1
|
Wang T, Wang X, Luo S, Zhang P, Li N, Chen C, Li J, Shi H, Dong H, Huang RP. Constructions, Purifications and Applications of DNA-Antibody Conjugates: A Review. ACS OMEGA 2024; 9:47951-47963. [PMID: 39676968 PMCID: PMC11635685 DOI: 10.1021/acsomega.4c07714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024]
Abstract
A DNA-antibody conjugate is a synthetic molecule that combines the unique functions of both an antibody and DNA. With the increased accessibility of commercialized kits, the procedure for constructing conjugates is simplified and the requirement for chemistry background is reduced. As a result, the difficulty of preparing a DNA-antibody conjugate has been significantly lowered. Therefore, the application of DNA-antibody conjugates has attracted more interest in recent years. The most common application of DNA-antibody conjugates is based on the amplifiable property of DNA through PCR. This includes single-conjugate-based immuno-PCR, paired-conjugates-based proximity ligation assay, and proximity extension assay. These methods achieve highly sensitive or specific detection of target proteins. The conjugated single stranded DNA molecules can also specifically hybridize with another strand containing its complementary sequence. This property can be used to selectively bind fluorophore labeled DNA strands, which plays an important role in tissue imaging and spatial omics. All these factors make DNA-antibody conjugates have a broad range of applications in research, diagnosis, and potentially therapy.
Collapse
Affiliation(s)
- Tao Wang
- RayBiotech
Guangzhou Co., Ltd., 79 Ruihe Road, Huangpu District, Guangzhou, Guangdong 510535, China
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Xuelin Wang
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Shuhong Luo
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Peng Zhang
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Na Li
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Can Chen
- College
of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianwen Li
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Hao Shi
- School
of
Life Science and Food Engineering, Huaiyin
Institute of Technology, Huaian, Jiangsu 223003, China
| | - Hua Dong
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National
Engineering Research Center for Tissue Restoration and Reconstruction
(NERC-TRR), Guangzhou 510006, China
| | - Ruo-Pan Huang
- RayBiotech
Guangzhou Co., Ltd., 79 Ruihe Road, Huangpu District, Guangzhou, Guangdong 510535, China
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| |
Collapse
|
2
|
Fu L, Guldiken N, Remih K, Karl AS, Preisinger C, Strnad P. Serum/Plasma Proteome in Non-Malignant Liver Disease. Int J Mol Sci 2024; 25:2008. [PMID: 38396688 PMCID: PMC10889128 DOI: 10.3390/ijms25042008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The liver is the central metabolic organ and produces 85-90% of the proteins found in plasma. Accordingly, the plasma proteome is an attractive source of liver disease biomarkers that reflects the different cell types present in this organ, as well as the processes such as responses to acute and chronic injury or the formation of an extracellular matrix. In the first part, we summarize the biomarkers routinely used in clinical evaluations and their biological relevance in the different stages of non-malignant liver disease. Later, we describe the current proteomic approaches, including mass spectrometry and affinity-based techniques, that allow a more comprehensive assessment of the liver function but also require complex data processing. The many approaches of analysis and interpretation and their potential caveats are delineated. While these advances hold the promise to transform our understanding of liver diseases and support the development and validation of new liver-related drugs, an interdisciplinary collaboration is needed.
Collapse
Affiliation(s)
- Lei Fu
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Nurdan Guldiken
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Katharina Remih
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Anna Sophie Karl
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Pavel Strnad
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| |
Collapse
|
3
|
Park YS, Choi S, Jang HJ, Yoo TH. Assay methods based on proximity-enhanced reactions for detecting non-nucleic acid molecules. Front Bioeng Biotechnol 2023; 11:1188313. [PMID: 37456730 PMCID: PMC10343955 DOI: 10.3389/fbioe.2023.1188313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Accurate and reliable detection of biological molecules such as nucleic acids, proteins, and small molecules is essential for the diagnosis and treatment of diseases. While simple homogeneous assays have been developed and are widely used for detecting nucleic acids, non-nucleic acid molecules such as proteins and small molecules are usually analyzed using methods that require time-consuming procedures and highly trained personnel. Recently, methods using proximity-enhanced reactions (PERs) have been developed for detecting non-nucleic acids. These reactions can be conducted in a homogeneous liquid phase via a single-step procedure. Herein, we review three assays based on PERs for the detection of non-nucleic acid molecules: proximity ligation assay, proximity extension assay, and proximity proteolysis assay.
Collapse
Affiliation(s)
- Ye Seop Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sunjoo Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Hee Ju Jang
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
4
|
Omenn GS, Lane L, Overall CM, Pineau C, Packer NH, Cristea IM, Lindskog C, Weintraub ST, Orchard S, Roehrl MH, Nice E, Liu S, Bandeira N, Chen YJ, Guo T, Aebersold R, Moritz RL, Deutsch EW. The 2022 Report on the Human Proteome from the HUPO Human Proteome Project. J Proteome Res 2023; 22:1024-1042. [PMID: 36318223 PMCID: PMC10081950 DOI: 10.1021/acs.jproteome.2c00498] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The 2022 Metrics of the Human Proteome from the HUPO Human Proteome Project (HPP) show that protein expression has now been credibly detected (neXtProt PE1 level) for 18 407 (93.2%) of the 19 750 predicted proteins coded in the human genome, a net gain of 50 since 2021 from data sets generated around the world and reanalyzed by the HPP. Conversely, the number of neXtProt PE2, PE3, and PE4 missing proteins has been reduced by 78 from 1421 to 1343. This represents continuing experimental progress on the human proteome parts list across all the chromosomes, as well as significant reclassifications. Meanwhile, applying proteomics in a vast array of biological and clinical studies continues to yield significant findings and growing integration with other omics platforms. We present highlights from the Chromosome-Centric HPP, Biology and Disease-driven HPP, and HPP Resource Pillars, compare features of mass spectrometry and Olink and Somalogic platforms, note the emergence of translation products from ribosome profiling of small open reading frames, and discuss the launch of the initial HPP Grand Challenge Project, "A Function for Each Protein".
Collapse
Affiliation(s)
- Gilbert S. Omenn
- University of Michigan, Ann Arbor, Michigan 48109, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics and University of Geneva, 1015 Lausanne, Switzerland
| | | | - Charles Pineau
- French Institute of Health and Medical Research, 35042 RENNES Cedex, France
| | - Nicolle H. Packer
- Macquarie University, Sydney, NSW 2109, Australia
- Griffith University’s Institute for Glycomics, Sydney, NSW 2109, Australia
| | | | | | - Susan T. Weintraub
- University of Texas Health Science Center-San Antonio, San Antonio, Texas 78229-3900, United States
| | - Sandra Orchard
- EMBL-EBI, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Michael H.A. Roehrl
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065, United States
| | | | - Siqi Liu
- BGI Group, Shenzhen 518083, China
| | - Nuno Bandeira
- University of California, San Diego, La Jolla, California 92093, United States
| | - Yu-Ju Chen
- National Taiwan University, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Tiannan Guo
- Westlake University Guomics Laboratory of Big Proteomic Data, Hangzhou 310024, Zhejiang Province, China
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology in ETH Zurich, 8092 Zurich, Switzerland
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Eric W. Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| |
Collapse
|
5
|
Screening inflammatory protein biomarkers on premature infants with necrotizing enterocolitis. Inflamm Res 2023; 72:757-768. [PMID: 36806964 PMCID: PMC10129932 DOI: 10.1007/s00011-023-01702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 02/04/2023] [Indexed: 02/21/2023] Open
Abstract
OBJECTIVE This study aimed to explore potential inflammatory biomarkers for early prediction of necrotizing enterocolitis (NEC) in premature infants. METHODS Plasma samples were collected from premature infants with NEC (n = 30), sepsis (n = 29), and controls without infection (n = 29). The 92 inflammatory-related proteins were assessed via high-throughput OLINK proteomics platform. RESULTS There were 11 inflammatory proteins that significate differences (p < 0.05) among NEC, sepsis and control preterm infants, which include IL-8, TRAIL, IL-24, MMP-10, CCL20, CXCL1, OPG, TSLP, MCP-4, TNFSF14 and LIF. A combination of these 11 proteins could serve as differential diagnosis between NEC and control infants (AUC = 0.972), or between NEC and sepsis infants (AUC = 0.881). Furthermore, the combination of IL-8, OPG, MCP-4, IL-24, LIF and CCL20 could distinguish Stage II and III of NEC (AUC = 0.977). Further analysis showed the combination of IL-8, IL-24 and CCL20 have the best prediction value for NEC and control (AUC = 0.947), NEC and sepsis (AUC = 0.838) and different severity of NEC (AUC = 0.842). CONCLUSION Inflammatory proteins were different expressed in premature infants with NEC compared with controls or sepsis. Combining these proteins provide a higher diagnostic potential for preterm NEC infants.
Collapse
|
6
|
Wu L, Wang Y, Wang X, Liao J, Dong H, Cai X, Wang Y, Gu HF. Evaluation of Colocasia esculenta Schott in anti-cancerous properties with proximity extension assays. Food Nutr Res 2021; 65:7549. [PMID: 34908921 PMCID: PMC8634378 DOI: 10.29219/fnr.v65.7549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/05/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
Background Colocasia esculenta Schott (called as Xiangshayu in Chinese) is an excellent local cultivar of the genus polymorpha in Jiangsu Province, China. Objective In the present study, we have performed a comparative study before and after dietary consumption with Colocasia esculenta Schott to evaluate its anti-cancerous properties. Design Forty-two healthy volunteers were recruited, and dietary consumption with 200 g of tap water cooked Colocasia esculenta Schott daily was conducted for 1 month. Plasma samples from the subjects before and after dietary consumption with Colocasia esculenta Schott were analyzed with proximity extension assays for the alteration of 92 proteins in relation with cancers, while blood samples were examined for physiological parameters with an automatic biochemical analyzer. Bioinformatic analyses were conducted using MalaCards and GEPIA. Results After taking dietary consumption with Colocasia esculenta Schott, circulating CYR61, ANXA1, and VIM protein levels in the subjects was found to be most significantly downregulated, while for ITGB5, EPHA2, and CEACAM1, it was upregulated. Alternation of these proteins was predicted to be associated with the development of tumors such as pancreatic adenocarcinoma and breast and prostate cancers. Conclusion The present study provides evidence that Colocasia esculenta Schott, as a healthy food, has anti-cancerous properties. Further investigation of phytochemistry in Colocasia esculenta Schott has been taken into our consideration.
Collapse
Affiliation(s)
- Liang Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yuxuan Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiaoyan Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jun Liao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Dong
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiyunyi Cai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Yurong Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Harvest F Gu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Deutsch EW, Omenn GS, Sun Z, Maes M, Pernemalm M, Palaniappan KK, Letunica N, Vandenbrouck Y, Brun V, Tao SC, Yu X, Geyer PE, Ignjatovic V, Moritz RL, Schwenk JM. Advances and Utility of the Human Plasma Proteome. J Proteome Res 2021; 20:5241-5263. [PMID: 34672606 PMCID: PMC9469506 DOI: 10.1021/acs.jproteome.1c00657] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The study of proteins circulating in blood offers tremendous opportunities to diagnose, stratify, or possibly prevent diseases. With recent technological advances and the urgent need to understand the effects of COVID-19, the proteomic analysis of blood-derived serum and plasma has become even more important for studying human biology and pathophysiology. Here we provide views and perspectives about technological developments and possible clinical applications that use mass-spectrometry(MS)- or affinity-based methods. We discuss examples where plasma proteomics contributed valuable insights into SARS-CoV-2 infections, aging, and hemostasis and the opportunities offered by combining proteomics with genetic data. As a contribution to the Human Proteome Organization (HUPO) Human Plasma Proteome Project (HPPP), we present the Human Plasma PeptideAtlas build 2021-07 that comprises 4395 canonical and 1482 additional nonredundant human proteins detected in 240 MS-based experiments. In addition, we report the new Human Extracellular Vesicle PeptideAtlas 2021-06, which comprises five studies and 2757 canonical proteins detected in extracellular vesicles circulating in blood, of which 74% (2047) are in common with the plasma PeptideAtlas. Our overview summarizes the recent advances, impactful applications, and ongoing challenges for translating plasma proteomics into utility for precision medicine.
Collapse
Affiliation(s)
- Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Gilbert S Omenn
- Institute for Systems Biology, Seattle, Washington 98109, United States.,Departments of Computational Medicine & Bioinformatics, Internal Medicine, and Human Genetics and School of Public Health, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Michal Maes
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Maria Pernemalm
- Department of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| | | | - Natasha Letunica
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville 3052, Victoria, Australia
| | - Yves Vandenbrouck
- Université Grenoble Alpes, CEA, Inserm U1292, Grenoble 38000, France
| | - Virginie Brun
- Université Grenoble Alpes, CEA, Inserm U1292, Grenoble 38000, France
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, B207 SCSB Building, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Philipp E Geyer
- OmicEra Diagnostics GmbH, Behringstr. 6, 82152 Planegg, Germany
| | - Vera Ignjatovic
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville 3052, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, 50 Flemington Road, Parkville 3052, Victoria, Australia
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Jochen M Schwenk
- Affinity Proteomics, Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23, SE-171 65 Solna, Sweden
| |
Collapse
|
8
|
Mateoiu C, Vitiazeva V, Kristjansdottir B, Weijdegård B, Örnros J, Gallini R, Kamali-Moghaddam M, Sundfeldt K, Karlsson NG. Analysis of blood group antigens on MUC5AC in mucinous ovarian cancer tissues using in situ proximity ligation assay. Glycobiology 2021; 31:1464-1471. [PMID: 34459484 PMCID: PMC8684467 DOI: 10.1093/glycob/cwab090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 01/10/2023] Open
Abstract
MUC5AC has been indicated to be a marker for mucinous ovarian cancer (OC). We investigated the use of in situ proximity ligation assay (PLA) for blood group ABH expressing MUC5AC to differentiate between serous and mucinous OC, to validate preceding observations that also MUC5AC ABH expression is increased in mucinous OC. We developed PLA for anti-A, B, and H/anti-MUC5AC and a PLA using a combined lectin Ulex europaeus agglutinin I (UEA I)/anti-MUC5AC assay. The PLAs were verified with mass spectrometry, where mucinous OC secretor positive patients’ cysts fluids containing ABH O-linked oligosaccharides also showed positive OC tissue PLA staining. A nonsecretor mucinous OC cyst fluid was negative for ABH and displayed negative PLA staining of the matched tissue. Using the UEA I/MUC5AC PLA, we screened a tissue micro array of 410 ovarian tissue samples from patients with various stages of mucinous or serous OC, 32 samples with metastasis to the ovaries and 34 controls. The PLA allowed differentiating mucinous tumors with a sensitivity of 84% and a specificity of 97% both against serous cancer but also compared to tissues from controls. This sensitivity is close to the expected incidence of secretor individuals in a population. The recorded sensitivity was also found to be higher compared to mucinous type cancer with metastasis to the ovaries, where only 32% were positive. We conclude that UEA 1/MUC5AC PLA allows glycospecific differentiation between serous and mucinous OC in patients with positive secretor status and will not identify secretor negative individuals with mucinous OC.
Collapse
Affiliation(s)
- Constantina Mateoiu
- Department of Obstetrics and Gynecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden.,Department of Gynecology, Region Västra Götaland, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - Varvara Vitiazeva
- Department of Medical Biochemistry, Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Björg Kristjansdottir
- Department of Obstetrics and Gynecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden.,Department of Gynecology, Region Västra Götaland, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - Birgitta Weijdegård
- Department of Obstetrics and Gynecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Jessica Örnros
- Department of Medical Biochemistry, Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Radiosa Gallini
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, 751 08, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, 751 08, Uppsala, Sweden
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden.,Department of Gynecology, Region Västra Götaland, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry, Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, 405 30, Gothenburg, Sweden.,Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
9
|
Proximity ligation assay: an ultrasensitive method for protein quantification and its applications in pathogen detection. Appl Microbiol Biotechnol 2021; 105:923-935. [PMID: 33427935 DOI: 10.1007/s00253-020-11049-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023]
Abstract
It is of great significance to establish sensitive and accurate pathogen detection methods, considering the continuous emergence or re-emergence of infectious diseases seriously influences the safety of human and animals. Proximity ligation assay (PLA) is developed for the sensitive protein detection and also can be used for the detection of pathogens. PLA employs aptamer or monoclonal/polyclonal antibody-nucleic acid complexes as proximity probes. When the paired proximity probes bind to the same target protein or protein complex, they will be adjacent to each other and form an amplifiable DNA sequence through ligation. Combining the specificity of enzyme-linked immunosorbent assay (ELISA) and sensitivity of polymerase chain reaction (PCR), PLA transforms the detection of protein into the detection of DNA nucleic acid sequence. Therefore, as an ultrasensitive protein assay, PLA has great potential for quantification, localization of protein, and clinical diagnostics. In this review, we summarize the basic principles of PLA and its applications in pathogen detection. KEY POINTS: • Different forms of proximity ligation assay are introduced. • Applications of proximity ligation assay in pathogen detection are summarized. • Proximity ligation assay is an ultrasensitive method to quantify protein and pathogen.
Collapse
|
10
|
Donhauser N, Socher E, Millen S, Heym S, Sticht H, Thoma-Kress AK. Transfer of HTLV-1 p8 and Gag to target T-cells depends on VASP, a novel interaction partner of p8. PLoS Pathog 2020; 16:e1008879. [PMID: 32997728 PMCID: PMC7526893 DOI: 10.1371/journal.ppat.1008879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
The Human T-cell leukemia virus type 1 (HTLV-1) orf I-encoded accessory protein p8 is cleaved from its precursor p12, and both proteins contribute to viral persistence. p8 induces cellular protrusions, which are thought to facilitate transfer of p8 to target cells and virus transmission. Host factors interacting with p8 and mediating p8 transfer are unknown. Here, we report that vasodilator-stimulated phosphoprotein (VASP), which promotes actin filament elongation, is a novel interaction partner of p8 and important for p8 and HTLV-1 Gag cell-to-cell transfer. VASP contains an Ena/VASP homology 1 (EVH1) domain that targets the protein to focal adhesions. Bioinformatics identified a short stretch in p8 (amino acids (aa) 24–45) which may mediate interactions with the EVH1 domain of VASP. Co-immunoprecipitations confirmed interactions of VASP:p8 in 293T, Jurkat and HTLV-1-infected MT-2 cells. Co-precipitation of VASP:p8 could be significantly blocked by peptides mimicking aa 26–37 of p8. Mutational studies revealed that the EVH1-domain of VASP is necessary, but not sufficient for the interaction with p8. Further, deletion of the VASP G- and F-actin binding domains significantly diminished co-precipitation of p8. Imaging identified areas of partial co-localization of VASP with p8 at the plasma membrane and in protrusive structures, which was confirmed by proximity ligation assays. Co-culture experiments revealed that p8 is transferred between Jurkat T-cells via VASP-containing conduits. Imaging and flow cytometry revealed that repression of both endogenous and overexpressed VASP by RNA interference or by CRISPR/Cas9 reduced p8 transfer to the cell surface and to target Jurkat T-cells. Stable repression of VASP by RNA interference in chronically infected MT-2 cells impaired both p8 and HTLV-1 Gag transfer to target Jurkat T-cells, while virus release was unaffected. Thus, we identified VASP as a novel interaction partner of p8, which is important for transfer of HTLV-1 p8 and Gag to target T-cells. The delta-retrovirus Human T-cell leukemia virus type 1 encodes the accessory protein p8, which is generated by proteolytic cleavage from p12. Earlier work has shown that p8 enhances the formation of cellular conduits between T-cells, is transferred through these conduits to target T-cells and increases HTLV-1 transmission. It was suggested that p8 dampens T-cell responses in target T-cells, thus facilitating HTLV-1 infection. Our work sheds light on the mechanism of p8 transfer to target T-cells. We show that vasodilator-stimulated phosphoprotein (VASP), a novel interaction partner of p8, contributes to transfer of p8 to target T-cells. Mechanistically, VASP is crucial for recruitment of p8 to the cell surface. Since VASP is known to promote elongation of actin filaments by preventing them from capping, interactions of p8 with VASP are an elegant strategy to exploit the host cell machinery for being transported to the cell surface, and as a consequence, to other cells. Given that VASP is also important for cell-to-cell transfer of the HTLV-1 Gag protein, our work proposes that VASP is a new cellular target to counteract HTLV-1 cell-to-cell transmission.
Collapse
Affiliation(s)
- Norbert Donhauser
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Eileen Socher
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian Millen
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefanie Heym
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrea K. Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- * E-mail:
| |
Collapse
|
11
|
Proximity ligation assays for precise quantification of femtomolar proteins in single cells using self-priming microfluidic dPCR chip. Anal Chim Acta 2019; 1076:118-124. [DOI: 10.1016/j.aca.2019.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 01/09/2023]
|
12
|
Wang J, Li T, Shen R, Li G, Ling L. Polymerase Chain Reaction-Dynamic Light Scattering Sensor for DNA and Protein by Using Both Replication and Cleavage Properties of Taq Polymerase. Anal Chem 2019; 91:3429-3435. [DOI: 10.1021/acs.analchem.8b04929] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jing Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Tingting Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ruidi Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Liansheng Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
13
|
Rajendran P, Johnson G, Li L, Chen YS, Dashwood M, Nguyen N, Ulusan A, Ertem F, Zhang M, Li J, Sun D, Huang Y, Wang S, Leung HC, Lieberman D, Beaver L, Ho E, Bedford M, Chang K, Vilar E, Dashwood R. Acetylation of CCAR2 Establishes a BET/BRD9 Acetyl Switch in Response to Combined Deacetylase and Bromodomain Inhibition. Cancer Res 2019; 79:918-927. [PMID: 30643017 DOI: 10.1158/0008-5472.can-18-2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/19/2018] [Accepted: 01/09/2019] [Indexed: 12/15/2022]
Abstract
There continues to be interest in targeting epigenetic "readers, writers, and erasers" for the treatment of cancer and other pathologies. However, a mechanistic understanding is frequently lacking for the synergy observed when combining deacetylase and bromodomain inhibitors. Here we identify cell cycle and apoptosis regulator 2 (CCAR2) as an early target for acetylation in colon cancer cells treated with sulforaphane. N-terminal acetylation of CCAR2 diminished its interactions with histone deacetylase 3 and β-catenin, interfering with Wnt coactivator functions of CCAR2, including in cells harboring genetically encoded CCAR2 acetylation. Protein domain arrays and pull-down assays identified acetyl "reader" proteins that recognized CCAR2 acetylation sites, including BRD9 and members of the bromodomain and extraterminal domain (BET) family. Treatment with the BET inhibitor JQ1 synergized with sulforaphane in colon cancer cells and suppressed tumor development effectively in a preclinical model of colorectal cancer. Studies with sulforaphane+JQ1 in combination implicated a BET/BRD9 acetyl switch and a shift in the pool of acetyl "reader" proteins in favor of BRD9-regulated target genes. SIGNIFICANCE: These results highlight the competition that exists among the "readers" of acetylated histone and nonhistone proteins and provide a mechanistic basis for potential new therapeutic avenues involving epigenetic combination treatments.
Collapse
Affiliation(s)
- Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M College of Medicine, Houston, Texas.
| | - Gavin Johnson
- Center for Epigenetics & Disease Prevention, Texas A&M College of Medicine, Houston, Texas
| | - Li Li
- Center for Epigenetics & Disease Prevention, Texas A&M College of Medicine, Houston, Texas
| | - Ying-Shiuan Chen
- Center for Epigenetics & Disease Prevention, Texas A&M College of Medicine, Houston, Texas
| | - Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M College of Medicine, Houston, Texas
| | - Nhung Nguyen
- Center for Epigenetics & Disease Prevention, Texas A&M College of Medicine, Houston, Texas
| | - Ahmet Ulusan
- Center for Epigenetics & Disease Prevention, Texas A&M College of Medicine, Houston, Texas
| | - Furkan Ertem
- Center for Epigenetics & Disease Prevention, Texas A&M College of Medicine, Houston, Texas
| | - Mutian Zhang
- Center for Epigenetics & Disease Prevention, Texas A&M College of Medicine, Houston, Texas
| | - Jia Li
- Center for Epigenetics & Disease Prevention, Texas A&M College of Medicine, Houston, Texas
| | - Deqiang Sun
- Center for Epigenetics & Disease Prevention, Texas A&M College of Medicine, Houston, Texas
| | - Yun Huang
- Center for Epigenetics & Disease Prevention, Texas A&M College of Medicine, Houston, Texas
| | - Shan Wang
- Center for Epigenetics & Disease Prevention, Texas A&M College of Medicine, Houston, Texas
| | - Hon-Chiu Leung
- Mass Spectrometry-Proteomics Core, Baylor College of Medicine, Houston, Texas
| | - David Lieberman
- Division of Gastroenterology and Hepatology, Oregon Health & Science University, Portland, Oregon
| | - Laura Beaver
- College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon
| | - Emily Ho
- College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon
| | - Mark Bedford
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyle Chang
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eduardo Vilar
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roderick Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M College of Medicine, Houston, Texas. .,The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
14
|
Birgisson H, Tsimogiannis K, Freyhult E, Kamali-Moghaddam M. Plasma Protein Profiling Reveal Osteoprotegerin as a Marker of Prognostic Impact for Colorectal Cancer. Transl Oncol 2018; 11:1034-1043. [PMID: 29982101 PMCID: PMC6037900 DOI: 10.1016/j.tranon.2018.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND: Due to difficulties in predicting recurrences in colorectal cancer stages II and III, reliable prognostic biomarkers could be a breakthrough for individualized treatment and follow-up. OBJECTIVE: To find potential prognostic protein biomarkers in colorectal cancer, using the proximity extension assays. METHODS: A panel of 92 oncology-related proteins was analyzed with proximity extension assays, in plasma from a cohort of 261 colorectal cancer patients with stage II-IV. The survival analyses were corrected for disease stage and age, and the recurrence analyses were corrected for disease stage. The significance threshold was adjusted for multiple comparisons. RESULTS: The plasma proteins expression levels had a greater prognostic relevance in disease stage III colorectal cancer than in disease stage II, and for overall survival than for time to recurrence. Osteoprotegerin was the only biomarker candidate in the protein panel that had a statistical significant association with overall survival (P = .00029). None of the proteins were statistically significantly associated with time to recurrence. CONCLUSIONS: Of the 92 analyzed plasma proteins, osteoprotegerin showed the strongest prognostic impact in patients with colorectal cancer, and therefore osteoprotegerin is a potential predictive marker, and it also could be a target for treatments.
Collapse
Affiliation(s)
- Helgi Birgisson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | | | - Eva Freyhult
- Department of Medical Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
In situ protein detection with enhanced specificity using DNA-conjugated antibodies and proximity ligation. Mod Pathol 2018; 31:253-263. [PMID: 28937142 DOI: 10.1038/modpathol.2017.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
Abstract
Antibodies are important tools in anatomical pathology and research, but the quality of in situ protein detection by immunohistochemistry greatly depends on the choice of antibodies and the abundance of the targeted proteins. Many antibodies used in scientific research do not meet requirements for specificity and sensitivity. Accordingly, methods that improve antibody performance and produce quantitative data can greatly advance both scientific investigations and clinical diagnostics based on protein expression and in situ localization. We demonstrate here protocols for antibody labeling that allow specific protein detection in tissues via bright-field in situ proximity ligation assays, where each protein molecule must be recognized by two antibodies. We further demonstrate that single polyclonal antibodies or purified serum preparations can be used for these dual recognition assays. The requirement for protein recognition by pairs of antibody conjugates can significantly improve specificity of protein detection over single-binder assays.
Collapse
|
16
|
HER-3 targeting alters the dimerization pattern of ErbB protein family members in breast carcinomas. Oncotarget 2016; 7:5576-97. [PMID: 26716646 PMCID: PMC4868707 DOI: 10.18632/oncotarget.6762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/22/2015] [Indexed: 01/06/2023] Open
Abstract
Breast carcinogenesis is a multi-step process in which membrane receptor tyrosine kinases are crucial participants. Lots of research has been done on epidermal growth factor receptor (EGFR) and HER-2 with important clinical results. However, breast cancer patients present intrinsic or acquired resistance to available HER-2-directed therapies, mainly due to HER-3. Using new techniques, such as proximity ligation assay, herein we evaluate the dimerization pattern of HER-3 and the importance of context-dependent dimer formation between HER-3 and other HER protein family members. Additionally, we show that the efficacy of novel HER-3 targeting agents can be better predicted in certain breast cancer patient sub-groups based on the dimerization pattern of HER protein family members. Moreover, this model was also evaluated and reproduced in human paraffin-embedded breast cancer tissues.
Collapse
|
17
|
Ghanipour L, Darmanis S, Landegren U, Glimelius B, Påhlman L, Birgisson H. Detection of Biomarkers with Solid-Phase Proximity Ligation Assay in Patients with Colorectal Cancer. Transl Oncol 2016; 9:251-5. [PMID: 27267845 PMCID: PMC4907971 DOI: 10.1016/j.tranon.2016.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/10/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND: In the search for prognostic biomarkers, a significant amount of precious biobanked blood samples is needed for conventional analyses. Solid-phase proximity ligation assay (SP-PLA) is an analytic method with the ability to analyze many proteins at the same time in small amounts of plasma. The aim of this study was to explore the potential use of SP-PLA for biomarker validation in patients with colorectal cancer (CRC). MATERIAL AND METHODS: Plasma samples from patients with stage I to IV CRC, with (n = 31) and without (n = 29) disease dissemination at diagnosis or later, were analyzed with SP-PLA using 35 antibodies targeting an equal number of proteins in 5-μl plasma samples. Carcinoembryonic antigen (CEA), analyzed earlier in this cohort using a different technology, was used as a reference. RESULTS: A total of 21 of the 35 investigated proteins were detectable with SP-PLA. Patients in stage II to III with disseminated disease had lower plasma concentrations of HCC-4 (P = .025). Low plasma levels of tissue inhibitor of metalloproteinases–1 were seen in patients with disseminated disease stage II (P = .003). The level of CEA was higher in patients with disease dissemination compared with those without (P = .007). CONCLUSION: SP-PLA has the ability to analyze many protein markers simultaneously in a small amount of blood. However, none of the markers selected for the present SP-PLA analyses gave better prognostic information than CEA.
Collapse
Affiliation(s)
- Lana Ghanipour
- Department of Surgical Science, University of Uppsala, Uppsala, Sweden.
| | - Spyros Darmanis
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, University of Uppsala, Uppsala, Sweden
| | - Ulf Landegren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, University of Uppsala, Uppsala, Sweden
| | - Bengt Glimelius
- Department of Radiology, Oncology and Radiation Science, University of Uppsala, Uppsala, Sweden
| | - Lars Påhlman
- Department of Surgical Science, University of Uppsala, Uppsala, Sweden
| | - Helgi Birgisson
- Department of Surgical Science, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
18
|
Spengler M, Adler M, Niemeyer CM. Highly sensitive ligand-binding assays in pre-clinical and clinical applications: immuno-PCR and other emerging techniques. Analyst 2016. [PMID: 26196036 DOI: 10.1039/c5an00822k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recombinant DNA technology and corresponding innovations in molecular biology, chemistry and medicine have led to novel therapeutic biomacromolecules as lead candidates in the pharmaceutical drug development pipelines. While monoclonal antibodies and other proteins provide therapeutic potential beyond the possibilities of small molecule drugs, the concomitant demand for supportive bioanalytical sample testing creates multiple novel challenges. For example, intact macromolecules can usually not be quantified by mass-spectrometry without enzymatic digestion and isotopically labeled internal standards are costly and/or difficult to prepare. Classical ELISA-type immunoassays, on the other hand, often lack the sensitivity required to obtain pharmacokinetics of low dosed drugs or pharmacodynamics of suitable biomarkers. Here we summarize emerging state-of-the-art ligand-binding assay technologies for pharmaceutical sample testing, which reveal enhanced analytical sensitivity over classical ELISA formats. We focus on immuno-PCR, which combines antibody specificity with the extremely sensitive detection of a tethered DNA marker by quantitative PCR, and alternative nucleic acid-based technologies as well as methods based on electrochemiluminescence or single-molecule counting. Using case studies, we discuss advantages and drawbacks of these methods for preclinical and clinical sample testing.
Collapse
Affiliation(s)
- Mark Spengler
- Chimera Biotec GmbH, Emil-Figge-Str. 76 A, D-44227 Dortmund, Germany.
| | | | | |
Collapse
|
19
|
Mu Y, Xie H, Wan Y. Sensitive and Specific Neutrophil Gelatinase-associated Lipocalin Detection by Solid-phase Proximity Ligation Assay. ANAL SCI 2016; 31:475-9. [PMID: 26063008 DOI: 10.2116/analsci.31.475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a candidate diagnostic biomarker for acute kidney injury (AKI). Since there is no specific treatment to reverse AKI, a good biomarker such as NGAL can increase the performance of clinical care. Therefore, a timely, specific and sensitive assay for detecting NGAL is critical for clinical determination. In this study, we established a solid-phase proximity ligation assay for the detection of NGAL using polyclonal antibodies conjugated with a pair of oligonucleotides. The data are read out as the Ct value via quantitative real-time polymerase chain reaction (qPCR). Our results demonstrate that this new assay performs with good specificity and sensitivity for detection of NGAL spiked in buffer or serum, which indicates that the solid-phase proximity ligation technique is a promising tool for diagnostics in clinical decisions.
Collapse
Affiliation(s)
- Yawen Mu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University
| | | | | |
Collapse
|
20
|
Das TP, Suman S, Alatassi H, Ankem MK, Damodaran C. Inhibition of AKT promotes FOXO3a-dependent apoptosis in prostate cancer. Cell Death Dis 2016; 7:e2111. [PMID: 26913603 PMCID: PMC4849149 DOI: 10.1038/cddis.2015.403] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 01/02/2023]
Abstract
Growth factor-induced activation of protein kinase-B (PKB), also known as AKT, induces pro-survival signaling and inhibits activation of pro-apoptotic signaling molecules including the Forkhead box O-3a (FOXO3a) transcription factor and caspase in transformed prostate cells in vitro. Earlier we reported that Withaferin-A (WA), a small herbal molecule, induces pro-apoptotic response-4 (Par-4) mediated apoptosis in castration-resistant prostate cancer (CRPC) cells. In the present study, we demonstrate that inhibition of AKT facilitates nuclear shuttling of FOXO3a where it regulates Par-4 transcription in CRPC cells. FOXO3a is upstream of Par-4 signaling, which is required for induction of apoptosis in CRPC cells. Promoter bashing studies and Ch-IP analysis confirm a direct interaction of FOXO3a and Par-4; a sequential deletion of FOXO3a-binding sites in the Par-4 promoter fails to induce Par-4 activation. To confirm these observations, we either overexpressed AKT or silenced FOXO3a activation in CRPC cells. Both methods inhibit Par-4 function and apoptosis is significantly compromised. In xenograft tumors derived from AKT-overexpressed CRPC cells, FOXO3a and Par-4 expression is downregulated, leading to aggressive tumor growth. Oral administration of WA to mice with xenograft tumors restores FOXO3a-mediated Par-4 functions and results in inhibited tumor growth. Finally, an inverse correlation of nuclear localization of AKT expression corresponds to cytoplasmic Par-4 localization in human prostate tissue array. Our studies suggest that Par-4 is one of the key transcriptional targets of FOXO3a, and Par-4 activation is required for induction of apoptosis in CRPC cells. Activation of FOXO3a appears to be an attractive target for the treatment of CRPC and molecules such as WA can be explored further for the treatment of CRPC.
Collapse
Affiliation(s)
- T P Das
- Department of Urology, University of Louisville, Louisville, KY 40202, USA
| | - S Suman
- Department of Urology, University of Louisville, Louisville, KY 40202, USA
| | - H Alatassi
- Department of Pathology, University of Louisville, Louisville, KY 40202, USA
| | - M K Ankem
- Department of Urology, University of Louisville, Louisville, KY 40202, USA
| | - C Damodaran
- Department of Urology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
21
|
Abu Seman N, Anderstam B, Wan Mohamud WN, Östenson CG, Brismar K, Gu HF. Genetic, epigenetic and protein analyses of intercellular adhesion molecule 1 in Malaysian subjects with type 2 diabetes and diabetic nephropathy. J Diabetes Complications 2015; 29:1234-9. [PMID: 26255081 DOI: 10.1016/j.jdiacomp.2015.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 11/26/2022]
Abstract
AIMS Recent research has implicated that the inflammation may be a key pathophysiological mechanism in diabetic nephropathy (DN). Intercellular adhesion molecule 1 (ICAM-1) is an acute phase marker of inflammation. In the present study, we carried out genetic, epigenetic and protein analyses of ICAM-1 in a Malaysian population, including normal glucose tolerance (NGT) subjects and type 2 diabetes (T2D) patients with or without DN in order to evaluate its role in DN. METHODS Analyses of DNA polymorphism and methylation in the ICAM1 gene were performed with TaqMan allelic discrimination and pyrosequencing, respectively. Plasma ICAM-1 levels were determined using an enzyme-linked immune-sorbent assay kit. RESULTS We found that the ICAM1 K469E(A/G) polymorphism (rs5498) was significantly associated with DN. Particularly, 86.1% of T2D patients with DN carried heterozygous genotype compared to the patients without DN (68.6%). Furthermore, plasma ICAM-1 levels were increased from NGT subjects to T2D patients without and with DN (P<0.001). The NGT subjects carrying heterozygous genotype had significantly lower plasma ICAM-1 levels compared to the K469(A/A) genotype carriers (P=0.009). In the ICAM1 gene promoter, DNA methylation levels of CpG sites were low, and no association of the ICAM1 DNA methylation alteration with DN was detected. CONCLUSION The present study provided evidence that the ICAM1 K469E(A/G) polymorphism with high heterozygous index and elevation of plasma ICAM-1 levels were associated with DN in a Malaysian population. Further prospective study of ICAM-1 protein according to the ICAM1 K469E(A/G) genotypes is necessary for predicting the susceptibility to T2D and DN.
Collapse
Affiliation(s)
- Norhashimah Abu Seman
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Solna, Karolinska Institutet, Stockholm, Sweden; Cardiovascular, Diabetes and Nutrition Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Björn Anderstam
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Wan Nazaimoon Wan Mohamud
- Cardiovascular, Diabetes and Nutrition Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Claes-Göran Östenson
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Brismar
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Harvest F Gu
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
22
|
Le QT, Blanchet M, Seidah NG, Labonté P. Plasma Membrane Tetraspanin CD81 Complexes with Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) and Low Density Lipoprotein Receptor (LDLR), and Its Levels Are Reduced by PCSK9. J Biol Chem 2015. [PMID: 26195630 DOI: 10.1074/jbc.m115.642991] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important factor in plasma cholesterol regulation through modulation of low density lipoprotein receptor (LDLR) levels. Naturally occurring mutations can lead to hyper- or hypocholesterolemia in human. Recently, we reported that PCSK9 was also able to modulate CD81 in Huh7 cells. In the present study, several gain-of-function and loss-of-function mutants as well as engineered mutants of PCSK9 were compared for their ability to modulate the cell surface expression of LDLR and CD81. Although PCSK9 gain-of-function D374Y enhanced the degradation both receptors, D374H and D129N seemed to only reduce LDLR levels. In contrast, mutations in the C-terminal hinge-cysteine-histidine-rich domain segment primarily affected the PCSK9-induced CD81 degradation. Furthermore, when C-terminally fused to an ACE2 transmembrane anchor, the secretory N-terminal catalytic or hinge-cysteine-histidine-rich domain domains of PCSK9 were able to reduce CD81 and LDLR levels. These data confirm that PCSK9 reduces CD81 levels via an intracellular pathway as reported for LDLR. Using immunocytochemistry, a proximity ligation assay, and co-immunoprecipitation, we found that the cell surface level of PCSK9 was enhanced upon overexpression of CD81 and that both PCSK9 and LDLR interact with this tetraspanin protein. Interestingly, using CHO-A7 cells lacking LDLR expression, we revealed that LDLR was not required for the degradation of CD81 by PCSK9, but its presence strengthened the PCSK9 effect.
Collapse
Affiliation(s)
- Quoc-Tuan Le
- From the Institut National de la Recherche Scientifique-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada, Department of Malaria, Parasitology and Entomology, Vietnam Military Medical University, 104 Phung Hung Street, Ha Dong District, Hanoi 151000, Vietnam, and
| | - Matthieu Blanchet
- From the Institut National de la Recherche Scientifique-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec H2W 1R7, Canada
| | - Patrick Labonté
- From the Institut National de la Recherche Scientifique-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada,
| |
Collapse
|
23
|
Thompson CM, Bloom LR, Ogiue-Ikeda M, Machida K. SH2-PLA: a sensitive in-solution approach for quantification of modular domain binding by proximity ligation and real-time PCR. BMC Biotechnol 2015; 15:60. [PMID: 26112401 PMCID: PMC4482279 DOI: 10.1186/s12896-015-0169-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is a great interest in studying phosphotyrosine dependent protein-protein interactions in tyrosine kinase pathways that play a critical role in many aspects of cellular function. We previously established SH2 profiling, a phosphoproteomic approach based on membrane binding assays that utilizes purified Src Homology 2 (SH2) domains as a molecular tool to profile the global tyrosine phosphorylation state of cells. However, in order to use this method to investigate SH2 binding sites on a specific target in cell lysate, additional procedures such as pull-down or immunoprecipitation which consume large amounts of sample are required. RESULTS We have developed PLA-SH2, an alternative in-solution modular domain binding assay that takes advantage of Proximity Ligation Assay and real-time PCR. The SH2-PLA assay utilizes oligonucleotide-conjugated anti-GST and anti-EGFR antibodies recognizing a GST-SH2 probe and cellular EGFR, respectively. If the GST-SH2 and EGFR are in close proximity as a result of SH2-phosphotyrosine interactions, the two oligonucleotides are brought within a suitable distance for ligation to occur, allowing for efficient complex amplification via real-time PCR. The assay detected signal across at least 3 orders of magnitude of lysate input with a linear range spanning 1-2 orders and a low femtomole limit of detection for EGFR phosphotyrosine. SH2 binding kinetics determined by PLA-SH2 showed good agreement with established far-Western analyses for A431 and Cos1 cells stimulated with EGF at various times and doses. Further, we showed that PLA-SH2 can survey lung cancer tissues using 1 μl lysate without requiring phospho-enrichment. CONCLUSIONS We showed for the first time that interactions between SH2 domain probes and EGFR in cell lysate can be determined in a microliter-scale assay using SH2-PLA. The obvious benefit of this method is that the low sample requirement allows detection of SH2 binding in samples which are difficult to analyze using traditional protein interaction assays. This feature along with short assay runtime makes this method a useful platform for the development of high throughput assays to determine modular domain-ligand interactions which could have wide-ranging applications in both basic and translational cancer research.
Collapse
Affiliation(s)
- Christopher M Thompson
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| | - Lee R Bloom
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| | - Mari Ogiue-Ikeda
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| | - Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| |
Collapse
|
24
|
Greenwood C, Ruff D, Kirvell S, Johnson G, Dhillon HS, Bustin SA. Proximity assays for sensitive quantification of proteins. BIOMOLECULAR DETECTION AND QUANTIFICATION 2015; 4:10-6. [PMID: 27077033 PMCID: PMC4822221 DOI: 10.1016/j.bdq.2015.04.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022]
Abstract
Proximity assays are immunohistochemical tools that utilise two or more DNA-tagged aptamers or antibodies binding in close proximity to the same protein or protein complex. Amplification by PCR or isothermal methods and hybridisation of a labelled probe to its DNA target generates a signal that enables sensitive and robust detection of proteins, protein modifications or protein-protein interactions. Assays can be carried out in homogeneous or solid phase formats and in situ assays can visualise single protein molecules or complexes with high spatial accuracy. These properties highlight the potential of proximity assays in research, diagnostic, pharmacological and many other applications that require sensitive, specific and accurate assessments of protein expression.
Collapse
Affiliation(s)
- Christina Greenwood
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - David Ruff
- Fluidigm Corporation, South San Francisco, CA 94080, USA
| | - Sara Kirvell
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - Gemma Johnson
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - Harvinder S Dhillon
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - Stephen A Bustin
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| |
Collapse
|
25
|
Wu H, Shang LQ, Chen RL, Yang SM, Wang SL, Wang J, Sun G. Significance of Trask protein interactions in brain metastatic cohorts of lung cancers. Tumour Biol 2015; 36:4181-7. [PMID: 25775948 DOI: 10.1007/s13277-015-3053-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/02/2015] [Indexed: 12/19/2022] Open
Abstract
A class of adhesion protein that occurs in the membrane with both extracellular and intracellular domain and play vital role in maintaining multicellularity is TRASK, also called CUB-domain containing protein1, CD318 (CDCP1). Specifically, in the current study, documented aggressive grades of lung cancers and distant metastatic tissues were examined for protein interactions of Trask and compared with lung cancer variants in situ. The intracellular domain of Trask has the ability to undergo tyrosine phosphorylation and thereafter undergo increased genomic expression, as well as interact with cytoskeletal proteins in the cell periphery and other local signal transduction machinery to induce invadopodia formation and distant metastasis. We incorporated proximity ligation assay to examine protein interactions of Trask in metastatic lung cancer tissues and compare with advanced and low-grade lung cancers restricted to the primary site of origins. Here, we provide direct evidence that activated Trask, which is a phosphorylated form, binds with cytoskeletal proteins actin and spectrin. These interactions were not seen in locally growing lung cancer and cancer in situ. These interactions may be responsible for invadopodia formation and breaking free from a multicellular environment. Functional studies demonstrated interaction between Trask and the STOCs Orai1 and Stim1. Calcium release from internal stores was highest in metastatic lung cancers, suggesting this mechanism as an initial stimulus for the cells to respond chaotically to external growth factor stimulation, especially in aggressive metastatic variants of lung cancers. Recently, inhibitors of STOCs have been identified, and preclinical evidence may be obtained whether these drugs may be of benefit in preventing the deadly consequences of lung cancer.
Collapse
Affiliation(s)
- Hua Wu
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China,
| | | | | | | | | | | | | |
Collapse
|
26
|
Detecting protein-protein interactions based on kinase-mediated growth induction of mammalian cells. Sci Rep 2014; 4:6127. [PMID: 25135216 PMCID: PMC4137342 DOI: 10.1038/srep06127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/01/2014] [Indexed: 01/04/2023] Open
Abstract
Detection of protein–protein interactions (PPIs) is important for understanding numerous processes in mammalian cells; however, existing PPI detection methods often give significant background signals. Here, we propose a novel PPI-detection method based on kinase-mediated growth induction of mammalian cells. In this method, target proteins are fused to the intracellular domain of c-kit (c-kit ICD) and expressed in interleukin-3-dependent mammalian cells. The PPI induces dimerization and activation of c-kit ICDs, which leads to cell growth in the absence of interleukin-3. Using this system, we successfully detected the ligand-dependent homo-interaction of FKBPF36V and hetero-interaction of FKBP and FRBT2098L, as well as the constitutive interaction between MDM2 and a known peptide inhibitor. Intriguingly, cells expressing high-affinity peptide chimeras are selected from the mixture of the cell populations dominantly expressing low-affinity peptide chimeras. These results indicate that this method can detect PPIs with low background levels and is suitable for peptide inhibitor screening.
Collapse
|
27
|
Pacchiana R, Abbate M, Armato U, Dal Prà I, Chiarini A. Combining immunofluorescence with in situ proximity ligation assay: a novel imaging approach to monitor protein–protein interactions in relation to subcellular localization. Histochem Cell Biol 2014; 142:593-600. [DOI: 10.1007/s00418-014-1244-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
|