1
|
Malcı K, Watts E, Roberts TM, Auxillos JY, Nowrouzi B, Boll HO, Nascimento CZSD, Andreou A, Vegh P, Donovan S, Fragkoudis R, Panke S, Wallace E, Elfick A, Rios-Solis L. Standardization of Synthetic Biology Tools and Assembly Methods for Saccharomyces cerevisiae and Emerging Yeast Species. ACS Synth Biol 2022; 11:2527-2547. [PMID: 35939789 PMCID: PMC9396660 DOI: 10.1021/acssynbio.1c00442] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
As redesigning organisms using engineering principles
is one of
the purposes of synthetic biology (SynBio), the standardization of
experimental methods and DNA parts is becoming increasingly a necessity.
The synthetic biology community focusing on the engineering of Saccharomyces cerevisiae has been in the foreground in this
area, conceiving several well-characterized SynBio toolkits widely
adopted by the community. In this review, the molecular methods and
toolkits developed for S. cerevisiae are discussed
in terms of their contributions to the required standardization efforts.
In addition, the toolkits designed for emerging nonconventional yeast
species including Yarrowia lipolytica, Komagataella
phaffii, and Kluyveromyces marxianus are
also reviewed. Without a doubt, the characterized DNA parts combined
with the standardized assembly strategies highlighted in these toolkits
have greatly contributed to the rapid development of many metabolic
engineering and diagnostics applications among others. Despite the
growing capacity in deploying synthetic biology for common yeast genome
engineering works, the yeast community has a long journey to go to
exploit it in more sophisticated and delicate applications like bioautomation.
Collapse
Affiliation(s)
- Koray Malcı
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Emma Watts
- School of Biological Sciences, University of Edinburgh, Kings Buildings, EH9 3JW Edinburgh, United Kingdom
| | | | - Jamie Yam Auxillos
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom.,Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Kings Buildings, EH9 3FF Edinburgh, United Kingdom
| | - Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Heloísa Oss Boll
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Federal District 70910-900, Brazil
| | | | - Andreas Andreou
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Peter Vegh
- Edinburgh Genome Foundry, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Sophie Donovan
- Edinburgh Genome Foundry, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Rennos Fragkoudis
- Edinburgh Genome Foundry, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Edward Wallace
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom.,Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Kings Buildings, EH9 3FF Edinburgh, United Kingdom
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
2
|
Jayaprakash S, Drakulic S, Zhao Z, Sander B, Golas MM. The ATPase BRG1/SMARCA4 is a protein interaction platform that recruits BAF subunits and the transcriptional repressor REST/NRSF in neural progenitor cells. Mol Cell Biochem 2019; 461:171-182. [DOI: 10.1007/s11010-019-03600-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
|
3
|
Golas MM, Jayaprakash S, Le LTM, Zhao Z, Heras Huertas V, Jensen IS, Yuan J, Sander B. Modulating the Expression Strength of the Baculovirus/Insect Cell Expression System: A Toolbox Applied to the Human Tumor Suppressor SMARCB1/SNF5. Mol Biotechnol 2018; 60:820-832. [DOI: 10.1007/s12033-018-0107-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
4
|
Drakulic S, Rai J, Petersen SV, Golas MM, Sander B. Folding and assembly defects of pyruvate dehydrogenase deficiency-related variants in the E1α subunit of the pyruvate dehydrogenase complex. Cell Mol Life Sci 2018; 75:3009-3026. [PMID: 29445841 PMCID: PMC11105750 DOI: 10.1007/s00018-018-2775-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 12/18/2022]
Abstract
The pyruvate dehydrogenase complex (PDC) bridges glycolysis and the citric acid cycle. In human, PDC deficiency leads to severe neurodevelopmental delay and progressive neurodegeneration. The majority of cases are caused by variants in the gene encoding the PDC subunit E1α. The molecular effects of the variants, however, remain poorly understood. Using yeast as a eukaryotic model system, we have studied the substitutions A189V, M230V, and R322C in yeast E1α (corresponding to the pathogenic variants A169V, M210V, and R302C in human E1α) and evaluated how substitutions of single amino acid residues within different functional E1α regions affect PDC structure and activity. The E1α A189V substitution located in the heterodimer interface showed a more compact conformation with significant underrepresentation of E1 in PDC and impaired overall PDC activity. The E1α M230V substitution located in the tetramer and heterodimer interface showed a relatively more open conformation and was particularly affected by low thiamin pyrophosphate concentrations. The E1α R322C substitution located in the phosphorylation loop of E1α resulted in PDC lacking E3 subunits and abolished overall functional activity. Furthermore, we show for the E1α variant A189V that variant E1α accumulates in the Hsp60 chaperonin, but can be released upon ATP supplementation. Our studies suggest that pathogenic E1α variants may be associated with structural changes of PDC and impaired folding of E1α.
Collapse
Affiliation(s)
- Srdja Drakulic
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Jay Rai
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Monika M Golas
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany.
| | - Bjoern Sander
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, 8000, Aarhus C, Denmark.
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
5
|
Le LTM, Nyengaard JR, Golas MM, Sander B. Vectors for Expression of Signal Peptide-Dependent Proteins in Baculovirus/Insect Cell Systems and Their Application to Expression and Purification of the High-Affinity Immunoglobulin Gamma Fc Receptor I in Complex with Its Gamma Chain. Mol Biotechnol 2018; 60:31-40. [PMID: 29143175 DOI: 10.1007/s12033-017-0041-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Integral membrane proteins play a central role in various cellular functions and are important therapeutic targets. However, technical challenges in the overexpression and purification of membrane proteins often represent a limiting factor for biochemical and structural studies. Here, we constructed a set of vectors, derivatives of MultiBac vectors that can be used to express proteins with a cleavable N-terminal signal peptide in insect cells. We propose these vectors for expression of type I membrane proteins and other secretory pathway proteins that require the signal recognition particle for translocation to the endoplasmic reticulum (ER). The vectors code for N-terminal and C-terminal affinity tags including 3 × FLAG and Twin-Strep, which represent tags compatible with efficient translocation to the ER as well as with purification under mild conditions that preserve protein structure and function. As a model, we used our system to express and purify the engineered high-affinity immunoglobulin gamma Fc receptor I (CD64) in complex with its gamma subunit (γ-chain). We demonstrate that CD64 expressed in complex with the γ-chain is functional in immunoglobulin G (IgG) binding. The sedimentation of CD64 in complex with IgG suggests individual CD64/IgG complexes in addition to formation of high-molecular weight complexes. In summary, our vectors can be used as a tool for expression of membrane proteins, other secretory pathway proteins and their protein complexes.
Collapse
Affiliation(s)
- Le T M Le
- Stereology and EM Laboratory, Department of Clinical Medicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Jens R Nyengaard
- Stereology and EM Laboratory, Department of Clinical Medicine, Aarhus University, 8000, Aarhus C, Denmark
- Core Center for Molecular Morphology, Department of Clinical Medicine, Aarhus University Hospital, 8000, Aarhus C, Denmark
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, 8000, Aarhus C, Denmark
| | - Monika M Golas
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233/1234, 8000, Aarhus C, Denmark
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Bjoern Sander
- Stereology and EM Laboratory, Department of Clinical Medicine, Aarhus University, 8000, Aarhus C, Denmark.
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, 8000, Aarhus C, Denmark.
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
6
|
Jensen IS, Inui K, Drakulic S, Jayaprakash S, Sander B, Golas MM. Expression of Flp Protein in a Baculovirus/Insect Cell System for Biotechnological Applications. Protein J 2017; 36:332-342. [PMID: 28660316 DOI: 10.1007/s10930-017-9724-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The Saccharomyces cerevisiae Flp protein is a site-specific recombinase that recognizes and binds to the Flp recognition target (FRT) site, a specific sequence comprised of at least two inverted repeats separated by a spacer. Binding of four monomers of Flp is required to mediate recombination between two FRT sites. Because of its site-specific cleavage characteristics, Flp has been established as a genome engineering tool. Amongst others, Flp is used to direct insertion of genes of interest into eukaryotic cells based on single and double FRT sites. A Flp-encoding plasmid is thereby typically cotransfected with an FRT-harboring donor plasmid. Moreover, Flp can be used to excise DNA sequences that are flanked by FRT sites. Therefore, the aim of this study was to determine whether Flp protein and its step-arrest mutant, FlpH305L, recombinantly expressed in insect cells, can be used for biotechnological applications. Using a baculovirus system, the proteins were expressed as C-terminally 3 × FLAG-tagged proteins and were purified by anti-FLAG affinity selection. As demonstrated by electrophoretic mobility shift assays (EMSAs), purified Flp and FlpH305L bind to FRT-containing DNA. Furthermore, using a cell assay, purified Flp was shown to be active in recombination and to mediate efficient insertion of a donor plasmid into the genome of target cells. Thus, these proteins can be used for applications such as DNA-binding assays, in vitro recombination, or genome engineering.
Collapse
Affiliation(s)
- Ida S Jensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Ken Inui
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Srdja Drakulic
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Sakthidasan Jayaprakash
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Bjoern Sander
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Monika M Golas
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark.
| |
Collapse
|
7
|
Synergistic anti-cancer effects of epigenetic drugs on medulloblastoma cells. Cell Oncol (Dordr) 2017; 40:263-279. [PMID: 28429280 DOI: 10.1007/s13402-017-0319-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2017] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Medulloblastomas are aggressive brain malignancies. While considerable progress has been made in the treatment of medulloblastoma patients with respect to overall survival, these patients are still at risk of developing neurologic and cognitive deficits as a result of anti-cancer therapies. It is hypothesized that targeted molecular therapies represent a better treatment option for medulloblastoma patients. Therefore, the aim of the present study was to test a panel of epigenetic drugs for their effect on medulloblastoma cells under mild hypoxic conditions that reflect the physiological concentrations of oxygen in the brain. METHODS Protein levels of histone deacetylase 1 (HDAC1) and DNA methyltransferase 1 (DNMT1) in medulloblastoma-derived cells (Daoy and D283 Med), as well as in developing and differentiated brain cells, were determined and compared. Class I and II histone deacetylase inhibitors (HDACi) and a DNMT inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC), were applied to Daoy and D283 Med cells, and their effects were studied using viability, apoptosis and cancer sphere assays. RESULTS We found that in HDAC1 and DNMT1 overexpressing medulloblastoma-derived cells, cell death was induced under various epigenetic drug conditions tested. At low HDACi concentrations, however, a pro-proliferative effect was observed. Parthenolide, a drug that affects cancer stem cells, was found to be efficient in inducing cell death in both cell lines tested. In contrast, we found that Daoy cells were more resistant to 5-aza-dC than D283 Med cells. When suberoylanilide hydroxamic acid (SAHA) and parthenolide were individually applied to both cell lines in combination with 5-aza-dC, a synergistic effect on cell survival was observed. CONCLUSIONS Our current results suggest that the application of HDACi in combination with drugs that target DNMT may represent a promising option for the treatment of medulloblastoma.
Collapse
|
8
|
Inui K, Zhao Z, Yuan J, Jayaprakash S, Le LTM, Drakulic S, Sander B, Golas MM. Stepwise assembly of functional C-terminal REST/NRSF transcriptional repressor complexes as a drug target. Protein Sci 2017; 26:997-1011. [PMID: 28218430 DOI: 10.1002/pro.3142] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 01/15/2023]
Abstract
In human cells, thousands of predominantly neuronal genes are regulated by the repressor element 1 (RE1)-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF). REST/NRSF represses transcription of these genes in stem cells and non-neuronal cells by tethering corepressor complexes. Aberrant REST/NRSF expression and intracellular localization are associated with cancer and neurodegeneration in humans. To date, detailed molecular analyses of REST/NRSF and its C-terminal repressor complex have been hampered largely by the lack of sufficient amounts of purified REST/NRSF and its complexes. Therefore, the aim of this study was to express and purify human REST/NRSF and its C-terminal interactors in a baculovirus multiprotein expression system as individual proteins and coexpressed complexes. All proteins were enriched in the nucleus, and REST/NRSF was isolated as a slower migrating form, characteristic of nuclear REST/NRSF in mammalian cells. Both REST/NRSF alone and its C-terminal repressor complex were functionally active in histone deacetylation and histone demethylation and bound to RE1/neuron-restrictive silencer element (NRSE) sites. Additionally, the mechanisms of inhibition of the small-molecule drugs 4SC-202 and SP2509 were analyzed. These drugs interfered with the viability of medulloblastoma cells, where REST/NRSF has been implicated in cancer pathogenesis. Thus, a resource for molecular REST/NRSF studies and drug development has been established.
Collapse
Affiliation(s)
- Ken Inui
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Zongpei Zhao
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Juan Yuan
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Le T M Le
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Srdja Drakulic
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bjoern Sander
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Monika M Golas
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.,Institute of Human Genetics, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|