1
|
Nam K, Shao Y, Major DT, Wolf-Watz M. Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development. ACS OMEGA 2024; 9:7393-7412. [PMID: 38405524 PMCID: PMC10883025 DOI: 10.1021/acsomega.3c09084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes, and allosteric regulation. Beyond mechanistic studies, computational enzyme modeling has emerged as an essential tool for computer-aided enzyme design and the rational discovery of covalent drugs for targeted therapies. Overall, enzyme design/engineering and covalent drug development can greatly benefit from our understanding of the detailed mechanisms of enzymes, such as protein dynamics, entropy contributions, and allostery, as revealed by computational studies. Such a convergence of different research approaches is expected to continue, creating synergies in enzyme research. This review, by outlining the ever-expanding field of enzyme research, aims to provide guidance for future research directions and facilitate new developments in this important and evolving field.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yihan Shao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
2
|
Xu Y, Harris ME, York DM, Wong KY. Altered Mechanisms for Acid-Catalyzed RNA Cleavage and Isomerization Reactions Models. J Chem Theory Comput 2023; 19:1322-1332. [PMID: 36753428 PMCID: PMC10069163 DOI: 10.1021/acs.jctc.2c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
RNA strand cleavage by 2'-O-transphosphorylation is catalyzed not only by numerous nucleolytic RNA enzymes (ribozymes) but also by hydroxide or hydronium ions. In experiments, both cleavage of the 5'-linked nucleoside and isomerization between 3',5'- and 2',5'-phosphodiesters occur under acidic conditions, while only the cleavage reaction is observed under basic conditions. An ab initio path-integral approach for simulating kinetic isotope effects is used to reveal the reaction mechanisms for RNA cleavage and isomerization reactions under acidic conditions. Moreover, the proposed mechanisms can also be combined through the experimental pH-rate profiles.
Collapse
Affiliation(s)
- Yuqing Xu
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Darrin M York
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kin-Yiu Wong
- Department of Physics, High Performance Cluster Computing Centre, Institute of Advanced Materials, Institute of Computational and Theoretical Studies, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong
- Institute of Research and Continuing Education, Hong Kong Baptist University (Shenzhen), Shenzhen 518057, China
| |
Collapse
|
3
|
Weissman B, Ekesan Ş, Lin HC, Gardezi S, Li NS, Giese TJ, McCarthy E, Harris ME, York DM, Piccirilli JA. Dissociative Transition State in Hepatitis Delta Virus Ribozyme Catalysis. J Am Chem Soc 2023; 145:2830-2839. [PMID: 36706353 PMCID: PMC10112047 DOI: 10.1021/jacs.2c10079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ribonucleases and small nucleolytic ribozymes are both able to catalyze RNA strand cleavage through 2'-O-transphosphorylation, provoking the question of whether protein and RNA enzymes facilitate mechanisms that pass through the same or distinct transition states. Here, we report the primary and secondary 18O kinetic isotope effects for hepatitis delta virus ribozyme catalysis that reveal a dissociative, metaphosphate-like transition state in stark contrast to the late, associative transition states observed for reactions catalyzed by specific base, Zn2+ ions, or ribonuclease A. This new information provides evidence for a discrete ribozyme active site design that modulates the RNA cleavage pathway to pass through an altered transition state.
Collapse
Affiliation(s)
- Benjamin Weissman
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Hsuan-Chun Lin
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Shahbaz Gardezi
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Nan-Sheng Li
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Timothy J Giese
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Erika McCarthy
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Joseph A Piccirilli
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Giese TJ, Zeng J, Ekesan Ş, York DM. Combined QM/MM, Machine Learning Path Integral Approach to Compute Free Energy Profiles and Kinetic Isotope Effects in RNA Cleavage Reactions. J Chem Theory Comput 2022; 18:4304-4317. [PMID: 35709391 PMCID: PMC9283286 DOI: 10.1021/acs.jctc.2c00151] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a fast, accurate, and robust approach for determination of free energy profiles and kinetic isotope effects for RNA 2'-O-transphosphorylation reactions with inclusion of nuclear quantum effects. We apply a deep potential range correction (DPRc) for combined quantum mechanical/molecular mechanical (QM/MM) simulations of reactions in the condensed phase. The method uses the second-order density-functional tight-binding method (DFTB2) as a fast, approximate base QM model. The DPRc model modifies the DFTB2 QM interactions and applies short-range corrections to the QM/MM interactions to reproduce ab initio DFT (PBE0/6-31G*) QM/MM energies and forces. The DPRc thus enables both QM and QM/MM interactions to be tuned to high accuracy, and the QM/MM corrections are designed to smoothly vanish at a specified cutoff boundary (6 Å in the present work). The computational speed-up afforded by the QM/MM+DPRc model enables free energy profiles to be calculated that include rigorous long-range QM/MM interactions under periodic boundary conditions and nuclear quantum effects through a path integral approach using a new interface between the AMBER and i-PI software. The approach is demonstrated through the calculation of free energy profiles of a native RNA cleavage model reaction and reactions involving thio-substitutions, which are important experimental probes of the mechanism. The DFTB2+DPRc QM/MM free energy surfaces agree very closely with the PBE0/6-31G* QM/MM results, and it is vastly superior to the DFTB2 QM/MM surfaces with and without weighted thermodynamic perturbation corrections. 18O and 34S primary kinetic isotope effects are compared, and the influence of nuclear quantum effects on the free energy profiles is examined.
Collapse
Affiliation(s)
- Timothy J. Giese
- Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jinzhe Zeng
- Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M. York
- Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
5
|
Yoon S, Harris ME. Beyond the Plateau: pL Dependence of Proton Inventories as a Tool for Studying Ribozyme and Ribonuclease Catalysis. Biochemistry 2021; 60:2810-2823. [PMID: 34495648 DOI: 10.1021/acs.biochem.1c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acid/base catalysis is an important catalytic strategy used by ribonucleases and ribozymes; however, understanding the number and identity of functional groups involved in proton transfer remains challenging. The proton inventory (PI) technique analyzes the dependence of the enzyme reaction rate on the ratio of D2O to H2O and can provide information about the number of exchangeable sites that produce isotope effects and their magnitude. The Gross-Butler (GB) equation is used to evaluate H/D fractionation factors from PI data typically collected under conditions (i.e., a "plateau" in the pH-rate profile) assuming minimal change in active site residue ionization. However, restricting PI analysis to these conditions is problematic for many ribonucleases, ribozymes, and their variants due to ambiguity in the roles of active site residues, the lack of a plateau within the accessible pL range, or cooperative interactions between active site functional groups undergoing ionization. Here, we extend the integration of species distributions for alternative enzyme states in noncooperative models of acid/base catalysis into the GB equation, first used by Bevilacqua and colleagues for the HDV ribozyme, to develop a general population-weighted GB equation that allows simulation and global fitting of the three-dimensional relationship of the D2O ratio (n) versus pL versus kn/k0. Simulations using the GPW-GB equation of PI results for RNase A, HDVrz, and VSrz illustrate that data obtained at multiple selected pL values across the pL-rate profile can assist in the planning and interpreting of solvent isotope effect experiments to distinguish alternative mechanistic models.
Collapse
Affiliation(s)
- Suhyun Yoon
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
6
|
Giese TJ, Ekesan Ş, York DM. Extension of the Variational Free Energy Profile and Multistate Bennett Acceptance Ratio Methods for High-Dimensional Potential of Mean Force Profile Analysis. J Phys Chem A 2021; 125:4216-4232. [PMID: 33784093 DOI: 10.1021/acs.jpca.1c00736] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We redevelop the variational free energy profile (vFEP) method using a cardinal B-spline basis to extend the method for analyzing free energy surfaces (FESs) involving three or more reaction coordinates. We also implemented software for evaluating high-dimensional profiles based on the multistate Bennett acceptance ratio (MBAR) method which constructs an unbiased probability density from global reweighting of the observed samples. The MBAR method takes advantage of a fast algorithm for solving the unbinned weighted histogram (UWHAM)/MBAR equations which replaces the solution of simultaneous equations with a nonlinear optimization of a convex function. We make use of cardinal B-splines and multiquadric radial basis functions to obtain smooth, differentiable MBAR profiles in arbitrary high dimensions. The cardinal B-spline vFEP and MBAR methods are compared using three example systems that examine 1D, 2D, and 3D profiles. Both methods are found to be useful and produce nearly indistinguishable results. The vFEP method is found to be 150 times faster than MBAR when applied to periodic 2D profiles, but the MBAR method is 4.5 times faster than vFEP when evaluating unbounded 3D profiles. In agreement with previous comparisons, we find the vFEP method produces superior FESs when the overlap between umbrella window simulations decreases. Finally, the associative reaction mechanism of hammerhead ribozyme is characterized using 3D, 4D, and 6D profiles, and the higher-dimensional profiles are found to have smaller reaction barriers by as much as 1.5 kcal/mol. The methods presented here have been implemented into the FE-ToolKit software package along with new methods for network-wide free energy analysis in drug discovery.
Collapse
Affiliation(s)
- Timothy J Giese
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8087, United States
| | - Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8087, United States
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
7
|
Kim Y, Wower J, Maltseva N, Chang C, Jedrzejczak R, Wilamowski M, Kang S, Nicolaescu V, Randall G, Michalska K, Joachimiak A. Tipiracil binds to uridine site and inhibits Nsp15 endoribonuclease NendoU from SARS-CoV-2. Commun Biol 2021; 4:193. [PMID: 33564093 PMCID: PMC7873276 DOI: 10.1038/s42003-021-01735-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
SARS-CoV-2 Nsp15 is a uridine-specific endoribonuclease with C-terminal catalytic domain belonging to the EndoU family that is highly conserved in coronaviruses. As endoribonuclease activity seems to be responsible for the interference with the innate immune response, Nsp15 emerges as an attractive target for therapeutic intervention. Here we report the first structures with bound nucleotides and show how the enzyme specifically recognizes uridine moiety. In addition to a uridine site we present evidence for a second base binding site that can accommodate any base. The structure with a transition state analog, uridine vanadate, confirms interactions key to catalytic mechanisms. In the presence of manganese ions, the enzyme cleaves unpaired RNAs. This acquired knowledge was instrumental in identifying Tipiracil, an FDA approved drug that is used in the treatment of colorectal cancer, as a potential anti-COVID-19 drug. Using crystallography, biochemical, and whole-cell assays, we demonstrate that Tipiracil inhibits SARS-CoV-2 Nsp15 by interacting with the uridine binding pocket in the enzyme’s active site. Our findings provide new insights for the development of uracil scaffold-based drugs. Youngchang Kim, Jacek Wower, and colleagues explore the sequence specificity, metal ion dependence and catalytic mechanism of the Nsp15 endoribonuclease NendoU from SARS-CoV-2. The authors also solve five new crystal structures of the enzyme in complex with 5’UMP, 3’UMP, 5’cGpU, uridine 2′,3′-vanadate (transition state analog) and Tipiracil (uracil mimic), and demonstrate that Tipiracil inhibits SARS-CoV-2 Nsp15 by interacting with the uridine binding pocket in the enzyme’s active site.
Collapse
Affiliation(s)
- Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Jacek Wower
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Natalia Maltseva
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Changsoo Chang
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Mateusz Wilamowski
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60367, USA
| | - Soowon Kang
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, 60367, USA
| | - Vlad Nicolaescu
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, 60367, USA
| | - Glenn Randall
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, 60367, USA
| | - Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA. .,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA. .,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60367, USA.
| |
Collapse
|
8
|
Yang X, Wei R, Shi Y, Liu LL, Wu Y, Zhao Y, Stephan DW. Oxyphosphoranes as precursors to bridging phosphate-catecholate ligands. Chem Commun (Camb) 2021; 57:1194-1197. [PMID: 33439178 DOI: 10.1039/d0cc07736d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Examples of chelating ligands that incorporate P-O donors are seldom encountered. Herein, a series of novel bridging diphosphate ligand supported bimetallic Zr(iv), V(iii) and Ni(ii) complexes have been derived from reactions of the oxyphosphorane (C6Cl4O2)P(OEt)3 with the corresponding metal halides. The mechanism is probed and shown to involve elimination of ethyl halide, and ring opening affording the chelating phosphate-catecholate ligands.
Collapse
Affiliation(s)
- Xin Yang
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Rui Wei
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yaping Shi
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yile Wu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Douglas W Stephan
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. and Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON M5S3H6, Canada.
| |
Collapse
|
9
|
Mironov VF, Dimukhametov MN, Blinova YS, Karataeva FK. Simultaneous Formation of Cage and Spirane Pentaalkoxyphosphoranes in Reaction of 5,5-Dimethyl-2-(2-oxo-1,2-diphenylethoxy)-1,3,2-dioxaphosphorinane with Hexafluoroacetone. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220110109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Stevens DR, Hammes-Schiffer S. Examining the Mechanism of Phosphite Dehydrogenase with Quantum Mechanical/Molecular Mechanical Free Energy Simulations. Biochemistry 2020; 59:943-954. [PMID: 32031785 DOI: 10.1021/acs.biochem.9b01089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The projected decline of available phosphorus necessitates alternative methods to derive usable phosphate for fertilizer and other applications. Phosphite dehydrogenase oxidizes phosphite to phosphate with the cofactor NAD+ serving as the hydride acceptor. In addition to producing phosphate, this enzyme plays an important role in NADH cofactor regeneration processes. Mixed quantum mechanical/molecular mechanical free energy simulations were performed to elucidate the mechanism of this enzyme and to identify the protonation states of the substrate and product. Specifically, the finite temperature string method with umbrella sampling was used to generate the free energy surfaces and determine the minimum free energy paths for six different initial conditions that varied in the protonation state of the substrate and the position of the nucleophilic water molecule. In contrast to previous studies, the mechanism predicted by all six independent strings is a concerted but asynchronous dissociative mechanism in which hydride transfer from the phosphite substrate to NAD+ occurs prior to attack by the nucleophilic water molecule. His292 is identified as the most likely general base that deprotonates the attacking water molecule. However, Arg237 could also serve as this base if it were deprotonated and His292 were protonated prior to the main chemical transformation, although this scenario is less probable. The simulations indicate that the phosphite substrate is monoanionic in its active form and that the most likely product is dihydrogen phosphate. These mechanistic insights may be helpful for designing mutant enzymes or artificial constructs that convert phosphite to phosphate and NAD+ to NADH more effectively.
Collapse
Affiliation(s)
- David R Stevens
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
11
|
Ekesan Ş, York DM. Dynamical ensemble of the active state and transition state mimic for the RNA-cleaving 8-17 DNAzyme in solution. Nucleic Acids Res 2019; 47:10282-10295. [PMID: 31511899 PMCID: PMC6821293 DOI: 10.1093/nar/gkz773] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 02/01/2023] Open
Abstract
We perform molecular dynamics simulations, based on recent crystallographic data, on the 8-17 DNAzyme at four states along the reaction pathway to determine the dynamical ensemble for the active state and transition state mimic in solution. A striking finding is the diverse roles played by Na+ and Pb2+ ions in the electrostatically strained active site that impact all four fundamental catalytic strategies, and share commonality with some features recently inferred for naturally occurring hammerhead and pistol ribozymes. The active site Pb2+ ion helps to stabilize in-line nucleophilic attack, provides direct electrostatic transition state stabilization, and facilitates leaving group departure. A conserved guanine residue is positioned to act as the general base, and is assisted by a bridging Na+ ion that tunes the pKa and facilitates in-line fitness. The present work provides insight into how DNA molecules are able to solve the RNA-cleavage problem, and establishes functional relationships between the mechanism of these engineered DNA enzymes with their naturally evolved RNA counterparts. This adds valuable information to our growing body of knowledge on general mechanisms of phosphoryl transfer reactions catalyzed by RNA, proteins and DNA.
Collapse
Affiliation(s)
- Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
12
|
Gaines CS, Giese TJ, York DM. Cleaning Up Mechanistic Debris Generated by Twister Ribozymes Using Computational RNA Enzymology. ACS Catal 2019; 9:5803-5815. [PMID: 31328021 PMCID: PMC6641568 DOI: 10.1021/acscatal.9b01155] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The catalytic properties of RNA have been a subject of fascination and intense research since their discovery over 30 years ago. Very recently, several classes of nucleolytic ribozymes have emerged and been characterized structurally. Among these, the twister ribozyme has been center-stage, and a topic of debate about its architecture and mechanism owing to conflicting interpretations of different crystal structures, and in some cases conflicting interpretations of the same functional data. In the present work, we attempt to clean up the mechanistic "debris" generated by twister ribozymes using a comprehensive computational RNA enzymology approach aimed to provide a unified interpretation of existing structural and functional data. Simulations in the crystalline environment and in solution provide insight into the origins of observed differences in crystal structures, and coalesce on a common active site architecture, and dynamical ensemble in solution. We use GPU-accelerated free energy methods with enhanced sampling to ascertain microscopic nucleobase pK a values of the implicated general acid and base, from which predicted activity-pH profiles can be compared directly with experiments. Next, ab initio quantum mechanical/molecular mechanical (QM/MM) simulations with full dynamic solvation under periodic boundary conditions are used to determine mechanistic pathways through multi-dimensional free energy landscapes for the reaction. We then characterize the rate-controlling transition state, and make predictions about kinetic isotope effects and linear free energy relations. Computational mutagenesis is performed to explain the origin of rate effects caused by chemical modifications and make experimentally testable predictions. Finally, we provide evidence that helps to resolve conflicting issues related to the role of metal ions in catalysis. Throughout each stage, we highlight how a conserved L-platform structural motif, to- gether with a key L-anchor residue, forms the characteristic active site scaffold enabling each of the catalytic strategies to come together not only for the twister ribozyme, but the majority of the known small nucleolytic ribozyme classes.
Collapse
Affiliation(s)
- Colin S. Gaines
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Timothy J. Giese
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M. York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
13
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
14
|
Mironov VF, Ivkova GA, Abdrakhmanova LM, Mironova EV, Musin RZ, Cherkasov VK. Features of Reaction of 2-(5-Methyl-2-phenyl-2H-1,2,3-diazaphosphol-4-yl)-4H-benzo[e]-1,3,2-dioxaphosphorin-4-one with 1,2-Dicarbonyl Compounds. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s107036321803009x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Kasireddy C, Ellis JM, Bann JG, Mitchell-Koch KR. The Biophysical Probes 2-fluorohistidine and 4-fluorohistidine: Spectroscopic Signatures and Molecular Properties. Sci Rep 2017; 7:42651. [PMID: 28198426 PMCID: PMC5309746 DOI: 10.1038/srep42651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/11/2017] [Indexed: 11/09/2022] Open
Abstract
Fluorinated amino acids serve as valuable biological probes, by reporting on local protein structure and dynamics through 19F NMR chemical shifts. 2-fluorohistidine and 4-fluorohistidine, studied here with DFT methods, have even more capabilities for biophysical studies, as their altered pKa values, relative to histidine, allow for studies of the role of proton transfer and tautomeric state in enzymatic mechanisms. Considering the two tautomeric forms of histidine, it was found that 2-fluorohistidine primarily forms the common (for histidine) τ-tautomer at neutral pH, while 4-fluorohistidine exclusively forms the less common π-tautomer. This suggests the two isomers of fluorohistidine can also serve as probes of tautomeric form within biomolecules, both by monitoring NMR chemical shifts and by potential perturbation of the tautomeric equilibrium within biomolecules. Fluorine also enables assignment of tautomeric states in crystal structures. The differences in experimental pKa values between the isomers was found to arise from solvation effects, providing insight into the polarization and molecular properties of each isomer. Results also encompass 13C and 19F NMR chemical shifts, from both tautomers of 2-fluorohistidine and 4-fluorohistidine in a number of different environments. This work can serve as a guide for interpretation of spectroscopic results in biophysical studies employing 2-fluorohistidine and 4-fluorohistidine.
Collapse
Affiliation(s)
- Chandana Kasireddy
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, CV4 7AL, United States
| | - Jonathan M Ellis
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, CV4 7AL, United States
| | - James G Bann
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, CV4 7AL, United States
| | - Katie R Mitchell-Koch
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, CV4 7AL, United States
| |
Collapse
|
16
|
Harris ME, York DM, Piccirilli JA, Anderson VE. Kinetic Isotope Effect Analysis of RNA 2′- O -Transphosphorylation. Methods Enzymol 2017; 596:433-457. [DOI: 10.1016/bs.mie.2017.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Mironov VF, Dimukhametov MN, Efimov SV, Aminova RM, Karataeva FK, Krivolapov DB, Mironova EV, Klochkov VV. Stereoselective PCO/POC-Rearrangement of P-C-Cage Phosphorane in the Reaction of 4,5-Dimethyl-2-(2-oxo-1,2-diphenyl)ethoxy-1,3,2-dioxaphospholane with Hexafluoroacetone. J Org Chem 2016; 81:5837-50. [PMID: 27258739 DOI: 10.1021/acs.joc.6b00356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interaction of 4,5-dimethyl-2-(2-oxo-1,2-diphenyl)ethoxy-1,3,2-dioxaphospholane, bearing a carboxyl group in the γ-position with respect to the phosphorus atom and obtained from d,l-butanediol, with hexafluoroacetone (CCl4, -40 °C) leads to the simultaneous formation of regio- and stereoisomeric cage-like phosphoranes with phosphorus-carbon and phosphorus-oxygen bonds with a high stereoselectivity (>95%), whose structure was determined by 1D and 2D NMR spectroscopy and XRD. When stored as a solution in dichloromethane for one month, the PCO-isomer rearranges into the thermodynamically more stable POC-isomer of the cage-like phosphorane. Mild hydrolysis of the PCO/POC-isomers proceeds with a high chemoselectivity and leads to the formation of P(IV)-dioxaphospholane derivatives. Acidic hydrolysis of the POC-isomer leads to the formation of an oxirane derivative with an unexpectedly high stereoselectivity (>95%). DFT calculations (using the PBE functional) allowed us to obtain structures and energies of the initial phospholane, reaction products (PCO/POC-isomers), and an intermediate P(V)-oxaphosphirane.
Collapse
Affiliation(s)
- Vladimir F Mironov
- A.E. Arbuzov Institute of Organic and Physical Chemistry of the Russian Academy of Sciences , Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Mudaris N Dimukhametov
- A.E. Arbuzov Institute of Organic and Physical Chemistry of the Russian Academy of Sciences , Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Sergey V Efimov
- Institute of Physics, Kazan Federal University , Kremlevskaya str. 18, Kazan 420008, Russian Federation
| | - Roza M Aminova
- Institute of Physics, Kazan Federal University , Kremlevskaya str. 18, Kazan 420008, Russian Federation
| | - Farida Kh Karataeva
- Institute of Physics, Kazan Federal University , Kremlevskaya str. 18, Kazan 420008, Russian Federation
| | - Dmitry B Krivolapov
- A.E. Arbuzov Institute of Organic and Physical Chemistry of the Russian Academy of Sciences , Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Ekaterina V Mironova
- A.E. Arbuzov Institute of Organic and Physical Chemistry of the Russian Academy of Sciences , Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Vladimir V Klochkov
- Institute of Physics, Kazan Federal University , Kremlevskaya str. 18, Kazan 420008, Russian Federation
| |
Collapse
|