1
|
Hu X, Zhou Y, Liu R, Wang J, Guo L, Huang X, Li J, Yan Y, Liu F, Li X, Tan X, Luo Y, Wang P, Zhou S. Protein disulfide isomerase 1 is required for RodA assembling-based conidial hydrophobicity of Aspergillus fumigatus. Appl Environ Microbiol 2024; 90:e0126023. [PMID: 38501925 PMCID: PMC11022560 DOI: 10.1128/aem.01260-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024] Open
Abstract
The hydrophobic layer of Aspergillus conidia, composed of RodA, plays a crucial role in conidia transfer and immune evasion. It self-assembles into hydrophobic rodlets through intramolecular disulfide bonds. However, the secretory process of RodA and its regulatory elements remain unknown. Since protein disulfide isomerase (PDI) is essential for the secretion of many disulfide-bonded proteins, we investigated whether PDI is also involved in RodA secretion and assembly. By gene knockout and phenotypic analysis, we found that Pdi1, one of the four PDI-related proteins of Aspergillus fumigatus, determines the hydrophobicity and integrity of the rodlet layer of the conidia. Preservation of the thioredoxin-active domain of Pdi1 was sufficient to maintain conidial hydrophobicity, suggesting that Pdi1 mediates RodA assembly through its disulfide isomerase activity. In the absence of Pdi1, the disulfide mismatch of RodA in conidia may prevent its delivery from the inner to the outer layer of the cell wall for rodlet assembly. This was demonstrated using a strain expressing a key cysteine-mutated RodA. The dormant conidia of the Pdi1-deficient strain (Δpdi) elicited an immune response, suggesting that the defective conidia surface in the absence of Pdi1 exposes internal immunogenic sources. In conclusion, Pdi1 ensures the correct folding of RodA in the inner layer of conidia, facilitating its secretion into the outer layer of the cell wall and allowing self-assembly of the hydrophobic layer. This study has identified a regulatory element for conidia rodlet assembly.IMPORTANCEAspergillus fumigatus is the major cause of invasive aspergillosis, which is mainly transmitted by the inhalation of conidia. The spread of conidia is largely dependent on their hydrophobicity, which is primarily attributed to the self-assembly of the hydrophobic protein RodA on the cell wall. However, the mechanisms underlying RodA secretion and transport to the outermost layer of the cell wall are still unclear. Our study identified a critical role for Pdi1, a fungal protein disulfide isomerase found in regulating RodA secretion and assembly. Inhibition of Pdi1 prevents the formation of correct S-S bonds in the inner RodA, creating a barrier to RodA delivery and resulting in a defective hydrophobic layer. Our findings provided insight into the formation of the conidial hydrophobic layer and suggested potential drug targets to inhibit A. fumigatus infections by limiting conidial dispersal and altering their immune inertia.
Collapse
Affiliation(s)
- Xiaotao Hu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yao Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Renning Liu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Lingyan Guo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xiaofei Huang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jingyi Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yunfeng Yan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Feiyun Liu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xueying Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xinyu Tan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yiqing Luo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Twin Cities, Saint Paul, Minnesota, USA
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Mirza Agha M, Tavili E, Dabirmanesh B. Functional amyloids. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:389-434. [PMID: 38811086 DOI: 10.1016/bs.pmbts.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
While amyloid has traditionally been viewed as a harmful formation, emerging evidence suggests that amyloids may also play a functional role in cell biology, contributing to normal physiological processes that have been conserved throughout evolution. Functional amyloids have been discovered in several creatures, spanning from bacteria to mammals. These amyloids serve a multitude of purposes, including but not limited to, forming biofilms, melanin synthesis, storage, information transfer, and memory. The functional role of amyloids has been consistently validated by the discovery of more functional amyloids, indicating a conceptual convergence. The biology of amyloids is well-represented by non-pathogenic amyloids, given the numerous ones already identified and the ongoing rate of new discoveries. In this chapter, functional amyloids in microorganisms, animals, and plants are described.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Tavili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Fillaudeau A, Cuenot S, Makshakova O, Traboni S, Sinquin C, Hennetier M, Bedini E, Perez S, Colliec-Jouault S, Zykwinska A. Glycosaminoglycan-mimetic infernan grafted with poly(N-isopropylacrylamide): Toward a thermosensitive polysaccharide. Carbohydr Polym 2024; 326:121638. [PMID: 38142103 DOI: 10.1016/j.carbpol.2023.121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
Glycosaminoglycans (GAGs) are essential constituents of the cell surface and extracellular matrix, where they are involved in several cellular processes through their interactions with various proteins. For successful tissue regeneration, developing an appropriate matrix supporting biological activities of cells in a similar manner than GAGs remains still challenging. In this context, this study aims to design a thermosensitive polysaccharide that could further be used as hydrogel for tissue engineering applications. For this purpose, infernan, a marine bacterial exopolysaccharide (EPS) endowed with GAG-mimetic properties was grafted with a thermosensitive polymer, poly(N-isopropylacrylamide) (pNIPAM). Eight grafted polysaccharides were obtained by varying EPS/pNIPAM molar ratio and the molecular weight of pNIPAM. Their physicochemical characteristics and their thermosensitive properties were determined using a multi-technique, experimental approach. In parallel, molecular dynamics and Monte Carlo simulations were applied at two different scales to elucidate, respectively, the molecular conformation of grafted infernan chain and their ability to form an infinite network undergoing a sol-gel transition near the percolation, a necessary condition in hydrogel formation. It comes out from this study that thermosensitive infernan was successfully developed and its potential use in tissue regeneration as a hydrogel scaffold will further be assessed.
Collapse
Affiliation(s)
- Arnaud Fillaudeau
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Stéphane Cuenot
- Nantes Université, CNRS, Institut des Matériaux Jean Rouxel, IMN, Nantes, France.
| | - Olga Makshakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russian Federation
| | - Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Corinne Sinquin
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Marie Hennetier
- Plateforme Toulouse Field-Flow Fractionation Center, TFFFC, Ecole d'Ingénieurs de Purpan, Toulouse, France
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Serge Perez
- Centre de Recherches sur les Macromolécules Végétales, Université de Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble, France
| | | | - Agata Zykwinska
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France.
| |
Collapse
|
4
|
Aspergillus Hydrophobins: Physicochemical Properties, Biochemical Properties, and Functions in Solid Polymer Degradation. Microorganisms 2022; 10:microorganisms10081498. [PMID: 35893556 PMCID: PMC9394342 DOI: 10.3390/microorganisms10081498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Hydrophobins are small amphipathic proteins conserved in filamentous fungi. In this review, the properties and functions of Aspergillus hydrophobins are comprehensively discussed on the basis of recent findings. Multiple Aspergillus hydrophobins have been identified and categorized in conventional class I and two non-conventional classes. Some Aspergillus hydrophobins can be purified in a water phase without organic solvents. Class I hydrophobins of Aspergilli self-assemble to form amphipathic membranes. At the air–liquid interface, RolA of Aspergillus oryzae self-assembles via four stages, and its self-assembled films consist of two layers, a rodlet membrane facing air and rod-like structures facing liquid. The self-assembly depends mainly on hydrophobin conformation and solution pH. Cys4–Cys5 and Cys7–Cys8 loops, disulfide bonds, and conserved Cys residues of RodA-like hydrophobins are necessary for self-assembly at the interface and for adsorption to solid surfaces. AfRodA helps Aspergillus fumigatus to evade recognition by the host immune system. RodA-like hydrophobins recruit cutinases to promote the hydrolysis of aliphatic polyesters. This mechanism appears to be conserved in Aspergillus and other filamentous fungi, and may be beneficial for their growth. Aspergilli produce various small secreted proteins (SSPs) including hydrophobins, hydrophobic surface–binding proteins, and effector proteins. Aspergilli may use a wide variety of SSPs to decompose solid polymers.
Collapse
|
5
|
Shanmugam N, Baker MODG, Ball SR, Steain M, Pham CLL, Sunde M. Microbial functional amyloids serve diverse purposes for structure, adhesion and defence. Biophys Rev 2019; 11:287-302. [PMID: 31049855 PMCID: PMC6557962 DOI: 10.1007/s12551-019-00526-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The functional amyloid state of proteins has in recent years garnered much attention for its role in serving crucial and diverse biological roles. Amyloid is a protein fold characterised by fibrillar morphology, binding of the amyloid-specific dyes Thioflavin T and Congo Red, insolubility and underlying cross-β structure. Amyloids were initially characterised as an aberrant protein fold associated with mammalian disease. However, in the last two decades, functional amyloids have been described in almost all biological systems, from viruses, to bacteria and archaea, to humans. Understanding the structure and role of these amyloids elucidates novel and potentially ancient mechanisms of protein function throughout nature. Many of these microbial functional amyloids are utilised by pathogens for invasion and maintenance of infection. As such, they offer novel avenues for therapies. This review examines the structure and mechanism of known microbial functional amyloids, with a particular focus on the pathogenicity conferred by the production of these structures and the strategies utilised by microbes to interfere with host amyloid structures. The biological importance of microbial amyloid assemblies is highlighted by their ubiquity and diverse functionality.
Collapse
Affiliation(s)
- Nirukshan Shanmugam
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health and Sydney Nano, University of Sydney, Sydney, NSW, 2006, Australia
| | - Max O D G Baker
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health and Sydney Nano, University of Sydney, Sydney, NSW, 2006, Australia
| | - Sarah R Ball
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health and Sydney Nano, University of Sydney, Sydney, NSW, 2006, Australia
| | - Megan Steain
- Infectious Diseases and Immunology, Central Clinical School, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Chi L L Pham
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health and Sydney Nano, University of Sydney, Sydney, NSW, 2006, Australia
| | - Margaret Sunde
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health and Sydney Nano, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
6
|
Valsecchi I, Lai JI, Stephen-Victor E, Pillé A, Beaussart A, Lo V, Pham CLL, Aimanianda V, Kwan AH, Duchateau M, Gianetto QG, Matondo M, Lehoux M, Sheppard DC, Dufrene YF, Bayry J, Guijarro JI, Sunde M, Latgé JP. Assembly and disassembly of Aspergillus fumigatus conidial rodlets. ACTA ACUST UNITED AC 2019; 5:100023. [PMID: 32743139 PMCID: PMC7389560 DOI: 10.1016/j.tcsw.2019.100023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 11/27/2022]
Abstract
The rodlet structure present on the Aspergillus fumigatus conidial surface hides conidia from immune recognition. In spite of the essential biological role of the rodlets, the molecular basis for their self-assembly and disaggregation is not known. Analysis of the soluble forms of conidia-extracted and recombinant RodA by NMR spectroscopy has indicated the importance of disulfide bonds and identified two dynamic regions as likely candidates for conformational change and intermolecular interactions during conversion of RodA into the amyloid rodlet structure. Point mutations introduced into the RODA sequence confirmed that (1) mutation of a single cysteine was sufficient to block rodlet formation on the conidial surface and (2) both presumed amyloidogenic regions were needed for proper rodlet assembly. Mutations in the two putative amyloidogenic regions retarded and disturbed, but did not completely inhibit, the formation of the rodlets in vitro and on the conidial surface. Even in a disturbed form, the presence of rodlets on the surface of the conidia was sufficient to immunosilence the conidium. However, in contrast to the parental conidia, long exposure of mutant conidia lacking disulfide bridges within RodA or expressing RodA carrying the double (I115S/I146G) mutation activated dendritic cells with the subsequent secretion of proinflammatory cytokines. The immune reactivity of the RodA mutant conidia was not due to a modification in the RodA structure, but to the exposure of different pathogen-associated molecular patterns on the surface as a result of the modification of the rodlet surface layer. The full degradation of the rodlet layer, which occurs during early germination, is due to a complex array of cell wall bound proteases. As reported earlier, this loss of the rodlet layer lead to a strong anti-fumigatus host immune response in mouse lungs.
Collapse
Affiliation(s)
- Isabel Valsecchi
- Unité des Aspergillus, Institut Pasteur, Paris, France.,Biological NMR Technological Platform, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Jennifer I Lai
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia
| | - Emmanuel Stephen-Victor
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
| | - Ariane Pillé
- Biological NMR Technological Platform, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Audrey Beaussart
- Institute of Life Sciences, Université Catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Belgium
| | - Victor Lo
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia
| | - Chi L L Pham
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia
| | | | - Ann H Kwan
- School of Life and Environmental Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia
| | - Magalie Duchateau
- Pasteur Proteomics Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, CNRS USR 2000, Paris, France
| | - Quentin Giai Gianetto
- Pasteur Proteomics Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, CNRS USR 2000, Paris, France.,Bioinformatics and Biostatistics Hub, C3BI, CNRS USR 3756, Institut Pasteur, Paris, France
| | - Mariette Matondo
- Pasteur Proteomics Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, CNRS USR 2000, Paris, France
| | - Melanie Lehoux
- Departments of Medicine, Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Donald C Sheppard
- Departments of Medicine, Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Yves F Dufrene
- Institute of Life Sciences, Université Catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Belgium
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
| | - J Iñaki Guijarro
- Biological NMR Technological Platform, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Margaret Sunde
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
7
|
Knowles BR, Yang D, Wagner P, Maclaughlin S, Higgins MJ, Molino PJ. Zwitterion Functionalized Silica Nanoparticle Coatings: The Effect of Particle Size on Protein, Bacteria, and Fungal Spore Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1335-1345. [PMID: 30086644 DOI: 10.1021/acs.langmuir.8b01550] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The negative impacts that arise from biological fouling of surfaces have driven the development of coatings with unique physical and chemical properties that are able to prevent interactions with fouling species. Here, we report on low-fouling hydrophilic coatings presenting nanoscaled features prepared from different size silica nanoparticles (SiNPs) functionalized with zwitterionic chemistries. Zwitterionic sulfobetaine siloxane (SB) was reacted to SiNPs ranging in size from 7 to 75 nm. Particle stability and grafting density were confirmed using dynamic light scattering and thermogravimetric analysis. Thin coatings of nanoparticles were prepared by spin-coating aqueous particle suspensions. The resulting coatings were characterized using scanning electron microscopy, atomic force microscopy, and contact angle goniometry. SB functionalized particle coatings displayed increased hydrophilicity compared to unmodified particle coating controls while increasing particle size correlated with increased coating roughness and increased surface area. Coatings of zwitterated particles demonstrated a high degree of nonspecific protein resistance, as measured by quartz crystal microgravimetry. Adsorption of bovine serum albumin and hydrophobin proteins were reduced by up to 91 and 94%, respectively. Adhesion of bacteria ( Escherichia coli) to zwitterion modified particle coatings were also significantly reduced over both short and long-term assays. Maximum reductions of 97% and 94% were achieved over 2 and 24 h assay periods, respectively. For unmodified particle coatings, protein adsorption and bacterial adhesion were generally reduced with increasing particle size. Adhesion of fungal spores to SB modified SiNP coatings was also reduced, however no clear trends in relation to particle size were demonstrated.
Collapse
Affiliation(s)
- Brianna R Knowles
- ARC Industrial Transformation Research Hub for Australian Steel Manufacturing , Wollongong , New South Wales 2522 , Australia
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus , University of Wollongong , Wollongong , New South Wales 2500 , Australia
- BlueScope Innovation Laboratories , Old Port Road , Port Kembla , New South Wales 2505 , Australia
| | - Dan Yang
- ARC Industrial Transformation Research Hub for Australian Steel Manufacturing , Wollongong , New South Wales 2522 , Australia
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus , University of Wollongong , Wollongong , New South Wales 2500 , Australia
| | - Pawel Wagner
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus , University of Wollongong , Wollongong , New South Wales 2500 , Australia
| | - Shane Maclaughlin
- ARC Industrial Transformation Research Hub for Australian Steel Manufacturing , Wollongong , New South Wales 2522 , Australia
- BlueScope Innovation Laboratories , Old Port Road , Port Kembla , New South Wales 2505 , Australia
| | - Michael J Higgins
- ARC Industrial Transformation Research Hub for Australian Steel Manufacturing , Wollongong , New South Wales 2522 , Australia
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus , University of Wollongong , Wollongong , New South Wales 2500 , Australia
| | - Paul J Molino
- ARC Industrial Transformation Research Hub for Australian Steel Manufacturing , Wollongong , New South Wales 2522 , Australia
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus , University of Wollongong , Wollongong , New South Wales 2500 , Australia
| |
Collapse
|
8
|
Ball SR, Kwan AH, Sunde M. Hydrophobin Rodlets on the Fungal Cell Wall. Curr Top Microbiol Immunol 2019; 425:29-51. [DOI: 10.1007/82_2019_186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Atomic Force Microscopy: A Promising Tool for Deciphering the Pathogenic Mechanisms of Fungi in Cystic Fibrosis. Mycopathologia 2017; 183:291-310. [PMID: 29128932 DOI: 10.1007/s11046-017-0201-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
Abstract
During the past decades, atomic force microscopy (AFM) has emerged as a powerful tool in microbiology. Although most of the works concerned bacteria, AFM also permitted major breakthroughs in the understanding of physiology and pathogenic mechanisms of some fungal species associated with cystic fibrosis. Complementary to electron microscopies, AFM offers unprecedented insights to visualize the cell wall architecture and components through three-dimensional imaging with nanometer resolution and to follow their dynamic changes during cell growth and division or following the exposure to drugs and chemicals. Besides imaging, force spectroscopy with piconewton sensitivity provides a direct means to decipher the forces governing cell-cell and cell-substrate interactions, but also to quantify specific and non-specific interactions between cell surface components at the single-molecule level. This nanotool explores new ways for a better understanding of the structures and functions of the cell surface components and therefore may be useful to elucidate the role of these components in the host-pathogen interactions as well as in the complex interplay between bacteria and fungi in the lung microbiome.
Collapse
|
10
|
Cuenot S, Bouvrée A, Bouchara JP. Nanoscale Mapping of Multiple Lectins on Cell Surfaces by Single-Molecule Force Spectroscopy. ACTA ACUST UNITED AC 2017; 1:e1700050. [PMID: 32646172 DOI: 10.1002/adbi.201700050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/03/2017] [Indexed: 11/06/2022]
Abstract
Molecular recognition events driven by protein-carbohydrate interactions play fundamental roles in various physiological and pathological processes in living organisms, including cohesion inside tissues, innate immune response, cancer cell metastasis, and infections. Unlike widely investigated carbohydrates, detailed knowledge of both the spatial organization of specific lectins and their identification on cell surfaces remains an essential prerequisite for the understanding of pathogen adhesion to host tissues and subsequent infection prevention. In this study, the spatially resolved localization, identification, and quantification of multiple carbohydrate-binding sites are directly revealed on the surface of fungal pathogen Aspergillus fumigatus. Nanoscale reconstructed mapping from several recognition maps, corresponding each to a unique specific interaction probed by single-molecule force spectroscopy, shows the distribution of carbohydrate-binding sites on the pathogen surface. The identified binding sites are then blocked with the appropriate carbohydrate, attesting the possibility to control lectin-mediated host-pathogen interactions. Germination markedly affects both the spatial distribution of carbohydrate-binding sites, mostly expressed at the apex of hyphae, and the identity of the predominant ones, which depend on the location on germ tubes. These insights clearly open exciting avenues in nanomedicine to control host-pathogen interactions with the development of vaccines or inhibitory drugs that preferentially target the identified carbohydrate-binding sites.
Collapse
Affiliation(s)
- Stéphane Cuenot
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2, Rue de la Houssinière, BP 32229, 44322, Nantes Cedex 3, France
| | - Audrey Bouvrée
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2, Rue de la Houssinière, BP 32229, 44322, Nantes Cedex 3, France
| | - Jean-Philippe Bouchara
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, 4 rue Larrey, 49933, Angers cedex 9, France.,Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Institut de Biologie en Santé, 4 rue Larrey, 49933, Angers cedex 9, France
| |
Collapse
|
11
|
Krappmann S. How to invade a susceptible host: cellular aspects of aspergillosis. Curr Opin Microbiol 2016; 34:136-146. [PMID: 27816786 DOI: 10.1016/j.mib.2016.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
Abstract
Diseases caused by Aspergillus spp. and in particular A. fumigatus are manifold and affect individuals suffering from immune dysfunctions, among them immunocompromised ones. The determinants of whether the encounter of a susceptible host with infectious propagules of this filamentous saprobe results in infection have been characterized to a limited extent. Several cellular characteristics of A. fumigatus that have evolved in its natural environment contribute to its virulence, among them general traits as well as particular ones that affect interaction with the mammalian host. Among the latter, conidial constituents, cell wall components, secreted proteins as well as extrolites shape the tight interaction of A. fumigatus with the host milieu and also contribute to evasion from immune surveillance.
Collapse
Affiliation(s)
- Sven Krappmann
- Institute of Microbiology - Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Wasserturmstr. 3/5, D-91054 Erlangen, Germany.
| |
Collapse
|
12
|
Novel application of hydrophobin in medical science: a drug carrier for improving serum stability. Sci Rep 2016; 6:26461. [PMID: 27212208 PMCID: PMC4876437 DOI: 10.1038/srep26461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/04/2016] [Indexed: 01/13/2023] Open
Abstract
Multiple physiological properties of glucagon-like peptide-1 (GLP-1) ensure that it is a promising drug candidate for the treatment of type 2 diabetes. However, the in vivo half-life of GLP-1 is short because of rapid degradation by dipeptidyl peptidase-IV (DPP-IV) and renal clearance. The poor serum stability of GLP-1 has significantly limited its clinical utility, although many studies are focused on extending the serum stability of this molecule. Hydrophobin, a self-assembling protein, was first applied as drug carrier to stabilize GLP-1 against protease degradation by forming a cavity. The glucose tolerance test clarified that the complex retained blood glucose clearance activity for 72 hours suggesting that this complex might be utilized as a drug candidate administered every 2–3 days. Additionally, it was found that the mutagenesis of hydrophobin preferred a unique pH condition for self-assembly. These findings suggested that hydrophobin might be a powerful tool as a drug carrier or a pH sensitive drug-release compound. The novel pharmaceutical applications of hydrophobin might result in future widespread interest in hydrophobin.
Collapse
|
13
|
Formosa C, Dague E. Imaging Living Yeast Cells and Quantifying Their Biophysical Properties by Atomic Force Microscopy. Fungal Biol 2015. [DOI: 10.1007/978-3-319-22437-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
14
|
Lo VC, Ren Q, Pham CLL, Morris VK, Kwan AH, Sunde M. Fungal Hydrophobin Proteins Produce Self-Assembling Protein Films with Diverse Structure and Chemical Stability. NANOMATERIALS 2014; 4:827-843. [PMID: 28344251 PMCID: PMC5304692 DOI: 10.3390/nano4030827] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/22/2014] [Accepted: 09/05/2014] [Indexed: 11/23/2022]
Abstract
Hydrophobins are small proteins secreted by fungi and which spontaneously assemble into amphipathic layers at hydrophilic-hydrophobic interfaces. We have examined the self-assembly of the Class I hydrophobins EAS∆15 and DewA, the Class II hydrophobin NC2 and an engineered chimeric hydrophobin. These Class I hydrophobins form layers composed of laterally associated fibrils with an underlying amyloid structure. These two Class I hydrophobins, despite showing significant conformational differences in solution, self-assemble to form fibrillar layers with very similar structures and require a hydrophilic-hydrophobic interface to trigger self-assembly. Addition of additives that influence surface tension can be used to manipulate the fine structure of the protein films. The Class II hydrophobin NC2 forms a mesh-like protein network and the engineered chimeric hydrophobin displays two multimeric forms, depending on assembly conditions. When formed on a graphite surface, the fibrillar EAS∆15 layers are resistant to alcohol, acid and basic washes. In contrast, the NC2 Class II monolayers are dissociated by alcohol treatment but are relatively stable towards acid and base washes. The engineered chimeric Class I/II hydrophobin shows increased stability towards alcohol and acid and base washes. Self-assembled hydrophobin films may have extensive applications in biotechnology where biocompatible; amphipathic coatings facilitate the functionalization of nanomaterials.
Collapse
Affiliation(s)
- Victor C Lo
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia.
| | - Qin Ren
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia.
| | - Chi L L Pham
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia.
| | - Vanessa K Morris
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia.
- School of Molecular Bioscience, The University of Sydney, Sydney NSW 2006, Australia.
| | - Ann H Kwan
- School of Molecular Bioscience, The University of Sydney, Sydney NSW 2006, Australia.
| | - Margaret Sunde
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia.
| |
Collapse
|