1
|
Clark LK, Cullati SN. Activation is only the beginning: mechanisms that tune kinase substrate specificity. Biochem Soc Trans 2025:BST20241420. [PMID: 39907081 DOI: 10.1042/bst20241420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 02/06/2025]
Abstract
Kinases are master coordinators of cellular processes, but to appropriately respond to the changing cellular environment, each kinase must recognize its substrates, target only those proteins on the correct amino acids, and in many cases, only phosphorylate a subset of potential substrates at any given time. Therefore, regulation of kinase substrate specificity is paramount to proper cellular function, and multiple mechanisms can be employed to achieve specificity. At the smallest scale, characteristics of the substrate such as its linear peptide motif and three-dimensional structure must be complementary to the substrate binding surface of the kinase. This surface is dynamically shaped by the activation loop and surrounding region of the substrate binding groove, which can adopt multiple conformations, often influenced by post-translational modifications. Domain-scale conformational changes can also occur, such as the interaction with pseudosubstrate domains or other regulatory domains in the kinase. Kinases may multimerize or form complexes with other proteins that influence their structure, function, and/or subcellular localization at different times and in response to different signals. This review will illustrate these mechanisms by examining recent work on four serine/threonine kinases: Aurora B, CaMKII, GSK3β, and CK1δ. We find that these mechanisms are often shared by this diverse set of kinases in diverse cellular contexts, so they may represent common strategies that cells use to regulate cell signaling, and it will be enlightening to continue to learn about the depth and robustness of kinase substrate specificity in additional systems.
Collapse
Affiliation(s)
- Landon K Clark
- Department of Chemistry, Western Washington University, Bellingham, WA, U.S.A
| | - Sierra N Cullati
- Department of Chemistry, Western Washington University, Bellingham, WA, U.S.A
| |
Collapse
|
2
|
Campbell ME, Ohler AR, McGill MJ, Buller AR. Promiscuity Guided Evolution of Decarboxylative Aldolases for Synthesis of Tertiary γ-Hydroxy Amino Acids. Angew Chem Int Ed Engl 2025:e202422109. [PMID: 39874202 DOI: 10.1002/anie.202422109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
Many applications of enzymes benefit from activity on structurally diverse substrates. Here, we sought to engineer the decarboxylative aldolase UstD to perform a challenging C-C bond forming reaction with ketone electrophiles. The parent enzyme had only low levels of activity, portending multiple rounds of directed evolution and a possibility that mutations may inadvertently increase the specificity of the enzyme for a single model screening substrate. We show how to intentionally guide UstD towards generality through multi-generational directed evolution using substrate-multiplexed screening (SUMS). Mutations outside of the active site that impact catalytic function were immediately revealed by shifts in promiscuity, even when the overall activity was lower. By re-targeting these distal residues that couple to the active site with saturation mutagenesis, broadly activating mutations were readily identified. When analyzing active site mutants, SUMS identified both specialist enzymes that would have more limited utility as well as generalist enzymes with complementary activity on diverse substrates. These new UstD enzymes catalyze convergent synthesis of non-canonical amino acids bearing tertiary alcohol side chains. This methodology is easy to implement and enables the rapid and effective evolution of enzymes to catalyze desirable new functions.
Collapse
Affiliation(s)
- Meghan E Campbell
- Department of Chemistry, University of Wisconsin-Madison, USA, Madison, WI 53706
| | - Amanda R Ohler
- Department of Chemistry, University of Wisconsin-Madison, USA, Madison, WI 53706
| | - Matthew J McGill
- Department of Chemistry, University of Wisconsin-Madison, USA, Madison, WI 53706
| | - Andrew R Buller
- Department of Chemistry, University of Wisconsin-Madison, USA, Madison, WI 53706
| |
Collapse
|
3
|
Angeli C, Atienza-Sanz S, Schröder S, Hein A, Li Y, Argyrou A, Osipyan A, Terholsen H, Schmidt S. Recent Developments and Challenges in the Enzymatic Formation of Nitrogen-Nitrogen Bonds. ACS Catal 2025; 15:310-342. [PMID: 39781334 PMCID: PMC11705231 DOI: 10.1021/acscatal.4c05268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
The biological formation of nitrogen-nitrogen (N-N) bonds represents intriguing reactions that have attracted much attention in the past decade. This interest has led to an increasing number of N-N bond-containing natural products (NPs) and related enzymes that catalyze their formation (referred to in this review as NNzymes) being elucidated and studied in greater detail. While more detailed information on the biosynthesis of N-N bond-containing NPs, which has only become available in recent years, provides an unprecedented source of biosynthetic enzymes, their potential for biocatalytic applications has been minimally explored. With this review, we aim not only to provide a comprehensive overview of both characterized NNzymes and hypothetical biocatalysts with putative N-N bond forming activity, but also to highlight the potential of NNzymes from a biocatalytic perspective. We also present and compare conventional synthetic approaches to linear and cyclic hydrazines, hydrazides, diazo- and nitroso-groups, triazenes, and triazoles to allow comparison with enzymatic routes via NNzymes to these N-N bond-containing functional groups. Moreover, the biosynthetic pathways as well as the diversity and reaction mechanisms of NNzymes are presented according to the direct functional groups currently accessible to these enzymes.
Collapse
Affiliation(s)
- Charitomeni Angeli
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sara Atienza-Sanz
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Simon Schröder
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Annika Hein
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Yongxin Li
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Alexander Argyrou
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Angelina Osipyan
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Henrik Terholsen
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sandy Schmidt
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| |
Collapse
|
4
|
Shah MZ, Rotich NC, Okorafor EA, Oestreicher Z, Demidovich G, Eapen J, Henoch Q, Kilbey J, Prempeh G, Bates A, Page RC, Lorigan GA, Konkolewicz D. Vinyl Ether Maleic Acid Polymers: Tunable Polymers for Self-Assembled Lipid Nanodiscs and Environments for Membrane Proteins. Biomacromolecules 2024; 25:6611-6623. [PMID: 39283997 PMCID: PMC11473226 DOI: 10.1021/acs.biomac.4c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Native lipid bilayer mimetics, including those that use amphiphilic polymers, are important for the effective study of membrane-bound peptides and proteins. Copolymers of vinyl ether monomers and maleic anhydride were developed with controlled molecular weights and hydrophobicity through reversible addition-fragmentation chain-transfer polymerization. After polymerization, the maleic anhydride units can be hydrolyzed, giving dicarboxylates. The vinyl ether and maleic anhydride copolymerized in a close to alternating manner, giving essentially alternating hydrophilic maleic acid units and hydrophobic vinyl ether units along the backbone after hydrolysis. The vinyl ether monomers and maleic acid polymers self-assembled with lipids, giving vinyl ether maleic acid lipid particles (VEMALPs) with tunable sizes controlled by either the vinyl ether hydrophobicity or the polymer molecular weight. These VEMALPs were able to support membrane-bound proteins and peptides, creating a new class of lipid bilayer mimetics.
Collapse
Affiliation(s)
- Muhammad Zeeshan Shah
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Nancy C. Rotich
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Evelyn A. Okorafor
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Zachery Oestreicher
- Center for Advanced Microscopy and Imaging, Miami University, Oxford, OH, 45056, USA
| | - Gabrielle Demidovich
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Jeremy Eapen
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Quinton Henoch
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Julia Kilbey
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Godfred Prempeh
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Alison Bates
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Richard C. Page
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| |
Collapse
|
5
|
Sannelli F, Sindahl NC, Warthegau SS, Jensen PR, Meier S. Conversion of Similar Xenochemicals to Dissimilar Products: Exploiting Competing Reactions in Whole-Cell Catalysis. Molecules 2023; 28:5157. [PMID: 37446819 DOI: 10.3390/molecules28135157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Many enzymes have latent activities that can be used in the conversion of non-natural reactants for novel organic conversions. A classic example is the conversion of benzaldehyde to a phenylacetyl carbinol, a precursor for ephedrine manufacture. It is often tacitly assumed that purified enzymes are more promising catalysts than whole cells, despite the lower cost and easier maintenance of the latter. Competing substrates inside the cell have been known to elicit currently hard-to-predict selectivities that are not easily measured inside the living cell. We employ NMR spectroscopic assays to rationally combine isomers for selective reactions in commercial S. cerevisiae. This approach uses internal competition between alternative pathways of aldehyde clearance in yeast, leading to altered selectivities compared to catalysis with the purified enzyme. In this manner, 4-fluorobenzyl alcohol and 2-fluorophenylacetyl carbinol can be formed with selectivities in the order of 90%. Modification of the cellular redox state can be used to tune product composition further. Hyperpolarized NMR shows that the cellular reaction and pathway usage are affected by the xenochemical. Overall, we find that the rational construction of ternary or more complex substrate mixtures can be used for in-cell NMR spectroscopy to optimize the upgrading of similar xenochemicals to dissimilar products with cheap whole-cell catalysts.
Collapse
Affiliation(s)
- Francesca Sannelli
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Bygning 207, 2800 Kongens Lyngby, Denmark
| | - Nikoline Corell Sindahl
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Bygning 207, 2800 Kongens Lyngby, Denmark
| | - Stefan S Warthegau
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Bygning 207, 2800 Kongens Lyngby, Denmark
| | - Pernille Rose Jensen
- Department of Health Technology, Technical University of Denmark, Elektrovej 349, 2800 Kongens Lyngby, Denmark
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Bygning 207, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Substrate multiplexed protein engineering facilitates promiscuous biocatalytic synthesis. Nat Commun 2022; 13:5242. [PMID: 36068220 PMCID: PMC9448781 DOI: 10.1038/s41467-022-32789-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Enzymes with high activity are readily produced through protein engineering, but intentionally and efficiently engineering enzymes for an expanded substrate scope is a contemporary challenge. One approach to address this challenge is Substrate Multiplexed Screening (SUMS), where enzyme activity is measured on competing substrates. SUMS has long been used to rigorously quantitate native enzyme specificity, primarily for in vivo settings. SUMS has more recently found sporadic use as a protein engineering approach but has not been widely adopted by the field, despite its potential utility. Here, we develop principles of how to design and interpret SUMS assays to guide protein engineering. This rich information enables improving activity with multiple substrates simultaneously, identifies enzyme variants with altered scope, and indicates potential mutational hot-spots as sites for further engineering. These advances leverage common laboratory equipment and represent a highly accessible and customizable method for enzyme engineering. Efficient engineering of enzymes for expanded substrate scope is currently challenging. Here, the authors develop simple principles of how to design and interpret Substrate Multiplexed Screening assays to guide protein engineering to enable activity improvements with simultaneously with multiple substrates.
Collapse
|
7
|
Mathur Y, Vartak AR, Hazra AB. Guardian of cobamide diversity: Probing the role of CobT in lower ligand activation in the biosynthesis of vitamin B 12 and other cobamide cofactors. Methods Enzymol 2022; 668:25-59. [PMID: 35589196 DOI: 10.1016/bs.mie.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Enzymes catalyze a wide variety of reactions with exquisite precision under crowded conditions within cellular environments. When encountered with a choice of small molecules in their vicinity, even though most enzymes continue to be specific about the substrate they pick, some others are able to accept a range of substrates and subsequently produce a variety of products. The biosynthesis of Vitamin B12, an essential nutrient required by humans involves a multi-substrate α-phosphoribosyltransferase enzyme CobT that activates the lower ligand of B12. Vitamin B12 is a member of the cobamide family of cofactors which share a common tetrapyrrolic corrin scaffold with a centrally coordinated cobalt ion, and an upper and a lower ligand. The structural difference between B12 and other cobamides mainly arises from variations in the lower ligand, which is attached to the activated corrin ring by CobT and other downstream enzymes. In this chapter, we describe the steps involved in identifying and reconstituting the activity of new CobT homologs by deriving lessons from those previously characterized. We then highlight biochemical techniques to study the unique properties of these homologs. Finally, we describe a pairwise substrate competition assay to rank CobT substrate preference, a general method that can be applied for the study of other multi-substrate enzymes. Overall, the analysis with CobT provides insights into the range of cobamides that can be synthesized by an organism or a community, complementing efforts to predict cobamide diversity from complex metagenomic data.
Collapse
Affiliation(s)
- Yamini Mathur
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, India
| | - Aniket R Vartak
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, India
| | - Amrita B Hazra
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, India; Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, India.
| |
Collapse
|
8
|
Solhtalab M, Klein AR, Aristilde L. Hierarchical Reactivity of Enzyme-Mediated Phosphorus Recycling from Organic Mixtures by Aspergillus niger Phytase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2295-2305. [PMID: 33305954 DOI: 10.1021/acs.jafc.0c05924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biological recycling of inorganic phosphorus (Pi) from organic phosphorus (Po) compounds by phosphatase-type enzymes, including phytases, is an important contributor to the pool of bioavailable P to plants and microorganisms. However, studies of mixed-substrate reactions with these enzymes are lacking. Here, we explore the reactivity of a phytase extract from the fungus Aspergillus niger toward a heterogeneous mixture containing, in addition to phytate, different structures of environmentally relevant Po compounds such as ribonucleotides and sugar phosphates. Using a high-resolution liquid chromatography-mass spectrometry method to monitor simultaneously the parent Po compounds and their by-products, we captured sequential substrate-specific evolution of Pi from the mixture, with faster hydrolysis of multiphosphorylated compounds (phytate, diphosphorylated sugars, and di- and tri-phosphorylated ribonucleotides) than hydrolysis of monophosphorylated compounds (monophosphorylated sugars and monophosphorylated ribonucleotides). The interaction mechanisms and energies revealed by molecular docking simulations of each Po compound within the enzyme's active site explained the substrate hierarchy observed experimentally. Specifically, the favorable orientation for binding of the negatively charged phosphate moieties with respect to the positive potential surface of the active site was important. Collectively, our findings provide mechanistic insights about the broad but hierarchical role of phytase-type enzymes in Pi recycling from the heterogeneous assembly of Po compounds in agricultural soils or wastes.
Collapse
Affiliation(s)
- Mina Solhtalab
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Annaleise R Klein
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, United States
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Ludmilla Aristilde
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, United States
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Srinivasan B. Explicit Treatment of Non-Michaelis-Menten and Atypical Kinetics in Early Drug Discovery*. ChemMedChem 2020; 16:899-918. [PMID: 33231926 DOI: 10.1002/cmdc.202000791] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 12/27/2022]
Abstract
Biological systems are highly regulated. They are also highly resistant to sudden perturbations enabling them to maintain the dynamic equilibrium essential to sustain life. This robustness is conferred by regulatory mechanisms that influence the activity of enzymes/proteins within their cellular context to adapt to changing environmental conditions. However, the initial rules governing the study of enzyme kinetics were mostly tested and implemented for cytosolic enzyme systems that were easy to isolate and/or recombinantly express. Moreover, these enzymes lacked complex regulatory modalities. Now, with academic labs and pharmaceutical companies turning their attention to more-complex systems (for instance, multiprotein complexes, oligomeric assemblies, membrane proteins and post-translationally modified proteins), the initial axioms defined by Michaelis-Menten (MM) kinetics are rendered inadequate, and the development of a new kind of kinetic analysis to study these systems is required. This review strives to present an overview of enzyme kinetic mechanisms that are atypical and, oftentimes, do not conform to the classical MM kinetics. Further, it presents initial ideas on the design and analysis of experiments in early drug-discovery for such systems, to enable effective screening and characterisation of small-molecule inhibitors with desirable physiological outcomes.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Mechanistic Biology and Profiling Discovery Sciences, R&D, AstraZeneca, 310, Milton Rd, Milton CB4 0WG, Cambridge, UK
| |
Collapse
|
10
|
Discordant Effects of Putative Lysine Acetyltransferase Inhibitors in Biochemical and Living Systems. Cells 2019; 8:cells8091022. [PMID: 31480793 PMCID: PMC6770547 DOI: 10.3390/cells8091022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
Lysine acetyltransferases (KATs) are exquisitely fine-tuned to target specific lysine residues on many proteins, including histones, with aberrant acetylation at distinct lysines implicated in different pathologies. However, researchers face a lack of molecular tools to probe the importance of site-specific acetylation events in vivo. Because of this, there can be a disconnect between the predicted in silico or in vitro effects of a drug and the actual observable in vivo response. We have previously reported on how an in vitro biochemical analysis of the site-specific effects of the compound C646 in combination with the KAT p300 can accurately predict changes in histone acetylation induced by the same compound in cells. Here, we build on this effort by further analyzing a number of reported p300 modulators, while also extending the analysis to correlate the effects of these drugs to developmental and phenotypical changes, utilizing cellular and zebrafish model systems. While this study demonstrates the utility of biochemical models as a starting point for predicting in vivo activity of multi-site targeting KATs, it also highlights the need for the development of new enzyme inhibitors that are more specific to the regulation of KAT activity in vivo.
Collapse
|
11
|
Zhao J, Harris ME. Distributive enzyme binding controlled by local RNA context results in 3' to 5' directional processing of dicistronic tRNA precursors by Escherichia coli ribonuclease P. Nucleic Acids Res 2019; 47:1451-1467. [PMID: 30496557 PMCID: PMC6379654 DOI: 10.1093/nar/gky1162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/17/2018] [Accepted: 11/11/2018] [Indexed: 12/16/2022] Open
Abstract
RNA processing by ribonucleases and RNA modifying enzymes often involves sequential reactions of the same enzyme on a single precursor transcript. In Escherichia coli, processing of polycistronic tRNA precursors involves separation into individual pre-tRNAs by one of several ribonucleases followed by 5′ end maturation by ribonuclease P. A notable exception are valine and lysine tRNAs encoded by three polycistronic precursors that follow a recently discovered pathway involving initial 3′ to 5′ directional processing by RNase P. Here, we show that the dicistronic precursor containing tRNAvalV and tRNAvalW undergoes accurate and efficient 3′ to 5′ directional processing by RNase P in vitro. Kinetic analyses reveal a distributive mechanism involving dissociation of the enzyme between the two cleavage steps. Directional processing is maintained despite swapping or duplicating the two tRNAs consistent with inhibition of processing by 3′ trailer sequences. Structure-function studies identify a stem–loop in 5′ leader of tRNAvalV that inhibits RNase P cleavage and further enforces directional processing. The results demonstrate that directional processing is an intrinsic property of RNase P and show how RNA sequence and structure context can modulate reaction rates in order to direct precursors along specific pathways.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|
12
|
Jimenez-Rosales A, Flores-Merino MV. Tailoring Proteins to Re-Evolve Nature: A Short Review. Mol Biotechnol 2018; 60:946-974. [DOI: 10.1007/s12033-018-0122-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Tanabe K, Liu J, Kato D, Kurumizaka H, Yamatsugu K, Kanai M, Kawashima SA. LC-MS/MS-based quantitative study of the acyl group- and site-selectivity of human sirtuins to acylated nucleosomes. Sci Rep 2018; 8:2656. [PMID: 29422688 PMCID: PMC5805777 DOI: 10.1038/s41598-018-21060-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Chromatin structure and gene expression are dynamically regulated by posttranslational modifications of histones. Recent advance in mass spectrometry has identified novel types of lysine acylations, such as butyrylation and malonylation, whose functions and regulations are likely different from those of acetylation. Sirtuins, nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, catalyze various deacylations. However, it is poorly understood how distinct sirtuins regulate the histone acylation states of nucleosomes that have many lysine residues. Here, we provide mass spectrometry-based quantitative information about the acyl group- and site-selectivity of all human sirtuins on acylated nucleosomes. The acyl group- and site-selectivity of each sirtuin is unique to its subtype. Sirt5 exclusively removes negatively-charged acyl groups, while Sirt1/2/3/6/7 preferentially remove hydrophobic acyl groups; Sirt1 and Sirt3 selectively remove acetyl group more than butyryl group, whereas Sirt2 and Sirt6 showed the opposite selectivity. Investigating site-selectivity for active sirtuins revealed acylated lysines on H4 tails to be poor substrates and acylated H3K18 to be a good substrate. Furthermore, we found Sirt7 to be a robust deacylase of H3K36/37, and its activity reliant on nucleosome-binding at its C-terminal basic region. All together, our quantitative dataset provides a useful resource in understanding chromatin regulations by histone acylations.
Collapse
Affiliation(s)
- Kana Tanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,JST-ERATO, Kanai Life Science Catalysis Project, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jiaan Liu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Daiki Kato
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,JST-ERATO, Kanai Life Science Catalysis Project, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,JST-ERATO, Kanai Life Science Catalysis Project, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,JST-ERATO, Kanai Life Science Catalysis Project, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
14
|
Costa IM, Schultz L, de Araujo Bianchi Pedra B, Leite MSM, Farsky SHP, de Oliveira MA, Pessoa A, Monteiro G. Recombinant L-asparaginase 1 from Saccharomyces cerevisiae: an allosteric enzyme with antineoplastic activity. Sci Rep 2016; 6:36239. [PMID: 27824095 PMCID: PMC5099943 DOI: 10.1038/srep36239] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 10/12/2016] [Indexed: 01/16/2023] Open
Abstract
L-asparaginase (L-ASNase) (EC 3.5.1.1) is an important enzyme for the treatment of acute lymphoblastic leukaemia. Currently, the enzyme is obtained from bacteria, Escherichia coli and Erwinia chrysanthemi. The bacterial enzymes family is subdivided in type I and type II; nevertheless, only type II have been employed in therapeutic proceedings. However, bacterial enzymes are susceptible to induce immune responses, leading to a high incidence of adverse effects compromising the effectiveness of the treatment. Therefore, alternative sources of L-ASNase may be useful to reduce toxicity and enhance efficacy. The yeast Saccharomyces cerevisiae has the ASP1 gene responsible for encoding L-asparaginase 1 (ScASNase1), an enzyme predicted as type II, like bacterial therapeutic isoforms, but it has been poorly studied. Here we characterised ScASNase1 using a recombinant enzyme purified by affinity chromatography. ScASNase1 has specific activity of 196.2 U/mg and allosteric behaviour, like type I enzymes, but with a low K0.5 = 75 μM like therapeutic type II. We showed through site-directed mutagenesis that the T64-Y78-T141-K215 residues are involved in catalysis. Furthermore, ScASNase1 showed cytotoxicity for the MOLT-4 leukemic cell lineage. Our data show that ScASNase1 has characteristics described for the two subfamilies of l-asparaginase, types I and II, and may have promising antineoplastic properties.
Collapse
Affiliation(s)
- Iris Munhoz Costa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo/SP 05508-000, Brazil
| | - Leonardo Schultz
- Biosciences Institute, São Paulo State University - UNESP, Coastal Campus, São Vicente/SP 11330-900, Brazil
| | - Beatriz de Araujo Bianchi Pedra
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo/SP 05508-000, Brazil
| | - Mariana Silva Moreira Leite
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo/SP 05508-000, Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analysis School of Pharmaceutical Sciences, University of São Paulo, São Paulo/SP 05508-000, Brazil
| | - Marcos Antonio de Oliveira
- Biosciences Institute, São Paulo State University - UNESP, Coastal Campus, São Vicente/SP 11330-900, Brazil
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo/SP 05508-000, Brazil
| | - Gisele Monteiro
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo/SP 05508-000, Brazil
| |
Collapse
|