1
|
Švara A, De Storme N, Carpentier S, Keulemans W, De Coninck B. Phenotyping, genetics, and "-omics" approaches to unravel and introgress enhanced resistance against apple scab ( Venturia inaequalis) in apple cultivars ( Malus × domestica). HORTICULTURE RESEARCH 2024; 11:uhae002. [PMID: 38371632 PMCID: PMC10873587 DOI: 10.1093/hr/uhae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024]
Abstract
Apple scab disease, caused by the fungus Venturia inaequalis, endangers commercial apple production globally. It is predominantly managed by frequent fungicide sprays that can harm the environment and promote the development of fungicide-resistant strains. Cultivation of scab-resistant cultivars harboring diverse qualitative Rvi resistance loci and quantitative trait loci associated with scab resistance could reduce the chemical footprint. A comprehensive understanding of the host-pathogen interaction is, however, needed to efficiently breed cultivars with enhanced resistance against a variety of pathogenic strains. Breeding efforts should not only encompass pyramiding of Rvi loci and their corresponding resistance alleles that directly or indirectly recognize pathogen effectors, but should also integrate genes that contribute to effective downstream defense mechanisms. This review provides an overview of the phenotypic and genetic aspects of apple scab resistance, and currently known corresponding defense mechanisms. Implementation of recent "-omics" approaches has provided insights into the complex network of physiological, molecular, and signaling processes that occur before and upon scab infection, thereby revealing the importance of both constitutive and induced defense mechanisms. Based on the current knowledge, we outline advances toward more efficient introgression of enhanced scab resistance into novel apple cultivars by conventional breeding or genetic modification techniques. However, additional studies integrating different "-omics" approaches combined with functional studies will be necessary to unravel effective defense mechanisms as well as key regulatory genes underpinning scab resistance in apple. This crucial information will set the stage for successful knowledge-based breeding for enhanced scab resistance.
Collapse
Affiliation(s)
- Anže Švara
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, KU Leuven Plant Institute, Willem de Croylaan 42, 3001 Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven 3001 Leuven, Belgium
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, KU Leuven Plant Institute, Willem de Croylaan 42, 3001 Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven 3001 Leuven, Belgium
| | - Sebastien Carpentier
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Genetic resources, Bioversity International, Willem de Croylaan 42, 3001 Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven 3001 Leuven, Belgium
| | - Wannes Keulemans
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, KU Leuven Plant Institute, Willem de Croylaan 42, 3001 Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven 3001 Leuven, Belgium
| | - Barbara De Coninck
- Laboratory of Plant Health and Protection, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, KU Leuven Plant Institute, Willem de Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Rocafort M, Bowen JK, Hassing B, Cox MP, McGreal B, de la Rosa S, Plummer KM, Bradshaw RE, Mesarich CH. The Venturia inaequalis effector repertoire is dominated by expanded families with predicted structural similarity, but unrelated sequence, to avirulence proteins from other plant-pathogenic fungi. BMC Biol 2022; 20:246. [PMID: 36329441 PMCID: PMC9632046 DOI: 10.1186/s12915-022-01442-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Scab, caused by the biotrophic fungus Venturia inaequalis, is the most economically important disease of apples worldwide. During infection, V. inaequalis occupies the subcuticular environment, where it secretes virulence factors, termed effectors, to promote host colonization. Consistent with other plant-pathogenic fungi, many of these effectors are expected to be non-enzymatic proteins, some of which can be recognized by corresponding host resistance proteins to activate plant defences, thus acting as avirulence determinants. To develop durable control strategies against scab, a better understanding of the roles that these effector proteins play in promoting subcuticular growth by V. inaequalis, as well as in activating, suppressing, or circumventing resistance protein-mediated defences in apple, is required. RESULTS We generated the first comprehensive RNA-seq transcriptome of V. inaequalis during colonization of apple. Analysis of this transcriptome revealed five temporal waves of gene expression that peaked during early, mid, or mid-late infection. While the number of genes encoding secreted, non-enzymatic proteinaceous effector candidates (ECs) varied in each wave, most belonged to waves that peaked in expression during mid-late infection. Spectral clustering based on sequence similarity determined that the majority of ECs belonged to expanded protein families. To gain insights into function, the tertiary structures of ECs were predicted using AlphaFold2. Strikingly, despite an absence of sequence similarity, many ECs were predicted to have structural similarity to avirulence proteins from other plant-pathogenic fungi, including members of the MAX, LARS, ToxA and FOLD effector families. In addition, several other ECs, including an EC family with sequence similarity to the AvrLm6 avirulence effector from Leptosphaeria maculans, were predicted to adopt a KP6-like fold. Thus, proteins with a KP6-like fold represent another structural family of effectors shared among plant-pathogenic fungi. CONCLUSIONS Our study reveals the transcriptomic profile underpinning subcuticular growth by V. inaequalis and provides an enriched list of ECs that can be investigated for roles in virulence and avirulence. Furthermore, our study supports the idea that numerous sequence-unrelated effectors across plant-pathogenic fungi share common structural folds. In doing so, our study gives weight to the hypothesis that many fungal effectors evolved from ancestral genes through duplication, followed by sequence diversification, to produce sequence-unrelated but structurally similar proteins.
Collapse
Affiliation(s)
- Mercedes Rocafort
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland, 1025, New Zealand
| | - Berit Hassing
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Murray P Cox
- Bioprotection Aotearoa, School of Natural Sciences, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Brogan McGreal
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland, 1025, New Zealand
| | - Silvia de la Rosa
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Kim M Plummer
- Department of Animal, Plant and Soil Sciences, La Trobe University, AgriBio, Centre for AgriBiosciences, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Rosie E Bradshaw
- Bioprotection Aotearoa, School of Natural Sciences, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Carl H Mesarich
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand.
| |
Collapse
|
3
|
CRISPR-Cas9 gene editing and rapid detection of gene-edited mutants using high-resolution melting in the apple scab fungus, Venturia inaequalis. Fungal Biol 2021; 126:35-46. [PMID: 34930557 DOI: 10.1016/j.funbio.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022]
Abstract
Apple scab, caused by the fungal pathogen Venturia inaequalis, is the most economically important disease of apple (Malus x domestica) worldwide. To develop durable control strategies against this disease, a better understanding of the genetic mechanisms underlying the growth, reproduction, virulence and pathogenicity of V. inaequalis is required. A major bottleneck for the genetic characterization of V. inaequalis is the inability to easily delete or disrupt genes of interest using homologous recombination. Indeed, no gene deletions or disruptions in V. inaequalis have yet been published. Using the melanin biosynthesis pathway gene trihydroxynaphthalene reductase (THN) as a target for inactivation, which has previously been shown to result in a light-brown colony phenotype when transcriptionally silenced using RNA interference, we show, for the first time, that the CRISPR-Cas9 gene editing system can be successfully applied to the apple scab fungus. More specifically, using a CRISPR-Cas9 single guide RNA (sgRNA) targeted to the THN gene, delivered by a single autonomously replicating Golden Gate-compatible plasmid, we were able to identify six of 36 stable transformants with a light-brown phenotype, indicating an ∼16.7% gene inactivation efficiency. Notably, of the six THN mutants, five had an independent mutation. As part of our pipeline, we also report a high-resolution melting (HRM) curve protocol for the rapid detection of CRISPR-Cas9 gene-edited mutants of V. inaequalis. This protocol identified a single base pair deletion mutation in a sample containing only 5% mutant genomic DNA, indicating high sensitivity for mutant screening. In establishing CRISPR-Cas9 as a tool for gene editing in V. inaequalis, we have provided a strong starting point for studies aiming to decipher gene function in this fungus. The associated HRM curve protocol will enable CRISPR-Cas9 transformants to be screened for gene inactivation in a high-throughput and low-cost manner, which will be particularly powerful in cases where the CRISPR-Cas9-mediated gene inactivation efficiency is low.
Collapse
|
4
|
Population Genome Sequencing of the Scab Fungal Species Venturia inaequalis, Venturia pirina, Venturia aucupariae and Venturia asperata. G3-GENES GENOMES GENETICS 2019; 9:2405-2414. [PMID: 31253647 PMCID: PMC6686934 DOI: 10.1534/g3.119.400047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Venturia genus comprises fungal species that are pathogens on Rosaceae host plants, including V. inaequalis and V. asperata on apple, V. aucupariae on sorbus and V. pirina on pear. Although the genetic structure of V. inaequalis populations has been investigated in detail, genomic features underlying these subdivisions remain poorly understood. Here, we report whole genome sequencing of 87 Venturia strains that represent each species and each population within V. inaequalis. We present a PacBio genome assembly for the V. inaequalis EU-B04 reference isolate. The size of selected genomes was determined by flow cytometry, and varied from 45 to 93 Mb. Genome assemblies of V. inaequalis and V. aucupariae contain a high content of transposable elements (TEs), most of which belong to the Gypsy or Copia LTR superfamilies and have been inactivated by Repeat-Induced Point mutations. The reference assembly of V. inaequalis presents a mosaic structure of GC-equilibrated regions that mainly contain predicted genes and AT-rich regions, mainly composed of TEs. Six pairs of strains were identified as clones. Single-Nucleotide Polymorphism (SNP) analysis between these clones revealed a high number of SNPs that are mostly located in AT-rich regions due to misalignments and allowed determining a false discovery rate. The availability of these genome sequences is expected to stimulate genetics and population genomics research of Venturia pathogens. Especially, it will help understanding the evolutionary history of Venturia species that are pathogenic on different hosts, a history that has probably been substantially influenced by TEs.
Collapse
|
5
|
Chang HX, Noel ZA, Sang H, Chilvers MI. Annotation resource of tandem repeat-containing secretory proteins in sixty fungi. Fungal Genet Biol 2018; 119:7-19. [PMID: 30026018 DOI: 10.1016/j.fgb.2018.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/06/2018] [Accepted: 07/15/2018] [Indexed: 11/17/2022]
Abstract
Fungal secretory proteins that interact with host plants are regarded as effectors. Because fungal effectors rarely contain conserved sequence features, identification and annotation of fungal effectors from predicted secretory proteins are difficult using outward comparison methods such as BLAST or hidden Markov model. In desire of more sequence features to prioritize research interests of fungal secretory proteins, this study developed a pipeline to identify tandem repeat (TR) domain within putative secretory proteins and tested a hypothesis that at least one type of TR domain in non-orthologous secretory proteins has emerged from convergent evolution for plant pathogenicity. There were 2804 types of TR domains and a total of 2925 TR-containing secretory proteins found from 60 fungi. There was no conserved type of TR domain shared only by plant pathogens, indicating functional divergence for different types of TR domain and TR-containing secretory proteins. The annotation resource of putative fungal TR-containing secretory proteins provides new sequence features that will be useful for the community interested in fungal effector biology.
Collapse
Affiliation(s)
- Hao-Xun Chang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824, MI, United States
| | - Zachary A Noel
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824, MI, United States
| | - Hyunkyu Sang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824, MI, United States
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824, MI, United States.
| |
Collapse
|
6
|
Ma LS, Pellegrin C, Kahmann R. Repeat-containing effectors of filamentous pathogens and symbionts. Curr Opin Microbiol 2018; 46:123-130. [PMID: 29929732 DOI: 10.1016/j.mib.2018.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 11/26/2022]
Abstract
Pathogenic and symbiotic filamentous microbes secrete effectors which suppress host immune responses and promote a successful colonization. Pathogen effectors are engaged in the arms race with their hosts and because of this they are subject to intense evolutionary pressure. Effectors particularly prone to rapid evolution display repeat-containing domains which can easily expand or contract and accumulate point mutations without altering their original function. In this review we address the diversity of function in such repeat-containing effectors, focus on new findings and point out avenues for future work.
Collapse
|
7
|
Deng CH, Plummer KM, Jones DAB, Mesarich CH, Shiller J, Taranto AP, Robinson AJ, Kastner P, Hall NE, Templeton MD, Bowen JK. Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range. BMC Genomics 2017; 18:339. [PMID: 28464870 PMCID: PMC5412055 DOI: 10.1186/s12864-017-3699-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fungal plant pathogens belonging to the genus Venturia cause damaging scab diseases of members of the Rosaceae. In terms of economic impact, the most important of these are V. inaequalis, which infects apple, and V. pirina, which is a pathogen of European pear. Given that Venturia fungi colonise the sub-cuticular space without penetrating plant cells, it is assumed that effectors that contribute to virulence and determination of host range will be secreted into this plant-pathogen interface. Thus the predicted secretomes of a range of isolates of Venturia with distinct host-ranges were interrogated to reveal putative proteins involved in virulence and pathogenicity. RESULTS Genomes of Venturia pirina (one European pear scab isolate) and Venturia inaequalis (three apple scab, and one loquat scab, isolates) were sequenced and the predicted secretomes of each isolate identified. RNA-Seq was conducted on the apple-specific V. inaequalis isolate Vi1 (in vitro and infected apple leaves) to highlight virulence and pathogenicity components of the secretome. Genes encoding over 600 small secreted proteins (candidate effectors) were identified, most of which are novel to Venturia, with expansion of putative effector families a feature of the genus. Numerous genes with similarity to Leptosphaeria maculans AvrLm6 and the Verticillium spp. Ave1 were identified. Candidates for avirulence effectors with cognate resistance genes involved in race-cultivar specificity were identified, as were putative proteins involved in host-species determination. Candidate effectors were found, on average, to be in regions of relatively low gene-density and in closer proximity to repeats (e.g. transposable elements), compared with core eukaryotic genes. CONCLUSIONS Comparative secretomics has revealed candidate effectors from Venturia fungal plant pathogens that attack pome fruit. Effectors that are putative determinants of host range were identified; both those that may be involved in race-cultivar and host-species specificity. Since many of the effector candidates are in close proximity to repetitive sequences this may point to a possible mechanism for the effector gene family expansion observed and a route to diversification via transposition and repeat-induced point mutation.
Collapse
Affiliation(s)
- Cecilia H. Deng
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
| | - Kim M. Plummer
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Plant Biosecurity Cooperative Research Centre, Bruce, ACT Australia
| | - Darcy A. B. Jones
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Present Address: The Centre for Crop and Disease Management, Curtin University, Bentley, Australia
| | - Carl H. Mesarich
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Present Address: Institute of Agriculture & Environment, Massey University, Palmerston North, New Zealand
| | - Jason Shiller
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Present Address: INRA-Angers, Beaucouzé, Cedex, France
| | - Adam P. Taranto
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, Australia
| | - Andrew J. Robinson
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative (VLSCI), Victoria, Australia
| | - Patrick Kastner
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
| | - Nathan E. Hall
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative (VLSCI), Victoria, Australia
| | - Matthew D. Templeton
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna K. Bowen
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
| |
Collapse
|
8
|
Mesarich CH, Bowen JK, Hamiaux C, Templeton MD. Repeat-containing protein effectors of plant-associated organisms. FRONTIERS IN PLANT SCIENCE 2015; 6:872. [PMID: 26557126 PMCID: PMC4617103 DOI: 10.3389/fpls.2015.00872] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/01/2015] [Indexed: 05/10/2023]
Abstract
Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.
Collapse
Affiliation(s)
- Carl H. Mesarich
- School of Biological Sciences, The University of AucklandAuckland, New Zealand
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
- *Correspondence: Carl H. Mesarich
| | - Joanna K. Bowen
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
| | - Cyril Hamiaux
- Human Responses, The New Zealand Institute for Plant & Food Research LimitedAuckland, New Zealand
| | - Matthew D. Templeton
- School of Biological Sciences, The University of AucklandAuckland, New Zealand
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
| |
Collapse
|
9
|
Kövér KE, Batta G. NMR investigation of disulfide containing peptides and proteins. AMINO ACIDS, PEPTIDES AND PROTEINS 2013:37-59. [DOI: 10.1039/9781849737081-00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Peptides and proteins with disulfide bonds are abundant in all kingdoms and play essential role in many biological events. Because small disulfide-rich peptides (proteins) are usually difficult to crystallize, nuclear magnetic resonance (NMR) is by far one of the most powerful techniques for the determination of their solution structure. Besides the “static” three-dimensional structure, NMR has unique opportunities to acquire additional information about molecular dynamics and folding at atomic resolution. Nowadays it is becoming increasingly evident, that “excited”, “disordered” or “fuzzy” protein states may exhibit biological function and disulfide proteins are also promising targets for such studies. In this short two-three years overview those disulfide peptides and proteins were cited from the literature that were studied by NMR. Though we may have missed some, their structural diversity and complexity as well as their wide repertoire of biological functions is impressive. We emphasised especially antimicrobial peptides and peptide based toxins in addition to some biologically important other structures. Besides the general NMR methods we reviewed some contemporary techniques suitable for disclosing the peculiar properties of disulfide bonds. Interesting dynamics and folding studies of disulfide proteins were also mentioned. It is important to disclose the essential structure, dynamics, function aspects of disulfide proteins since this aids the design of new compounds with improved activity and reduced toxicity. Undoubtedly, NMR has the potential to accelerate the development of new disulfide peptides/proteins with pharmacological activity.
Collapse
|
10
|
NMR spectroscopy on domain dynamics in biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:58-117. [DOI: 10.1016/j.pbiomolbio.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
|