sequence features (amino acid composition, dipeptide composition and physicochemical properties). AbAmyloid using a Random Forests classifier with dipeptide composition performs well on a data set of 12 germlines. The within- and across-germline prediction accuracies are 83.10% and 83.33% using Jackknife tests, respectively, and the novel-germline prediction accuracy using a leave-one-germline-out test is 72.22%. A thorough analysis of sequence features is conducted to identify informative properties for further providing insights to antibody amyloidogenesis. Some identified informative physicochemical properties are amphiphilicity, hydrophobicity, reverse turn, helical structure, isoelectric point, net charge, mutability, coil, turn, linker, nuclear protein, etc. Additionally, the numbers of ubiquitylation sites in amyloidogenic and non-amyloidogenic antibodies are found to be significantly different. It reveals that antibodies less likely to be ubiquitylated tend to be amyloidogenic. The method AbAmyloid capable of automatically predicting antibody amyloidogenesis of novel germlines is implemented as a publicly available web server at http://iclab.life.nctu.edu.tw/abamyloid.
Collapse
Affiliation(s)
- Chyn Liaw
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chun-Wei Tung
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|