1
|
Martinez Grundman JE, Schultz TD, Schlessman JL, Johnson EA, Gillilan RE, Lecomte JTJ. Extremophilic hemoglobins: The structure of Shewanella benthica truncated hemoglobin N. J Biol Chem 2025:108223. [PMID: 39864624 DOI: 10.1016/j.jbc.2025.108223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
Truncated hemoglobins (TrHbs) have an ancient origin and are widely distributed in microorganisms where they often serve roles other than dioxygen transport and storage. In extremophiles, these small heme proteins must have features that secure function under challenging conditions: at minimum, they must be folded, retain the heme group, allow substrates to access the heme cavity, and maintain their quaternary structure if present and essential. The genome of the obligate psychropiezophile Shewanella benthica strain KT99 harbors a gene for a TrHb belonging to a little-studied clade of globins (subgroup 2 of group N). In the present work, we characterized the structure of this protein (SbHbN) with electronic absorption spectroscopy and X-ray crystallography, and inspected its structural integrity under hydrostatic pressure with NMR spectroscopy and small-angle X-ray scattering. We found that SbHbN self-associates weakly in solution and contains an extensive network of hydrophobic tunnels connecting the active site to the surface. Amino acid replacements at the dimeric interface formed by helices G and H in the crystal confirmed this region to be the site of intermolecular interactions. High hydrostatic pressure dissociated the assemblies while the porous subunits resisted unfolding and heme loss. Preservation of structural integrity under pressure is also observed in non-piezophilic TrHbs, which suggests that this ancient property is derived from functional requirements. Added to the inability of SbHbN to combine reversibly with dioxygen and a propensity to form heme d, the study broadens our perception of the TrHb lineage and the resistance of globins to extreme environmental conditions.
Collapse
Affiliation(s)
| | - Thomas D Schultz
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Jamie L Schlessman
- Chemistry Department, U.S. Naval Academy, Annapolis, Maryland, 21402, USA
| | - Eric A Johnson
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Richard E Gillilan
- Center for High Energy X-ray Sciences, CHEXS, Ithaca, New York, 14853, USA
| | - Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, 21218, USA.
| |
Collapse
|
2
|
Skvarnavičius G, Toleikis Z, Michailovienė V, Roumestand C, Matulis D, Petrauskas V. Protein-Ligand Binding Volume Determined from a Single 2D NMR Spectrum with Increasing Pressure. J Phys Chem B 2021; 125:5823-5831. [PMID: 34032445 PMCID: PMC8279561 DOI: 10.1021/acs.jpcb.1c02917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Proteins
undergo changes in their partial volumes in numerous biological
processes such as enzymatic catalysis, unfolding–refolding,
and ligand binding. The change in the protein volume upon ligand binding—a
parameter termed the protein–ligand binding volume—can
be extensively studied by high-pressure NMR spectroscopy. In this
study, we developed a method to determine the protein–ligand
binding volume from a single two-dimensional (2D) 1H–15N heteronuclear single quantum coherence (HSQC) spectrum
at different pressures, if the exchange between ligand-free and ligand-bound
states of a protein is slow in the NMR time-scale. This approach required
a significantly lower amount of protein and NMR time to determine
the protein–ligand binding volume of two carbonic anhydrase
isozymes upon binding their ligands. The proposed method can be used
in other protein–ligand systems and expand the knowledge about
protein volume changes upon small-molecule binding.
Collapse
Affiliation(s)
- Gediminas Skvarnavičius
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| | - Zigmantas Toleikis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania.,Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia
| | - Vilma Michailovienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| | - Christian Roumestand
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université s de Montpellier, 34000 Montpellier, France
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| |
Collapse
|
3
|
Nye DB, Johnson EA, Mai MH, Lecomte JTJ. Replacement of the heme axial lysine as a test of conformational adaptability in the truncated hemoglobin THB1. J Inorg Biochem 2019; 201:110824. [PMID: 31514090 DOI: 10.1016/j.jinorgbio.2019.110824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
Amino acid replacement is a useful strategy to assess the roles of axial heme ligands in the function of native heme proteins. THB1, the protein product of the Chlamydomonas reinhardtii THB1 gene, is a group 1 truncated hemoglobin that uses a lysine residue in the E helix (Lys53, at position E10 by reference to myoglobin) as an iron ligand at neutral pH. Phylogenetic evidence shows that many homologous proteins have a histidine, methionine or arginine at the same position. In THB1, these amino acids would each be expected to convey distinct reactive properties if replacing the native lysine as an axial ligand. To explore the ability of the group 1 truncated Hb fold to support alternative ligation schemes and distal pocket conformations, the properties of the THB1 variants K53A as a control, K53H, K53M, and K53R were investigated by electronic absorption, EPR, and NMR spectroscopies. We found that His53 is capable of heme ligation in both the Fe(III) and Fe(II) states, that Met53 can coordinate only in the Fe(II) state, and that Arg53 stabilizes a hydroxide ligand in the Fe(III) state. The data illustrate that the group 1 truncated Hb fold can tolerate diverse rearrangement of the heme environment and has a strong tendency to use two protein side chains as iron ligands despite accompanying structural perturbations. Access to various redox pairs and different responses to pH make this protein an excellent test case for energetic and dynamic studies of heme ligation.
Collapse
Affiliation(s)
- Dillon B Nye
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Eric A Johnson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Melissa H Mai
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
4
|
Nye DB, Lecomte JTJ. Replacement of the Distal Histidine Reveals a Noncanonical Heme Binding Site in a 2-on-2 Hemoglobin. Biochemistry 2018; 57:5785-5796. [PMID: 30213188 PMCID: PMC6217817 DOI: 10.1021/acs.biochem.8b00752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme ligation in hemoglobin is typically assumed by the "proximal" histidine. Hydrophobic contacts, ionic interactions, and the ligation bond secure the heme between two α-helices denoted E and F. Across the hemoglobin superfamily, several proteins also use a "distal" histidine, making the native state a bis-histidine complex. The group 1 truncated hemoglobin from Synechocystis sp. PCC 6803, GlbN, is one such bis-histidine protein. Ferric GlbN, in which the distal histidine (His46 or E10) has been replaced with a leucine, though expected to bind a water molecule and yield a high-spin iron complex at neutral pH, has low-spin spectral properties. Here, we applied nuclear magnetic resonance and electronic absorption spectroscopic methods to GlbN modified with heme and amino acid replacements to identify the distal ligand in H46L GlbN. We found that His117, a residue located in the C-terminal portion of the protein and on the proximal side of the heme, is responsible for the formation of an alternative bis-histidine complex. Simultaneous coordination by His70 and His117 situates the heme in a binding site different from the canonical site. This new holoprotein form is achieved with only local conformational changes. Heme affinity in the alternative site is weaker than in the normal site, likely because of strained coordination and a reduced number of specific heme-protein interactions. The observation of an unconventional heme binding site has important implications for the interpretation of mutagenesis results and globin homology modeling.
Collapse
Affiliation(s)
- Dillon B. Nye
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Juliette T. J. Lecomte
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, United States
| |
Collapse
|
5
|
Preimesberger MR, Majumdar A, Lecomte JTJ. Dynamics of Lysine as a Heme Axial Ligand: NMR Analysis of the Chlamydomonas reinhardtii Hemoglobin THB1. Biochemistry 2017; 56:551-569. [DOI: 10.1021/acs.biochem.6b00926] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew R. Preimesberger
- T.
C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- Biomolecular
NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Juliette T. J. Lecomte
- T.
C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Toleikis Z, Sirotkin VA, Skvarnavičius G, Smirnovienė J, Roumestand C, Matulis D, Petrauskas V. Volume of Hsp90 Protein–Ligand Binding Determined by Fluorescent Pressure Shift Assay, Densitometry, and NMR. J Phys Chem B 2016; 120:9903-12. [DOI: 10.1021/acs.jpcb.6b06863] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zigmantas Toleikis
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Vladimir A. Sirotkin
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia
| | - Gediminas Skvarnavičius
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Joana Smirnovienė
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Christian Roumestand
- Centre
de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Universités de Montpellier, 34000 Montpellier, France
| | - Daumantas Matulis
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
7
|
Rice SL, Boucher LE, Schlessman JL, Preimesberger MR, Bosch J, Lecomte JTJ. Structure of Chlamydomonas reinhardtii THB1, a group 1 truncated hemoglobin with a rare histidine-lysine heme ligation. Acta Crystallogr F Struct Biol Commun 2015; 71:718-25. [PMID: 26057801 PMCID: PMC4461336 DOI: 10.1107/s2053230x15006949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/07/2015] [Indexed: 04/05/2023] Open
Abstract
THB1 is one of several group 1 truncated hemoglobins (TrHb1s) encoded in the genome of the unicellular green alga Chlamydomonas reinhardtii. THB1 expression is under the control of NIT2, the master regulator of nitrate assimilation, which also controls the expression of the only nitrate reductase in the cell, NIT1. In vitro and physiological evidence suggests that THB1 converts the nitric oxide generated by NIT1 into nitrate. To aid in the elucidation of the function and mechanism of THB1, the structure of the protein was solved in the ferric state. THB1 resembles other TrHb1s, but also exhibits distinct features associated with the coordination of the heme iron by a histidine (proximal) and a lysine (distal). The new structure illustrates the versatility of the TrHb1 fold, suggests factors that stabilize the axial ligation of a lysine, and highlights the difficulty of predicting the identity of the distal ligand, if any, in this group of proteins.
Collapse
Affiliation(s)
- Selena L. Rice
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Lauren E. Boucher
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Jamie L. Schlessman
- Chemistry Department, US Naval Academy, 572 Holloway Road, Annapolis, MD 21402, USA
| | - Matthew R. Preimesberger
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Juliette T. J. Lecomte
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
8
|
Rice SL, Preimesberger MR, Johnson EA, Lecomte JTJ. Introduction of a covalent histidine-heme linkage in a hemoglobin: a promising tool for heme protein engineering. J Inorg Biochem 2014; 141:198-207. [PMID: 25304367 DOI: 10.1016/j.jinorgbio.2014.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 11/28/2022]
Abstract
The hemoglobins of the cyanobacteria Synechococcus and Synechocystis (GlbNs) are capable of spontaneous and irreversible attachment of the b heme to the protein matrix. The reaction, which saturates the heme 2-vinyl by addition of a histidine residue, is reproduced in vitro by preparing the recombinant apoprotein, adding ferric heme, and reducing the iron to the ferrous state. Spontaneous covalent attachment of the heme is potentially useful for protein engineering purposes. Thus, to explore whether the histidine-heme linkage can serve in such applications, we attempted to introduce it in a test protein. We selected as our target the heme domain of Chlamydomonas eugametos LI637 (CtrHb), a eukaryotic globin that exhibits less than 50% sequence identity with the cyanobacterial GlbNs. We chose two positions, 75 in the FG corner and 111 in the H helix, to situate a histidine near a vinyl group. We characterized the proteins with gel electrophoresis, absorbance spectroscopy, and NMR analysis. Both T111H and L75H CtrHbs reacted upon reduction of the ferric starting material containing cyanide as the distal ligand to the iron. With L75H CtrHb, nearly complete (>90%) crosslinking was observed to the 4-vinyl as expected from the X-ray structure of wild-type CtrHb. Reaction of T111H CtrHb also occurred at the 4-vinyl, in a 60% yield indicating a preference for the flipped heme orientation in the starting material. The work suggests that the His-heme modification will be applicable to the design of proteins with a non-dissociable heme group.
Collapse
Affiliation(s)
- Selena L Rice
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Eric A Johnson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Juliette T J Lecomte
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
9
|
Johnson EA, Rice S, Preimesberger MR, Nye DB, Gilevicius L, Wenke BB, Brown JM, Witman GB, Lecomte JTJ. Characterization of THB1, a Chlamydomonas reinhardtii truncated hemoglobin: linkage to nitrogen metabolism and identification of lysine as the distal heme ligand. Biochemistry 2014; 53:4573-89. [PMID: 24964018 PMCID: PMC4108185 DOI: 10.1021/bi5005206] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/23/2014] [Indexed: 12/21/2022]
Abstract
The nuclear genome of the model organism Chlamydomonas reinhardtii contains genes for a dozen hemoglobins of the truncated lineage. Of those, THB1 is known to be expressed, but the product and its function have not yet been characterized. We present mutagenesis, optical, and nuclear magnetic resonance data for the recombinant protein and show that at pH near neutral in the absence of added ligand, THB1 coordinates the heme iron with the canonical proximal histidine and a distal lysine. In the cyanomet state, THB1 is structurally similar to other known truncated hemoglobins, particularly the heme domain of Chlamydomonas eugametos LI637, a light-induced chloroplastic hemoglobin. Recombinant THB1 is capable of binding nitric oxide (NO(•)) in either the ferric or ferrous state and has efficient NO(•) dioxygenase activity. By using different C. reinhardtii strains and growth conditions, we demonstrate that the expression of THB1 is under the control of the NIT2 regulatory gene and that the hemoglobin is linked to the nitrogen assimilation pathway.
Collapse
Affiliation(s)
- Eric A. Johnson
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Selena
L. Rice
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | | - Dillon B. Nye
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lukas Gilevicius
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Belinda B. Wenke
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jason M. Brown
- Department
of Cell and Developmental Biology, University
of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - George B. Witman
- Department
of Cell and Developmental Biology, University
of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Juliette T. J. Lecomte
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
10
|
Mapping protein conformational heterogeneity under pressure with site-directed spin labeling and double electron-electron resonance. Proc Natl Acad Sci U S A 2014; 111:E1201-10. [PMID: 24707053 DOI: 10.1073/pnas.1403179111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states (excited states), which often are too sparsely populated to allow spectroscopic investigation. Application of high hydrostatic pressure increases the population of excited states for study, but structural characterization is not trivial because of the multiplicity of states in the ensemble and rapid (microsecond to millisecond) exchange between them. Site-directed spin labeling in combination with double electron-electron resonance (DEER) provides long-range (20-80 Å) distance distributions with angstrom-level resolution and thus is ideally suited to resolve conformational heterogeneity in an excited state populated under high pressure. DEER currently is performed at cryogenic temperatures. Therefore, a method was developed for rapidly freezing spin-labeled proteins under pressure to kinetically trap the high-pressure conformational ensemble for subsequent DEER data collection at atmospheric pressure. The methodology was evaluated using seven doubly-labeled mutants of myoglobin designed to monitor selected interhelical distances. For holomyoglobin, the distance distributions are narrow and relatively insensitive to pressure. In apomyoglobin, on the other hand, the distributions reveal a striking conformational heterogeneity involving specific helices in the pressure range of 0-3 kbar, where a molten globule state is formed. The data directly reveal the amplitude of helical fluctuations, information unique to the DEER method that complements previous rate determinations. Comparison of the distance distributions for pressure- and pH-populated molten globules shows them to be remarkably similar despite a lower helical content in the latter.
Collapse
|
11
|
Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin. Proc Natl Acad Sci U S A 2013; 110:E4714-22. [PMID: 24248390 DOI: 10.1073/pnas.1320124110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Excited states of proteins may play important roles in function, yet are difficult to study spectroscopically because of their sparse population. High hydrostatic pressure increases the equilibrium population of excited states, enabling their characterization [Akasaka K (2003) Biochemistry 42:10875-85]. High-pressure site-directed spin-labeling EPR (SDSL-EPR) was developed recently to map the site-specific structure and dynamics of excited states populated by pressure. To monitor global secondary structure content by circular dichroism (CD) at high pressure, a modified optical cell using a custom MgF2 window with a reduced aperture is introduced. Here, a combination of SDSL-EPR and CD is used to map reversible structural transitions in holomyoglobin and apomyoglobin (apoMb) as a function of applied pressure up to 2 kbar. CD shows that the high-pressure excited state of apoMb at pH 6 has helical content identical to that of native apoMb, but reversible changes reflecting the appearance of a conformational ensemble are observed by SDSL-EPR, suggesting a helical topology that fluctuates slowly on the EPR time scale. Although the high-pressure state of apoMb at pH 6 has been referred to as a molten globule, the data presented here reveal significant differences from the well-characterized pH 4.1 molten globule of apoMb. Pressure-populated states of both holomyoglobin and apoMb at pH 4.1 have significantly less helical structure, and for the latter, that may correspond to a transient folding intermediate.
Collapse
|
12
|
Wenke BB, Lecomte JTJ, Héroux A, Schlessman JL. The 2/2 hemoglobin from the cyanobacterium Synechococcus
sp. PCC 7002 with covalently attached heme: Comparison of X-ray and NMR structures. Proteins 2013; 82:528-34. [DOI: 10.1002/prot.24409] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Belinda B. Wenke
- T.C. Jenkins Department of Biophysics; Johns Hopkins University; Baltimore Maryland 21218
| | - Juliette T. J. Lecomte
- T.C. Jenkins Department of Biophysics; Johns Hopkins University; Baltimore Maryland 21218
| | - Annie Héroux
- Photon Sciences Directorate; Brookhaven National Laboratory; Upton New York 11973
| | | |
Collapse
|