1
|
Zhao SH, Yap KL, Allegretti V, Drackley A, Ing A, Gordon A, Skol A, McMullen P, Bohnsack BL, Kurup SP, Ralay Ranaivo H, Rossen JL. A Case of Non-Syndromic Congenital Cataracts Caused by a Novel MAF Variant in the C-Terminal DNA-Binding Domain-Case Report and Literature Review. Genes (Basel) 2024; 15:686. [PMID: 38927621 PMCID: PMC11203127 DOI: 10.3390/genes15060686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
The MAF gene encodes a transcription factor in which pathogenic variants have been associated with both isolated and syndromic congenital cataracts. We aim to review the MAF variants in the C-terminal DNA-binding domain associated with non-syndromic congenital cataracts and describe a patient with a novel, disease-causing de novo missense variant. Published reports of C-terminal MAF variants and their associated congenital cataracts and ophthalmic findings were reviewed. The patient we present and his biological parents had genetic testing via a targeted gene panel followed by trio-based whole exome sequencing. A 4-year-old patient with a history of bilateral nuclear and cortical cataracts was found to have a novel, likely pathogenic de novo variant in MAF, NM_005360.5:c.922A>G (p.Lys308Glu). No syndromic findings or anterior segment abnormalities were identified. We report the novel missense variant, c.922A>G (p.Lys308Glu), in the C-terminal DNA-binding domain of MAF classified as likely pathogenic and associated with non-syndromic bilateral congenital cataracts.
Collapse
Affiliation(s)
- Sharon H. Zhao
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (S.H.Z.); (B.L.B.)
| | - Kai Lee Yap
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (K.L.Y.); (A.D.); (A.I.); (A.S.); (P.M.)
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Valerie Allegretti
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (V.A.); (A.G.); (H.R.R.)
| | - Andy Drackley
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (K.L.Y.); (A.D.); (A.I.); (A.S.); (P.M.)
| | - Alexander Ing
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (K.L.Y.); (A.D.); (A.I.); (A.S.); (P.M.)
| | - Adam Gordon
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (V.A.); (A.G.); (H.R.R.)
| | - Andrew Skol
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (K.L.Y.); (A.D.); (A.I.); (A.S.); (P.M.)
| | - Patrick McMullen
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (K.L.Y.); (A.D.); (A.I.); (A.S.); (P.M.)
| | - Brenda L. Bohnsack
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (S.H.Z.); (B.L.B.)
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (V.A.); (A.G.); (H.R.R.)
| | - Sudhi P. Kurup
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (S.H.Z.); (B.L.B.)
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (V.A.); (A.G.); (H.R.R.)
| | - Hantamalala Ralay Ranaivo
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (V.A.); (A.G.); (H.R.R.)
| | - Jennifer L. Rossen
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (S.H.Z.); (B.L.B.)
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (V.A.); (A.G.); (H.R.R.)
| |
Collapse
|
2
|
Cao X, Lu W, Gang Y, Hu B, Wen C. Prx5 of Cristaria plicata has antioxidant function and is regulated by Nrf2/ARE signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108548. [PMID: 36690268 DOI: 10.1016/j.fsi.2023.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Cristaria plicata is one of the more important freshwater pearl bivalves in China, which is susceptible to pathogen infection, and greatly impacts the ability of breeding pearls. Nrf2/ARE signaling pathway and its downstream target gene Prx5 have endogenous antioxidant functions to protect cells from oxidative damage. The full-length cDNA of Prx5 was cloned from C. Plicata, which was 1420 bp, encoding a total of 189 amino acids and had two conserved cysteine residues (Cys78 and Cys179). The amino acid sequence of CpPrx5 was highly similar to Prx5 of other species. Real-time fluorescence quantitative PCR showed that CpPrx5 was distributed in various tissues of mussels, and the highest expression was in hepatopancreas. The expression of CpPrx5 up-regulated in hepatopancreas and gills after LPS, PGN and Poly:I:C stimulation. The recombinant plasmid DE3-PGEX-4T-1-CpPrx5 was expressed in Escherichia coli BL21 and showed antioxidant activity. With the increase of CpPrx5 protein concentration, the superhelical form of DNA was protected. The expression of CpPrx5 was up-regulated after interference CpKeap1 and down-regulated after interference CpNrf2. Gel block assay showed that CpNrf2 and CpMafK proteins blocked CpPrx5 promoter. Subcellular localization showed that CpPrx5 was located in 293T nucleus and cytoplasm and CpMafK was located in 293T nucleus. GST-Pull down verified that CpMafK and CpPrx5 could bind in vitro. These results indicated that Prx5 had antioxidant function and could protects DNA from oxidative damage, and participated in transcriptional regulation by combining with the transcription factor MafK. In addition, MafK could combine with Nrf2 to regulate the downstream target gene Prx5.
Collapse
Affiliation(s)
- Xinying Cao
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China
| | - Wuting Lu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China.
| | - Yang Gang
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China
| | - Baoqing Hu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China.
| | - Chungen Wen
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
3
|
Fan F, Podar K. The Role of AP-1 Transcription Factors in Plasma Cell Biology and Multiple Myeloma Pathophysiology. Cancers (Basel) 2021; 13:2326. [PMID: 34066181 PMCID: PMC8151277 DOI: 10.3390/cancers13102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy characterized by the clonal expansion of malignant plasma cells within the bone marrow. Activator Protein-1 (AP-1) transcription factors (TFs), comprised of the JUN, FOS, ATF and MAF multigene families, are implicated in a plethora of physiologic processes and tumorigenesis including plasma cell differentiation and MM pathogenesis. Depending on the genetic background, the tumor stage, and cues of the tumor microenvironment, specific dimeric AP-1 complexes are formed. For example, AP-1 complexes containing Fra-1, Fra-2 and B-ATF play central roles in the transcriptional control of B cell development and plasma cell differentiation, while dysregulation of AP-1 family members c-Maf, c-Jun, and JunB is associated with MM cell proliferation, survival, drug resistance, bone marrow angiogenesis, and bone disease. The present review article summarizes our up-to-date knowledge on the role of AP-1 family members in plasma cell differentiation and MM pathophysiology. Moreover, it discusses novel, rationally derived approaches to therapeutically target AP-1 TFs, including protein-protein and protein-DNA binding inhibitors, epigenetic modifiers and natural products.
Collapse
Affiliation(s)
- Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China;
| | - Klaus Podar
- Department of Internal Medicine II, University Hospital Krems, Mitterweg 10, 3500 Krems an der Donau, Austria
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems an der Donau, Austria
| |
Collapse
|
4
|
Rimoldi I, Bucci R, Feni L, Santagostini L, Facchetti G, Pellegrino S. Exploring the copper binding ability of Mets7 hCtr-1 protein domain and His7 derivative: An insight in Michael addition catalysis. J Pept Sci 2020; 27:e3289. [PMID: 33094563 DOI: 10.1002/psc.3289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Mets7 is a methionine-rich motif present in hCtr-1 transporter that is involved in copper cellular trafficking. Its ability to bind Cu(I) was recently exploited to develop metallopeptide catalysts for Henry condensation. Here, the catalytic activity of Mets7-Cu(I) complex in Michael addition reactions has been evaluated. Furthermore, His7 peptide, in which Met residues have been substituted with His ones, was also prepared. This substitution allowed His7 to coordinate Cu (II), with the obtainment of a stable turn conformation as evicted by CD experiments. His7-Cu (II) proved also to be a better catalyst than Mets7-Cu(I) in the addition reaction. In particular, when the substrate was the (E)-1-phenyl-3-(pyridin-2-yl)prop-2-en-1-one, a conversion of 71% and a significative 58% of e.e. was observed.
Collapse
Affiliation(s)
- Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Raffaella Bucci
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Lucia Feni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | | | - Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Sara Pellegrino
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Imbratta C, Hussein H, Andris F, Verdeil G. c-MAF, a Swiss Army Knife for Tolerance in Lymphocytes. Front Immunol 2020; 11:206. [PMID: 32117317 PMCID: PMC7033575 DOI: 10.3389/fimmu.2020.00206] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Beyond its well-admitted role in development and organogenesis, it is now clear that the transcription factor c-Maf has owned its place in the realm of immune-related transcription factors. Formerly introduced solely as a Th2 transcription factor, the role attributed to c-Maf has gradually broadened over the years and has extended to most, if not all, known immune cell types. The influence of c-Maf is particularly prominent among T cell subsets, where c-Maf regulates the differentiation as well as the function of multiple subsets of CD4 and CD8 T cells, lending it a crucial position in adaptive immunity and anti-tumoral responsiveness. Recent research has also revealed the role of c-Maf in controlling Th17 responses in the intestine, positioning it as an essential factor in intestinal homeostasis. This review aims to present and discuss the recent advances highlighting the particular role played by c-Maf in T lymphocyte differentiation, function, and homeostasis.
Collapse
Affiliation(s)
- Claire Imbratta
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Hind Hussein
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabienne Andris
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles, Brussels, Belgium
| | - Grégory Verdeil
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Cyphert HA, Walker EM, Hang Y, Dhawan S, Haliyur R, Bonatakis L, Avrahami D, Brissova M, Kaestner KH, Bhushan A, Powers AC, Stein R. Examining How the MAFB Transcription Factor Affects Islet β-Cell Function Postnatally. Diabetes 2019; 68:337-348. [PMID: 30425060 PMCID: PMC6341297 DOI: 10.2337/db18-0903] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022]
Abstract
The sustained expression of the MAFB transcription factor in human islet β-cells represents a distinct difference in mice. Moreover, mRNA expression of closely related and islet β-cell-enriched MAFA does not peak in humans until after 9 years of age. We show that the MAFA protein also is weakly produced within the juvenile human islet β-cell population and that MafB expression is postnatally restricted in mouse β-cells by de novo DNA methylation. To gain insight into how MAFB affects human β-cells, we developed a mouse model to ectopically express MafB in adult mouse β-cells using MafA transcriptional control sequences. Coexpression of MafB with MafA had no overt impact on mouse β-cells, suggesting that the human adult β-cell MAFA/MAFB heterodimer is functionally equivalent to the mouse MafA homodimer. However, MafB alone was unable to rescue the islet β-cell defects in a mouse mutant lacking MafA in β-cells. Of note, transgenic production of MafB in β-cells elevated tryptophan hydroxylase 1 mRNA production during pregnancy, which drives the serotonin biosynthesis critical for adaptive maternal β-cell responses. Together, these studies provide novel insight into the role of MAFB in human islet β-cells.
Collapse
Affiliation(s)
- Holly A Cyphert
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Emily M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Yan Hang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Beckman Research Institute, City of Hope, Duarte, CA
| | - Rachana Haliyur
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Lauren Bonatakis
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Dana Avrahami
- Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Anil Bhushan
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
7
|
Si N, Song Z, Meng X, Li X, Xiao W, Zhang X. A novel MAF missense mutation leads to congenital nuclear cataract by impacting the transactivation of crystallin and noncrystallin genes. Gene 2019; 692:113-118. [PMID: 30659945 DOI: 10.1016/j.gene.2019.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/01/2019] [Accepted: 01/11/2019] [Indexed: 12/27/2022]
Abstract
The transcription factor v-maf avain musculoaponeurotic fibrosarcoma oncogene homolog (MAF) plays an important role in lens development. It contains a unique extended homology region (EHR) in the DNA binding domain. MAF mutations are associated with phenotypically distinct forms of congenital cataract and show different effects on the transactivation of target genes. Mutations in the MAF EHR region were rarely reported and their corresponding phenotype and impact on target genes' transactivation were not evaluated. A three- generation Chinese family with congenital cataract was recruited. The patients in the family present non-syndromic congenital nuclear and lamellar opacities. A novel MAF mutation (c.812 T > A, p.Val271Glu) was identified by targeted next-generation sequencing. The mutation is in highly conserved EHR region of MAF and co-segregates with the cataract in the family. It is predicted to be pathogenic by multiple algorithms and is absent in a control population. Dual luciferase activity assay shows the mutation significantly impair the transcriptional activity of four crystallin genes (CRYAA, CRYBA4, CRYBA1, and CRYGA) and two non-crystallin genes (HMOX1 and KDELR2). Herein, we report a novel missense mutation in the MAF EHR region of the DNA binding domain in a family with congenital cataract. The mutation is associated with non-syndromic bilateral nuclear cataract and impacts the transactivation of cataract associated genes involved in lens structure and stress response.
Collapse
Affiliation(s)
- Nuo Si
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Zixun Song
- Department of Ophthalmology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaolu Meng
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xinru Li
- Department of Ophthalmology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wei Xiao
- Department of Ophthalmology, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
8
|
Contini A, Ferri N, Bucci R, Lupo MG, Erba E, Gelmi ML, Pellegrino S. Peptide modulators of Rac1/Tiam1 protein-protein interaction: An alternative approach for cardiovascular diseases. Biopolymers 2017; 110. [PMID: 29178143 DOI: 10.1002/bip.23089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023]
Abstract
Rac1 GTPase interaction with guanine nucleotide exchange factor Tiam1 is involved in several cancer types and cardiovascular diseases. Although small molecules interfering with their protein-protein interaction (PPI) were identified and studied, the ability of small peptides and peptide mimics acting as Rac1/Tiam1 PPI inhibitors has not been yet explored. Using computational alanine scanning (CAS), the "hot" interfacial residues have been determined allowing the design of a small library of putative PPI inhibitors. In particular, the insertion of an unnatural alpha, alpha disubstituted amino acid, that is norbornane amino acid, and the side chain stapling have been evaluated regarding both conformational stability and biological activity. REMD calculations and CD studies have indicated that one single norbornane amino acid at the N-terminus is not sufficient to stabilize the helix structure, while the side-chain stapling is a more efficient strategy. Furthermore, both engineered peptides have been found able to reduce Rac1-GTP levels in cultured human smooth muscle cells, while wild type sequence is not active.
Collapse
Affiliation(s)
- Alessandro Contini
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Raffaella Bucci
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Emanuela Erba
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
| | - Sara Pellegrino
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
| |
Collapse
|
9
|
Dapiaggi F, Pieraccini S, Potenza D, Vasile F, Macut H, Pellegrino S, Aliverti A, Sironi M. Computer aided design and NMR characterization of an oligopeptide targeting the Ebola virus VP24 protein. NEW J CHEM 2017. [DOI: 10.1039/c6nj04014d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nona-peptide RS, designed on the basis of computational studies, is able to interact with Ebola VP24 and potentially inhibit its interaction with KPNA.
Collapse
Affiliation(s)
| | - Stefano Pieraccini
- Dipartimento di Chimica
- Università degli Studi di Milano
- Milano
- Italy
- Istituto di Scienze e Tecnologie Molecolari (INSTM)
| | | | - Francesca Vasile
- Dipartimento di Chimica
- Università degli Studi di Milano
- Milano
- Italy
| | - Helena Macut
- DISFARM-Dipartimento di Scienze Farmaceutiche
- Sezione Chimica Generale e Organica “A. Marchesini”
- Milano
- Italy
| | - Sara Pellegrino
- DISFARM-Dipartimento di Scienze Farmaceutiche
- Sezione Chimica Generale e Organica “A. Marchesini”
- Milano
- Italy
| | | | - Maurizio Sironi
- Dipartimento di Chimica
- Università degli Studi di Milano
- Milano
- Italy
- Istituto di Scienze e Tecnologie Molecolari (INSTM)
| |
Collapse
|
10
|
Maffucci I, Contini A. Improved Computation of Protein–Protein Relative Binding Energies with the Nwat-MMGBSA Method. J Chem Inf Model 2016; 56:1692-704. [DOI: 10.1021/acs.jcim.6b00196] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Irene Maffucci
- Dipartimento di Scienze Farmaceutiche
− Sezione di Chimica Generale e Organica “Alessandro
Marchesini”, Università degli Studi di Milano, Via
Venezian, 21, 20133 Milano, Italy
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche
− Sezione di Chimica Generale e Organica “Alessandro
Marchesini”, Università degli Studi di Milano, Via
Venezian, 21, 20133 Milano, Italy
| |
Collapse
|
11
|
Maffucci I, Contini A. An Updated Test of AMBER Force Fields and Implicit Solvent Models in Predicting the Secondary Structure of Helical, β-Hairpin, and Intrinsically Disordered Peptides. J Chem Theory Comput 2016; 12:714-27. [DOI: 10.1021/acs.jctc.5b01211] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Irene Maffucci
- Dipartimento di Scienze Farmaceutiche
− Sezione di Chimica Generale e Organica “Alessandro
Marchesini”, Università degli Studi di Milano, Via
Venezian, 21 20133 Milano, Italy
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche
− Sezione di Chimica Generale e Organica “Alessandro
Marchesini”, Università degli Studi di Milano, Via
Venezian, 21 20133 Milano, Italy
| |
Collapse
|
12
|
Abstract
Drugs that target intracellular signalling pathways have markedly improved progression-free survival of patients with cancers who were previously regarded as untreatable. However, the rapid emergence of therapeutic resistance, as a result of bypass signalling or downstream mutation within kinase-mediated signalling cascades, has curtailed the benefit gained from these therapies. Such resistance mechanisms are facilitated by the linearity and redundancy of kinase signalling pathways. We argue that, in each cancer, the dysregulation of key transcriptional regulators not only defines the cancer phenotype but is essential for its development and maintenance. Furthermore, we propose that, as therapeutic targets, these transcriptional regulators are less prone to bypass by alternative mutational events or clonal heterogeneity, and therefore we must rekindle our efforts to directly target transcriptional regulation across a broad range of cancers.
Collapse
Affiliation(s)
- Thomas J Gonda
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence (PACE), 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Robert G Ramsay
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Oncology Department and the Pathology Department, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
13
|
Maffucci I, Clayden J, Contini A. Origin of Helical Screw Sense Selectivity Induced by Chiral Constrained Cα-Tetrasubstituted α-Amino Acids in Aib-based Peptides. J Phys Chem B 2015; 119:14003-13. [PMID: 26457452 DOI: 10.1021/acs.jpcb.5b07050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanisms behind the propensity of chiral constrained Cα-tetrasubstituted amino acids (cCTAAs) to induce one particular helical screw sense, when included in the Ac-Aib2-cCTAA-Aib2-NHMe peptide model, were studied through replica exchange molecular dynamics, potential of mean force, and quantum theory of atoms in molecules calculations. We observed that cCTAAs exert their effect on helical screw sense selectivity through the positioning of the side chain to generate steric hindrance in either the (-x, +y, +z) or (+x, +y, -z) sectors of a right-handed 3D Cartesian space, where the z axis corresponds to the axis of the helix and the Cα lies on the +y semiaxis (0, +y, 0). The different strengthening of the noncovalent interactions, also comprising C-H···O interactions, exerted by the cCTAA in the right-handed or left-handed helix was also found important to define the preference of a cCTAA for a particular helix screw sense.
Collapse
Affiliation(s)
- Irene Maffucci
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Generale e Organica "Alessandro Marchesini", Università degli Studi di Milano , Via Venezian, 21, 20133 Milano, Italy
| | - Jonathan Clayden
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, U.K
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Generale e Organica "Alessandro Marchesini", Università degli Studi di Milano , Via Venezian, 21, 20133 Milano, Italy
| |
Collapse
|
14
|
Maffucci I, Pellegrino S, Clayden J, Contini A. Mechanism of stabilization of helix secondary structure by constrained Cα-tetrasubstituted α-amino acids. J Phys Chem B 2015; 119:1350-61. [PMID: 25528885 DOI: 10.1021/jp510775e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The theoretical basis behind the ability of constrained Cα-tetrasubstituted amino acids (CTAAs) to induce stable helical conformations has been studied through Replica Exchange Molecular Dynamics Potential of Mean Force Quantum Theory of Atoms In Molecules calculations on Ac-l-Ala-CTAA-l-Ala-Aib-l-Ala-NHMe peptide models. We found that the origin of helix stabilization by CTAAs can be ascribed to at least two complementary mechanisms limiting the backbone conformational freedom: steric hindrance predominantly in the (+x,+y,-z) sector of a right-handed 3D Cartesian space, where the z axis coincides with the helical axis and the Cα of the CTAA lies on the +y axis (0,+y,0), and the establishment of additional and relatively strong C-H···O interactions involving the CTAA.
Collapse
Affiliation(s)
- Irene Maffucci
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Generale e Organica "Alessandro Marchesini", Università degli Studi di Milano , Via Venezian, 21 20133 Milano, Italy
| | | | | | | |
Collapse
|