1
|
Matsumoto G, Mori H, Mori T, Sakaki C. Clinical effects of tranexamic acid on bleeding tendency due to fibrinolytic activation of AL amyloidosis. BMJ Case Rep 2023; 16:e254483. [PMID: 37751987 PMCID: PMC10533652 DOI: 10.1136/bcr-2022-254483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
We report a case where tranexamic acid, which is an antifibrinolytic agent, was used to effectively treat bleeding tendency in a patient with immunoglobulin light chain (AL) amyloidosis. A male patient in his 80s without a history of bleeding disorders was admitted to our hospital for the examination of bleeding tendency and was diagnosed with a bleeding disorder due to AL amyloidosis. Blood tests revealed elevated plasmin-α2-plasmin inhibitor complex levels, suggesting fibrinolytic activation. Managing the bleeding was difficult; however, we suspected fibrinolytic activation associated with AL amyloidosis and initiated treatment with oral tranexamic acid, which markedly improved the bleeding disorder and abnormalities of the fibrinolytic system. Therefore, in cases of bleeding due to fibrinolytic activation of AL amyloidosis, tranexamic acid administration can be an effective treatment.
Collapse
Affiliation(s)
- Gaku Matsumoto
- Department of General Internal Medicine, National Hospital Organisation Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Hideki Mori
- Department of General Internal Medicine, National Hospital Organisation Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Takahiro Mori
- Department of General Internal Medicine, National Hospital Organisation Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Chika Sakaki
- Department of Hematology, National Hospital Organisation Nagasaki Medical Center, Omura, Nagasaki, Japan
| |
Collapse
|
2
|
Thalerová S, Pešková M, Kittová P, Gulati S, Víteček J, Kubala L, Mikulík R. Effect of Apixaban Pretreatment on Alteplase-Induced Thrombolysis: An In Vitro Study. Front Pharmacol 2021; 12:740930. [PMID: 34603054 PMCID: PMC8479181 DOI: 10.3389/fphar.2021.740930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022] Open
Abstract
Benefit of thrombolytic therapy in patients with acute stroke, who are on anticoagulant treatment, is not well addressed. The aim of this study was to investigate whether apixaban can modify the thrombolytic efficacy of alteplase in vitro. Static and flow models and two variants of red blood cell (RBC) dominant clots, with and without apixaban, were used. Clots were prepared from the blood of healthy human donors and subsequently exposed to alteplase treatment. Apixaban and alteplase were used in clinically relevant concentrations. Clot lysis in the static model was determined both by clot weight and spectrophotometric determination of RBC release. Clot lysis in the flow model was determined by measuring recanalization time, clot length and spectrophotometric determination of RBC release. In the static model, clots without apixaban; compared to those with apixaban had alteplase-induced mass loss 54 ± 8% vs. 53 ± 8%, p = 1.00; RBC release 0.14 ± 0.04 vs. 0.12 ± 0.04, p = 0.14, respectively. Very similar results were obtained if plasma was used instead of physiological buffered saline as the incubation medium. In the flow model, clot lysis without apixaban; compared to those with apixaban was as follows: recanalization time 107 ± 46 min vs. 127 ± 31 min, p = 1.00; recanalization frequency 90 ± 22% vs. 90 ± 22%, p = 1.00; clot volume reduction 32 ± 15% vs. 34 ± 10%, p = 1.00; RBC release 0.029 ± 0.007 vs. 0.022 ± 0.007, p = 0.16, respectively. Apixaban had no positive effect on alteplase-induced thrombolysis in both the in vitro static and flow models. Our data support current clinical practice, such that thrombolysis is contraindicated in stroke treatment for patients who have been treated with anticoagulants.
Collapse
Affiliation(s)
- Sandra Thalerová
- Neurology Department, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia.,Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Michaela Pešková
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Patrícia Kittová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Sumeet Gulati
- Neurology Department, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Jan Víteček
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia.,Center of Biomolecular and Cell Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia.,Center of Biomolecular and Cell Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Robert Mikulík
- Neurology Department, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
3
|
Arahata M, Takamatsu H, Morishita E, Kadohira Y, Yamada S, Ichinose A, Asakura H. Coagulation and fibrinolytic features in AL amyloidosis with abnormal bleeding and usefulness of tranexamic acid. Int J Hematol 2020; 111:550-558. [PMID: 31897889 DOI: 10.1007/s12185-019-02811-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 11/30/2022]
Abstract
Abnormal bleeding is sometimes observed in patients with immunoglobulin light chain (AL) amyloidosis. Although several theories have been proposed regarding the pathological causes of the bleeding tendency in AL amyloidosis, many lacked sufficient evidence and full consensus. We conducted a retrospective survey at a single institution to assess bleeding manifestations, methods for evaluating hematological abnormalities, and treatments for bleeding in patients with systemic AL amyloidosis over the past 13 years. The participants were 10 men and 14 women, aged 39-84 years (mean 65 years). The prevalence of bleeding was 29%. Prolonged prothrombin time (PT), elevated plasmin-α2-antiplasmin complex, and factor X deficiency were distinctive to the bleeding group. Two case studies showed that tranexamic acid was effective for treating this hematological condition. However, two patients with normal PT and activated partial thromboplastin time (APTT) also had a bleeding manifestation. The rates of administration of coagulation and fibrinolytic tests were relatively low in the non-bleeding group. Therefore, a close investigation concerning coagulation and fibrinolysis should be performed in every patient with AL amyloidosis regardless of the PT/APTT values. A more careful, comprehensive, and large-scale study is required to reinforce these findings.
Collapse
Affiliation(s)
- Masahisa Arahata
- Department of Hematology, Kanazawa University Hospital, 13-1 Takaramachi Kanazawa, Ishikawa, 920-8641, Japan.
| | - Hiroyuki Takamatsu
- Department of Hematology/Respiratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Eriko Morishita
- Department of Clinical Laboratory Science, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasuko Kadohira
- Department of Hematology, Kanazawa University Hospital, 13-1 Takaramachi Kanazawa, Ishikawa, 920-8641, Japan
| | - Shinya Yamada
- Department of Hematology, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Akitada Ichinose
- Department of Molecular Patho-Biochemistry and Patho-Biology, Yamagata University School, Yamagata, Japan
| | - Hidesaku Asakura
- Department of Hematology, Kanazawa University Hospital, 13-1 Takaramachi Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
4
|
Carter RLR, Talbot K, Hur WS, Meixner SC, Van Der Gugten JG, Holmes DT, Côté HCF, Kastrup CJ, Smith TW, Lee AYY, Pryzdial ELG. Rivaroxaban and apixaban induce clotting factor Xa fibrinolytic activity. J Thromb Haemost 2018; 16:2276-2288. [PMID: 30176116 DOI: 10.1111/jth.14281] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Indexed: 12/26/2022]
Abstract
Essentials Activated clotting factor X (FXa) acquires fibrinolytic cofactor function after cleavage by plasmin. FXa-mediated plasma fibrinolysis is enabled by active site modification blocking a second cleavage. FXa-directed oral anticoagulants (DOACs) alter FXa cleavage by plasmin. DOACs enhance FX-dependent fibrinolysis and plasmin generation by tissue plasminogen activator. BACKGROUND When bound to an anionic phospholipid-containing membrane, activated clotting factor X (FXa) is sequentially cleaved by plasmin from the intact form, FXaα, to FXaβ and then to Xa33/13. Tissue-type plasminogen activator (t-PA) produces plasmin and is the initiator of fibrinolysis. Both FXaβ and Xa33/13 enhance t-PA-mediated plasminogen activation. Although stable in experiments using purified proteins, Xa33/13 rapidly loses t-PA cofactor function in plasma. Bypassing this inhibition, covalent modification of the FXaα active site prevents Xa33/13 formation by plasmin, and the persistent FXaβ enhances plasma fibrinolysis. As the direct oral anticoagulants (DOACs) rivaroxaban and apixaban bind to the FXa active site, we hypothesized that they similarly modulate FXa fibrinolytic function. METHODS DOAC effects on fibrinolysis and the t-PA cofactor function of FXa were studied in patient plasma, normal pooled plasma and purified protein experiments by the use of light scattering, chromogenic assays, and immunoblots. RESULTS The plasma of patients taking rivaroxaban showed enhanced fibrinolysis correlating with FXaβ. In normal pooled plasma, the addition of rivaroxaban or apixaban also shortened fibrinolysis times. This was related to the cleavage product, FXaβ, which increased plasmin production by t-PA. It was confirmed that these results were not caused by DOACs affecting activated FXIII-mediated fibrin crosslinking, clot ultrastructure and thrombin-activatable fibrinolysis inhibitor activation in plasma. CONCLUSION The current study suggests a previously unknown effect of DOACs on FXa in addition to their well-documented anticoagulant role. By enabling the t-PA cofactor function of FXaβ in plasma, DOACs also enhance fibrinolysis. This effect may broaden their therapeutic indications.
Collapse
Affiliation(s)
- R L R Carter
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - K Talbot
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - W S Hur
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - S C Meixner
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - J G Van Der Gugten
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, St Paul's Hospital, Vancouver, British Columbia
| | - D T Holmes
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, St Paul's Hospital, Vancouver, British Columbia
| | - H C F Côté
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - C J Kastrup
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - T W Smith
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Y Y Lee
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - E L G Pryzdial
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Pryzdial ELG, Lee FMH, Lin BH, Carter RLR, Tegegn TZ, Belletrutti MJ. Blood coagulation dissected. Transfus Apher Sci 2018; 57:449-457. [PMID: 30049564 DOI: 10.1016/j.transci.2018.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hemostasis is the physiological control of bleeding and is initiated by subendothelial exposure. Platelets form the primary vascular seal in three stages (localization, stimulation and aggregation), which are triggered by specific interactions between platelet surface receptors and constituents of the subendothelial matrix. As a secondary hemostatic plug, fibrin clot formation is initiated and feedback-amplified to advance the seal and stabilize platelet aggregates comprising the primary plug. Once blood leakage has been halted, the fibrinolytic pathway is initiated to dissolve the clot and restore normal blood flow. Constitutive and induced anticoagulant and antifibrinolytic pathways create a physiological balance between too much and too little clot production. Hemostatic imbalance is a major burden to global healthcare, resulting in thrombosis or hemorrhage.
Collapse
Affiliation(s)
- Edward L G Pryzdial
- Centre for Innovation, Canadian Blood Services, Ottawa, ON, Canada; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Frank M H Lee
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Bryan H Lin
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rolinda L R Carter
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tseday Z Tegegn
- Centre for Innovation, Canadian Blood Services, Ottawa, ON, Canada; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mark J Belletrutti
- Pediatric Hematology, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Pryzdial ELG, Meixner SC, Talbot K, Eltringham-Smith LJ, Baylis JR, Lee FMH, Kastrup CJ, Sheffield WP. Thrombolysis by chemically modified coagulation factor Xa. J Thromb Haemost 2016; 14:1844-54. [PMID: 27359348 PMCID: PMC5576980 DOI: 10.1111/jth.13402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/15/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED Essentials Factor Xa (FXa) acquires cleavage-mediated tissue plasminogen activator (tPA) cofactor activity. Recombinant (r) tPA is the predominant thrombolytic drug, but it may cause systemic side effects. Chemically modified, non-enzymatic FXa was produced (Xai-K), which rapidly lysed thrombi in mice. Unlike rtPA, Xai-K had no systemic fibrinolysis activation markers, indicating improved safety. SUMMARY Background Enzymatic thrombolysis carries the risk of hemorrhage and re-occlusion must be evaded by co-administration with an anticoagulant. Toward further improving these shortcomings, we report a novel dual-functioning molecule, Xai-K, which is both a non-enzymatic thrombolytic agent and an anticoagulant. Xai-K is based on clotting factor Xa, whose sequential plasmin-mediated fragments, FXaβ and Xa33/13, accelerate the principal thrombolytic agent, tissue plasminogen activator (tPA), but only when localized to anionic phospholipid. Methods The effect of Xai-K on fibrinolysis was measured in vitro by turbidity, thromboelastography and chromogenic assays, and measured in a murine model of occlusive carotid thrombosis by Doppler ultrasound. The anticoagulant properties of Xai-K were evaluated by normal plasma clotting assays, and in murine liver laceration and tail amputation hemostatic models. Results Xa33/13, which participates in fibrinolysis of purified fibrin, was rapidly inhibited in plasma. Cleavage was blocked at FXaβ by modifying residues at the active site. The resultant Xai-K (1 nm) enhanced plasma clot dissolution by ~7-fold in vitro and was dependent on tPA. Xai-K alone (2.0 μg g(-1) body weight) achieved therapeutic patency in mice. The minimum primary dose of the tPA variant, Tenecteplase (TNK; 17 μg g(-1) ), could be reduced by > 30-fold to restore blood flow with adjunctive Xai-K (0.5 μg g(-1) ). TNK-induced systemic markers of fibrinolysis were not detected with Xai-K (2.0 μg g(-1) ). Xai-K had anticoagulant activity that was somewhat attenuated compared with a previously reported analogue. Conclusion These results suggest that Xai-K may ameliorate the safety profile of therapeutic thrombolysis, either as a primary or tPA/TNK-adjunctive agent.
Collapse
Affiliation(s)
- E L G Pryzdial
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- Centre for Innovation, Canadian Blood Services, Ottawa, ON, Canada.
| | - S C Meixner
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Innovation, Canadian Blood Services, Ottawa, ON, Canada
| | - K Talbot
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Innovation, Canadian Blood Services, Ottawa, ON, Canada
| | - L J Eltringham-Smith
- Centre for Innovation, Canadian Blood Services, Ottawa, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - J R Baylis
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - F M H Lee
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Innovation, Canadian Blood Services, Ottawa, ON, Canada
| | - C J Kastrup
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - W P Sheffield
- Centre for Innovation, Canadian Blood Services, Ottawa, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Luxembourg B, Pavlova A, Geisen C, Spannagl M, Bergmann F, Krause M, Alesci S, Seifried E, Lindhoff-Last E. Impact of the type of SERPINC1 mutation and subtype of antithrombin deficiency on the thrombotic phenotype in hereditary antithrombin deficiency. Thromb Haemost 2013; 111:249-57. [PMID: 24196373 DOI: 10.1160/th13-05-0402] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 09/27/2013] [Indexed: 11/05/2022]
Abstract
Mutations in the antithrombin (AT) gene can impair the capacity of AT to bind heparin (AT deficiency type IIHBS), its target proteases such as thrombin (type IIRS), or both (type IIPE). Type II AT deficiencies are almost exclusively caused by missense mutations, whereas type I AT deficiency can originate from missense or null mutations. In a retrospective cohort study, we investigated the impact of the type of mutation and type of AT deficiency on the manifestation of thromboembolic events in 377 patients with hereditary AT deficiencies (133 from our own cohort, 244 reported in the literature). Carriers of missense mutations showed a lower risk of venous thromboembolism (VTE) than those of null mutations (adjusted hazard ratio [HR] 0.39, 95% confidence interval [CI] 0.27-0.58, p<0.001), and the risk of VTE was significantly decreased among patients with type IIHBS AT deficiency compared to patients with other types of AT deficiency (HR 0.23, 95%CI 0.13-0.41, p<0.001). The risk of pulmonary embolism complicating deep-vein thrombosis was lower in all type II AT deficiencies compared to type I AT deficiency (relative risk 0.69, 95%CI 0.56-0.84). By contrast, the risk of arterial thromboembolism tended to be higher in carriers of missense mutations than in those with null mutations (HR 6.08-fold, 95%CI 0.74-49.81, p=0.093) and was 5.9-fold increased (95%CI 1.22-28.62, p=0.028) in type IIHBS versus other types of AT deficiency. Our data indicate that the type of inherited AT defect modulates not only the risk of thromboembolism but also the localisation and encourage further studies to unravel this phenomenon.
Collapse
Affiliation(s)
- Beate Luxembourg
- Beate Luxembourg, MD, Institute of Transfusion Medicine and Immunohaematology, Department of Molecular Haemostaseology, DRK Blood Donor Service Baden-Württemberg - Hessen, Sandhofstr. 1, 60528 Frankfurt a.M., Germany, Tel.: +49 69 6782 353, Fax: +49 69 6782 346, E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|