1
|
Cheeseman JR, Frisch MJ, Keiderling TA. Increased accuracy of vibrational circular dichroism calculations for isotopically labeled helical peptides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124097. [PMID: 38457873 DOI: 10.1016/j.saa.2024.124097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Vibrational circular dichroism (VCD) spectra have been computed with qualitatively correct sign patterns for α-helical peptides using various methods, ranging from empirical models to ab initio quantum mechanical computations. However, some details, such as deuteration effects and isotope substitution shifts and sign patterns for the resultant amide I' band shape, have remained a predictive challenge. Fully optimized computations for a 25-residue Ala-rich peptide, including implicit solvent corrections and explicit side chains that experimentally stabilize these model helical peptides in water, have been carried out using density functional theory (DFT). These fully minimized structures show minor changes in the (ϕ,ψ) torsions at the termini and yield an extra negative band to the low energy side of the characteristic amide I' couplet VCD, in agreement with experiments. Additionally, these calculations give the right sign and relative intensity patterns, as compared to experimental results, for several 13C=O substituted variants. The differences from previously reported computations that used ideal helical structures and vacuum conditions imply that inclusion of distorted termini and solvent effects can have an impact on the final detailed spectral patterns. Inclusion of side chains in these calculations had very little effect on the computed amide I' IR and VCD. Tests of constrained geometries, varying dielectric, and different functionals indicate that each can affect the band shapes, particularly for the 12C=O components, but these aspects do not fully explain the difference from previous spectral simulations. Inclusion of long-range amide coupling, as obtained from DFT computation of the full structure, or transfer of parameters from a somewhat longer peptide model, rather than shorter model, seems to be more important for the final detailed band shape under isotopic substitution. However, these corrections can also induce other changes, suggesting that previously reported, limited calculations may have been qualitatively useful due to a balance of errors. This may also explain the success of simple empirical IR models.
Collapse
Affiliation(s)
- James R Cheeseman
- Gaussian, Inc., 340 Quinnipiac Street, Building 40, Wallingford, CT 06492, USA
| | - Michael J Frisch
- Gaussian, Inc., 340 Quinnipiac Street, Building 40, Wallingford, CT 06492, USA
| | - Timothy A Keiderling
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
2
|
Unnikrishnan AC, Balamurugan K, Shanmugam G. Structural Insights into the Amyloid Fibril Polymorphism Using an Isotope-Edited Vibrational Circular Dichroism Study at the Amino Acid Residue Level. J Phys Chem B 2023; 127:7674-7684. [PMID: 37667494 DOI: 10.1021/acs.jpcb.3c03437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Polymorphism is common in both in vitro and in vivo amyloid fibrils formed by the same peptide/protein. However, the differences in their self-assembled structures at the amino acid level remain poorly understood. In this study, we utilized isotope-edited vibrational circular dichroism (VCD) on a well-known amyloidogenic peptide fragment (N22FGAIL27) of human islet amyloid polypeptide (IAPf) to investigate the structural polymorphism. Two individual isotope-labeled IAPf peptides were used, with a 13C label on the carbonyl group of phenylalanine (IAPf-F) and glycine (IAPf-G). We compared the amyloid-like nanofibril of IAPf induced by solvent casting (fibril B) with our previous report on the same IAPf peptide fibril but with a different fibril morphology (fibril A) formed in an aqueous buffer solution. Fibril B consisted of entangled, laterally fused amyloid-like nanofibrils with a relatively shorter diameter (15-50 nm) and longer length (several microns), while fibril A displayed nanofibrils with a higher diameter (30-60 nm) and shorter length (500 nm-2 μm). The isotope-edited VCD analysis indicated that fibrils B consisted of anti-parallel β-sheet arrangements with glycine residues in the registry and phenylalanine residues out of the registry, which was significantly different from fibrils A, where a mixture of parallel β-sheet and turn structure with the registry at phenylalanine and glycine residues was observed. The VCD analysis, therefore, suggests that polymorphism in amyloid-like fibrils can be attributed to the difference in the packing/arrangement of the individual β-strands in the β-sheet and the difference in the amino acid registry. Our findings provide insights into the structural aspects of fibril polymorphism related to various amyloid diseases and may aid in designing amyloid fibril inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Anagha C Unnikrishnan
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)─Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kanagasabai Balamurugan
- Centre for High Computing, Council of Scientific and Industrial Research (CSIR)─Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)─Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Unnikrishnan AC, Shanmugam G. Isotope-edited vibrational circular dichroism study reveals a flexible N-terminal structure of islet amyloid peptide (NFGAIL) in amyloid fibril form: A site-specific local structural analysis. J Struct Biol 2022; 214:107910. [PMID: 36273786 DOI: 10.1016/j.jsb.2022.107910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
The short peptide fragment NFGAIL (IAPf) is a well-known amyloidogenic peptide (22-27), derived from human islet amyloid polypeptide(hIAPP), whose fibrillar structure is often used to better understand the wild-type hIAPP amyloid fibrils, associated with type II diabetes. Despite an extensive study, the fibrillar structure of IAPf at the amino acid residue level is still unclear. Herein, the vibrational circular dichroism(VCD) spectroscopic technique coupled with isotope labelling strategy has been used to study the site-specific local structure of IAPf amyloid fibrils. Two 13C labeled IAPfs were designed and used along with unlabelled IAPf to achieve this. The 13C labelled (on -C=O) glycine(IAPf-G) and phenylalanine (IAPf-F) residues were introduced into the IAPf sequence separately by replacing natural glycine (residue 24) and phenylalanine (residue 23), respectively. VCD spectral analysis on IAPf-G suggests that IAPf fibrils adopt parallel β-sheet conformation with glycine residues are part of β-sheet and in-register. Unlike IAPf-G, VCD analysis on IAPf-F reveals that phenylalanine residues exist in the turn/hairpin conformation rather than β-sheet region. Both VCD results thus suggest that IAPf amyloid fibril consists of a mixture of β-sheet as a major conformation involving GAIL and turn/hairpin as a minor conformation involving NF rather than an idealized β-sheet involving all the amino acids. While previous studies speculated that the full NFGAIL sequence could participate in the β-sheet formation, the present site-specific structural analysis of IAPf amyloid fibrils at residue level using isotope-edited VCD has gained significant attention. Such residue level information has important implications for understanding the role of NFGAIL sequence in the amyloid fibrillation of hIAPP.
Collapse
Affiliation(s)
- Anagha C Unnikrishnan
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India.
| |
Collapse
|
4
|
Keiderling TA. Structure of Condensed Phase Peptides: Insights from Vibrational Circular Dichroism and Raman Optical Activity Techniques. Chem Rev 2020; 120:3381-3419. [DOI: 10.1021/acs.chemrev.9b00636] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Timothy A. Keiderling
- Department of Chemistry, University of Illinois at Chicago 845 West Taylor Street m/c 111, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
5
|
Martial B, Lefèvre T, Buffeteau T, Auger M. Vibrational Circular Dichroism Reveals Supramolecular Chirality Inversion of α-Synuclein Peptide Assemblies upon Interactions with Anionic Membranes. ACS NANO 2019; 13:3232-3242. [PMID: 30811930 DOI: 10.1021/acsnano.8b08932] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Parkinson's disease is an incurable neurodegenerative disorder caused by the aggregation of α-synuclein (AS). This amyloid protein contains a 12-residue-long segment, AS71-82, that triggers AS pathological aggregation. This peptide is then essential to better understand the polymorphism and the dynamics of formation of AS fibrillar structures. In this work, vibrational circular dichroism showed that AS71-82 is random coil in solution and forms parallel β-sheet fibrillar aggregates in the presence of anionic vesicles. Vibrational circular dichroism, with transmission electronic microscopy, revealed that the fibrillar structures exhibit a nanoscale tape-like morphology with a preferential supramolecular helicity. Whereas the structure handedness of some other amyloid peptides has been shown to be driven by pH, that of AS71-82 is controlled by peptide concentration and peptide-to-lipid (P:L) molar ratio. At low concentrations and low P:L molar ratios, AS71-82 assemblies have a left-twisted handedness, whereas at high concentrations and high P:L ratios, a right-twisted handedness is adopted. Left-twisted assemblies interconvert into right-twisted ones with time, suggesting a maturation of the amyloid structures. As fibril species with two chiralities have also been reported previously in Parkinson's disease Lewy bodies and fibrils, the present results seem relevant to better understand AS amyloid assembly and fibrillization in vivo. From a diagnosis or therapeutic point of view, it becomes essential that future fibril probes, inhibitors, or breakers target pathological assemblies with specific chirality and morphology, in particular, because they may change with the stage of the disease.
Collapse
Affiliation(s)
- Benjamin Martial
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF) , Université Laval , Québec , QC G1 V 0A6 , Canada
| | - Thierry Lefèvre
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF) , Université Laval , Québec , QC G1 V 0A6 , Canada
| | - Thierry Buffeteau
- Université Bordeaux , Institut des Sciences Moléculaires, CNRS UMR 5255, 33405 Talence , France
| | - Michèle Auger
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF) , Université Laval , Québec , QC G1 V 0A6 , Canada
| |
Collapse
|
6
|
Iyer A, Roeters SJ, Kogan V, Woutersen S, Claessens MMAE, Subramaniam V. C-Terminal Truncated α-Synuclein Fibrils Contain Strongly Twisted β-Sheets. J Am Chem Soc 2017; 139:15392-15400. [PMID: 28968082 PMCID: PMC5668890 DOI: 10.1021/jacs.7b07403] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
C-terminal truncations
of monomeric wild-type alpha-synuclein (henceforth
WT-αS) have been shown to enhance the formation of amyloid aggregates
both in vivo and in vitro and have
been associated with accelerated progression of Parkinson’s
disease (PD). The correlation with PD may not solely be a result of
faster aggregation, but also of which fibril polymorphs are preferentially
formed when the C-terminal residues are deleted. Considering that
different polymorphs are known to result in distinct pathologies,
it is important to understand how these truncations affect the organization
of αS into fibrils. Here we present high-resolution microscopy
and advanced vibrational spectroscopy studies that indicate that the
C-terminal truncation variant of αS, lacking residues 109–140
(henceforth referred to as 1–108-αS), forms amyloid fibrils
with a distinct structure and morphology. The 1–108-αS
fibrils have a unique negative circular dichroism band at ∼230
nm, a feature that differs from the canonical ∼218 nm band
usually observed for amyloid fibrils. We show evidence that 1–108-αS
fibrils consist of strongly twisted β-sheets with an increased
inter-β-sheet distance and a higher solvent exposure than WT-αS
fibrils, which is also indicated by the pronounced differences in
the 1D-IR (FTIR), 2D-IR, and vibrational circular dichroism spectra.
As a result of their distinct β-sheet structure, 1–108-αS
fibrils resist incorporation of WT-αS monomers.
Collapse
Affiliation(s)
- Aditya Iyer
- Nanoscale Biophysics Group, AMOLF , Science Park 104, Amsterdam 1098 XG, The Netherlands.,Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente , Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - Steven J Roeters
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Vladimir Kogan
- Dannalab BV , Wethouder Beversstraat 185, Enschede 7543 BK, The Netherlands
| | - Sander Woutersen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Mireille M A E Claessens
- Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente , Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - Vinod Subramaniam
- Nanoscale Biophysics Group, AMOLF , Science Park 104, Amsterdam 1098 XG, The Netherlands.,Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente , Drienerlolaan 5, Enschede 7522 NB, The Netherlands.,Vrije Universiteit Amsterdam , De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
7
|
Gao Y, Zou Y, Ma Y, Wang D, Sun Y, Ma G. Infrared Probe Technique Reveals a Millipede-like Structure for Aβ(8-28) Amyloid Fibril. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:937-946. [PMID: 26796491 DOI: 10.1021/acs.langmuir.5b03616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Amyloid fibrils are unique fibrous polypeptide aggregates. They have been associated with more than 20 serious human diseases including Alzheimer's disease and Parkinson's disease. Besides their pathological significance, amyloid fibrils are also gaining increasing attention as emerging nanomaterials with novel functions. Structural characterization of amyloid fibril is no doubt fundamentally important for the development of therapeutics for amyloid-related diseases and for the rational design of amyloid-based materials. In this study, we explored to use side-chain-based infrared (IR) probe to gain detailed structural insights into the amyloid fibril by a 21-residue model amyloidogenic peptide, Aβ(8-28). We first proposed an approach to incorporate thiocyanate (SCN) IR probe in a site-specific manner into amyloidogenic peptide using 1-cyano-4-dimethylaminopyridinium tetrafluoroborate as cyanylating agent. Using this approach, we obtained three Aβ(8-28) variants, labeled with SCN probe at three different positions. We then showed with thioflavin T fluorescence assay, Congo red assay, and atomic force microscopy that the three labeled Aβ(8-28) peptides can quickly form amyloid fibrils under high concentration and high salt conditions. Finally, we performed a detailed IR spectral analysis of the Aβ(8-28) fibril in both amide I and probe regions and proposed a millipede-like structure for the Aβ(8-28) fibril.
Collapse
Affiliation(s)
- Yachao Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Ye Zou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Yan Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Dan Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Ying Sun
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Gang Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| |
Collapse
|
8
|
Marty R, Frauenrath H, Helbing J. Aggregates from Perylene Bisimide Oligopeptides as a Test Case for Giant Vibrational Circular Dichroism. J Phys Chem B 2014; 118:11152-60. [DOI: 10.1021/jp506837c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Roman Marty
- Institute
of Materials, Ecole Polytechnique Federale de Lausanne (EPFL), EPFL - STI - IMX - LMOM, MXG 037, Station 12, 1015 Lausanne, Switzerland
| | - Holger Frauenrath
- Institute
of Materials, Ecole Polytechnique Federale de Lausanne (EPFL), EPFL - STI - IMX - LMOM, MXG 037, Station 12, 1015 Lausanne, Switzerland
| | - Jan Helbing
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
9
|
Zou Y, Hao W, Li H, Gao Y, Sun Y, Ma G. New insight into amyloid fibril formation of hen egg white lysozyme using a two-step temperature-dependent FTIR approach. J Phys Chem B 2014; 118:9834-43. [PMID: 25080318 DOI: 10.1021/jp504201k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hen egg white lysozyme (HEWL) is widely used in the mechanistic study of amyloid fibril formation. Yet, the fibrillation mechanism of HEWL is not well understood. In particular, in situ structural evidence for the on-pathway oligomeric intermediate has never been captured. Such evidence is crucial for confirming nucleated conformational conversion mechanism. Herein, we attempt to use a two-step temperature-dependent Fourier transform infrared (FTIR) approach to capture the in situ evidence for the on-pathway oligomeric intermediate and the oligomer-to-fibril transition during HEWL fibrillation. Key features of this approach include using lower temperature to generate the on-pathway oligomeric intermediate, using elevated temperature to eliminate the interference from the off-pathway oligomer and to facilitate the oligomer-to-fibril transition, and using FTIR difference spectroscopy and atomic force microscopy to tackle structure and morphology. Using such an approach, we reveal that the on-pathway oligomeric intermediate is in parallel β-sheet configuration featuring a frequency at 1622 cm(-1) and the oligomer-to-fibril transition is accompanied by a spectral transition from 1622 to 1618 cm(-1). We also discover the beneficial role of the off-pathway oligomer in the capturing of the transient on-pathway oligomeric intermediate by serving as a monomer-releasing reservoir. This approach should also be useful in other amyloidogenic systems.
Collapse
Affiliation(s)
- Ye Zou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | | | | | | | | | | |
Collapse
|
10
|
Li S, Potana S, Keith DJ, Wang C, Leblanc RM. Isotope-edited FTIR in H2O: determination of the conformation of specific residues in a model α-helix peptide by 13C labeled carbonyls. Chem Commun (Camb) 2014; 50:3931-3. [DOI: 10.1039/c4cc00991f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|