1
|
La Manna S, Cugudda A, Mercurio FA, Leone M, Fortuna S, Di Natale C, Lagreca E, Netti PA, Panzetta V, Marasco D. PEGylated SOCS3 Mimetics Encapsulated into PLGA-NPs as Selective Inhibitors of JAK/STAT Pathway in TNBC Cells. Int J Nanomedicine 2024; 19:7237-7251. [PMID: 39050870 PMCID: PMC11268778 DOI: 10.2147/ijn.s441205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction SOCS3 (suppressor of cytokine signaling 3) protein is a crucial regulator of cytokine-induced inflammation, and its administration has been shown to have therapeutic effects. Recently, we designed a chimeric proteomimetic of SOCS3, mimicking the interfacing regions of a ternary complex composed of SOCS3, JAK2 (Janus kinase 2) and gp130 (glycoprotein 130) proteins. The derived chimeric peptide, KIRCONG chim, demonstrated limited mimetic function owing to its poor water solubility. Methods We report investigations concerning a PEGylated variant of KIRCONG mimetic, named KIRCONG chim, bearing a PEG (Polyethylene glycol) moiety as a linker of noncontiguous SOCS3 regions. Its ability to bind to the catalytic domain of JAK2 was evaluated through MST (MicroScale Thermophoresis), as well as its stability in biological serum assays. The structural features of the cyclic compounds were investigated by CD (circular dichroism), nuclear magnetic resonance (NMR), and molecular dynamic (MD) studies. To evaluate the cellular effects, we employed a PLGA-nanoparticle as a delivery system after characterization using DLS and SEM techniques. Results KIRCONG chim PEG-revealed selective penetration into triple-negative breast cancer (TNBC) MDA-MB-231 cells with respect to the human breast epithelial cell line (MCF10A), acting as a potent inhibitor of STAT3 phosphorylation. Discussion Overall, the data indicated that miniaturization of the SOCS3 protein is a promising therapeutic approach for aberrant dysregulation of JAK/STAT during cancer progression.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, CIRPEB: Research Center on Bioactive Peptides- University of Naples Federico II, Naples, 80131, Italy
| | - Alessia Cugudda
- Department of Pharmacy, CIRPEB: Research Center on Bioactive Peptides- University of Naples Federico II, Naples, 80131, Italy
| | | | - Marilisa Leone
- Institute of Biostructures and Bioimaging (CNR), Naples, 80131, Italy
| | - Sara Fortuna
- Italian Institute of Technology (IIT), Genova, 16152, Italy
| | - Concetta Di Natale
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Elena Lagreca
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Paolo Antonio Netti
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Valeria Panzetta
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Research Center on Bioactive Peptides- University of Naples Federico II, Naples, 80131, Italy
| |
Collapse
|
2
|
Florio D, Luciano P, Di Natale C, Marasco D. The effects of histidine substitution of aromatic residues on the amyloidogenic properties of the fragment 264-277 of nucleophosmin 1. Bioorg Chem 2024; 147:107404. [PMID: 38678777 DOI: 10.1016/j.bioorg.2024.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Histidine (His) plays a key role in mediating protein interactions and its unique side chain determines pH responsive self-assembling processes and thus in the formation of nanostructures. In this study, To identify novel self-assembling bioinspired sequences, we analyzed a series of peptide sequences obtained through the point mutation of aromatic residues of 264-277 fragment of nucleophosmin 1 (NPM1) with single and double histidines. Through several orthogonal biophysical techniques and under different pH and ionic strength conditions we evaluated the effects of these substitutions in the amyloidogenic features of derived peptides. The results clearly indicate that both the type of aromatic mutated residue and its position can have different effect on amyloid-like behaviors. They corroborate the crucial role exerted by Tyr271 in the self-assembling process of CTD of NPM1 in AML mutated form and add novel insights in the accurate investigation of how side chain orientations can determine successful design of innovative bioinspired materials.
Collapse
Affiliation(s)
- Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Paolo Luciano
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Concetta Di Natale
- Department of Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
3
|
Florio D, Marasco D. Could Targeting NPM1c+ Misfolding Be a Promising Strategy for Combating Acute Myeloid Leukemia? Int J Mol Sci 2024; 25:811. [PMID: 38255885 PMCID: PMC10815591 DOI: 10.3390/ijms25020811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of diseases classified into various types on the basis of distinct features concerning the morphology, cytochemistry and cytogenesis of leukemic cells. Among the different subtypes, the group "AML with gene mutations" includes the variations of the gene of the multifunctional protein nucleophosmin 1 (NPM1). These mutations are the most frequent (~30-35% of AML adult patients and less in pediatric ones) and occur predominantly in the C-terminal domain (CTD) of NPM1. The most important mutation is the insertion at W288, which determines the frame shift W288Cfs12/Ffs12/Lfs*12 and leads to the addition of 2-12 amino acids, which hamper the correct folding of NPM1. This mutation leads to the loss of the nuclear localization signal (NoLS) and to aberrant cytoplasmic localization, denoted as NPM1c+. Many investigations demonstrated that interfering with the cellular location and oligomerization status of NPM1 can influence its biological functions, including the proper buildup of the nucleolus, and therapeutic strategies have been proposed to target NPM1c+, particularly the use of drugs able to re-direct NPM1 localization. Our studies unveiled a direct link between AML mutations and the neat amyloidogenic character of the CTDs of NPM1c+. Herein, with the aim of exploiting these conformational features, novel therapeutic strategies are proposed that rely on the induction of the selective self-cytotoxicity of leukemic blasts by focusing on agents such as peptides, peptoids or small molecules able to enhance amyloid aggregation and targeting selectively AML-NPM1c+ mutations.
Collapse
Affiliation(s)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| |
Collapse
|
4
|
La Manna S, Roviello V, Monaco V, Platts JA, Monti M, Gabano E, Ravera M, Marasco D. The inhibitory effects of platinum(II) complexes on amyloid aggregation: a theoretical and experimental approach. Dalton Trans 2023; 52:12677-12685. [PMID: 37655459 DOI: 10.1039/d3dt02187d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Platinum (Pt)(II) square planar complexes are well-known anticancer drugs whose Mechanism of Action (MOA) are finely tuned by the polar, hydrophobic and aromatic features of the ligands. In the attempt to translate this tunability to the identification of potential neurodrugs, herein, four Pt(II) complexes were investigated in their ability to modulate the self-aggregation processes of two amyloidogenic models: Sup35p7-13 and NPM1264-277 peptides. In particular, phenanthriplatin revealed the most efficient agent in the modulation of amyloid aggregation: through several biophysical assays, as Thioflavin T (ThT), electrospray ionization mass spectrometry (ESI-MS) and ultraviolet-visible (UV-vis) absorption spectroscopy, this complex revealed able to markedly suppress aggregation and to disassemble small soluble aggregates. This effect was due to a direct coordination of phenanthriplatin to the amyloid, with the loss of several ligands and different stoichiometries, by the formation of π-π and π-cation interactions as indicated from molecular dynamic simulations. Presented data support a growing and recent approach concerning the repurposing of metallodrugs as potential novel neurotherapeutics.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy.
| | - Valentina Roviello
- Department of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131, Naples, Italy
| | - James A Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131, Naples, Italy
| | - Elisabetta Gabano
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, Piazza S. Eusebio 5, 13100, Vercelli, Italy
| | - Mauro Ravera
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy.
| |
Collapse
|
5
|
La Manna S, Florio D, Panzetta V, Roviello V, Netti PA, Di Natale C, Marasco D. Hydrogelation tunability of bioinspired short peptides. SOFT MATTER 2022; 18:8418-8426. [PMID: 36300826 DOI: 10.1039/d2sm01385a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Supramolecular assemblies of short peptides are experiencing a stimulating flowering. Herein, we report a novel class of bioinspired pentapeptides, not bearing Phe, that form hydrogels with fibrillar structures. The inherent sequence comes from the fragment 269-273 of nucleophosmin 1 protein, that is normally involved in liquid-liquid phase separation processes into the nucleolus. By means of rheology, spectroscopy, and scanning microscopy the crucial roles of the extremities in the modulation of the mechanical properties of hydrogels were elucidated. Three of four peptide showed a typical shear-thinning profile and a self-assembly into hierarchical nanostructures fibers and two of them resulted biocompatible in MCF7 cells. The presence of an amide group at C-terminal extremity caused the fastest aggregation and the major content of structured intermediates during gelling process. The tunable mechanical and structural features of this class of hydrogels render derived supramolecular systems versatile and suitable for future biomedical applications.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy.
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy.
| | - Valeria Panzetta
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", 80125, Naples, Italy
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Valentina Roviello
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", 80125, Naples, Italy
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", 80125, Naples, Italy
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
6
|
Florio D, Roviello V, La Manna S, Napolitano F, Maria Malfitano A, Marasco D. Small molecules enhancers of amyloid aggregation of C-terminal domain of Nucleophosmin 1 in acute myeloid leukemia. Bioorg Chem 2022; 127:106001. [DOI: 10.1016/j.bioorg.2022.106001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
7
|
La Manna S, Florio D, Di Natale C, Lagreca E, Sibillano T, Giannini C, Marasco D. Type C mutation of nucleophosmin 1 acute myeloid leukemia: Consequences of intrinsic disorder. Biochim Biophys Acta Gen Subj 2022; 1866:130173. [PMID: 35597503 DOI: 10.1016/j.bbagen.2022.130173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/09/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Nucleophosmin 1 (NPM1) protein is a multifunctional nucleolar chaperone and its gene is the most frequently mutated in Acute Myeloid Leukemia (AML). AML mutations cause the unfolding of the C-terminal domain (CTD) and the protein delocalizing in the cytosol (NPM1c+). Marked aggregation endowed with an amyloid character was assessed as consequences of mutations. SCOPE Herein we analyzed the effects of type C mutation on two protein regions: i) a N-terminal extended version of the CTD, named Cterm_mutC and ii) a shorter polypeptide including the sequences of the second and third helices of the CTD, named H2_mutC. MAJOR CONCLUSIONS Both demonstrated able to self-assembly with different kinetics and conformational intermediates and to provide fibers presenting large flexible regions. GENERAL SIGNIFICANCE The present study adds a new piece of knowledge to the effects of AML-mutations on structural biology of Nucleophosmin 1, that could be exploited in therapeutic interventions targeting selectively NPMc+.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Italy; Istituto Italiano di Tecnologia, University of Naples "Federico II", Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Elena Lagreca
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Italy; Istituto Italiano di Tecnologia, University of Naples "Federico II", Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
8
|
Florio D, Di Natale C, Scognamiglio PL, Leone M, La Manna S, Di Somma S, Netti PA, Malfitano AM, Marasco D. Self-assembly of bio-inspired heterochiral peptides. Bioorg Chem 2021; 114:105047. [PMID: 34098256 DOI: 10.1016/j.bioorg.2021.105047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Peptide hydrogels, deriving from natural protein fragments, present unique advantages as compatibility and low cost of production that allow their wide application in different fields as wound healing, cell delivery and tissue regeneration. To engineer new biomaterials, the change of the chirality of single amino acids demonstrated a powerful approach to modulate the self-assembly mechanism. Recently we unveiled that a small stretch spanning residues 268-273 in the C-terminal domain (CTD) of Nucleophosmin 1 (NPM1) is an amyloid sequence. Herein, we performed a systematic D-scan of this sequence and analyzed the structural properties of obtained peptides. The conformational and kinetic features of self-aggregates and the morphologies of derived microstructures were investigated by means of different biophysical techniques, as well as the compatibility of hydrogels was evaluated in HeLa cells. All the investigated hexapeptides formed hydrogels even if they exhibited different conformational intermediates during aggregation, and they structural featured are finely tuned by introduced chiralities.
Collapse
Affiliation(s)
- Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Pasqualina Liana Scognamiglio
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging - CNR, 80134 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", Italy
| | - Sarah Di Somma
- Department of Translational Medical Science, University of Naples Federico II, 80131 Napoli, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples Federico II, 80131 Napoli, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Italy.
| |
Collapse
|
9
|
La Manna S, Florio D, Di Natale C, Napolitano F, Malfitano AM, Netti PA, De Benedictis I, Marasco D. Conformational consequences of NPM1 rare mutations: An aggregation perspective in Acute Myeloid Leukemia. Bioorg Chem 2021; 113:104997. [PMID: 34044346 DOI: 10.1016/j.bioorg.2021.104997] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Often proteins association is a physiological process used by cells to regulate their growth and to adapt to different stress conditions, including mutations. In the case of a subtype of Acute Myeloid Leukemia (AML), mutations of nucleophosmin 1 (NPM1) protein cause its aberrant cytoplasmatic mislocalization (NPMc+). We recently pointed out an amyloidogenic propensity of protein regions including the most common mutations of NPMc+ located in the C-terminal domain (CTD): they were able to form, in vitro, amyloid cytotoxic aggregates with fibrillar morphology. Herein, we analyzed the conformational characteristics of several peptides including rare AML mutations of NPMc+. By means of different spectroscopic, microscopic and cellular assays we evaluated the importance of amino acid composition, among rare AML mutations, to determine amyloidogenic propensity. This study could add a piece of knowledge to the structural consequences of mutations in cytoplasmatic NPM1c+.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica dei Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 8012 Naples, Italy
| | - Fabiana Napolitano
- Department of Translational Medical Science, University of Naples "Federico II", 80131 Naples, Italy
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples "Federico II", 80131 Naples, Italy
| | - Paolo A Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica dei Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 8012 Naples, Italy
| | | | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy.
| |
Collapse
|
10
|
Nicolaou ST, Hebditch M, Jonathan OJ, Verma CS, Warwicker J. PhosIDP: a web tool to visualize the location of phosphorylation sites in disordered regions. Sci Rep 2021; 11:9930. [PMID: 33976270 PMCID: PMC8113260 DOI: 10.1038/s41598-021-88992-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/19/2021] [Indexed: 11/08/2022] Open
Abstract
Charge is a key determinant of intrinsically disordered protein (IDP) and intrinsically disordered region (IDR) properties. IDPs and IDRs are enriched in sites of phosphorylation, which alters charge. Visualizing the degree to which phosphorylation modulates the charge profile of a sequence would assist in the functional interpretation of IDPs and IDRs. PhosIDP is a web tool that shows variation of charge and fold propensity upon phosphorylation. In combination with the displayed location of protein domains, the information provided by the web tool can lead to functional inferences for the consequences of phosphorylation. IDRs are components of many proteins that form biological condensates. It is shown that IDR charge, and its modulation by phosphorylation, is more tightly controlled for proteins that are essential for condensate formation than for those present in condensates but inessential.
Collapse
Affiliation(s)
- Sonia T Nicolaou
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Max Hebditch
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Owen J Jonathan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Jim Warwicker
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
11
|
Di Natale C, Natale CF, Florio D, Netti PA, Morelli G, Ventre M, Marasco D. Effects of surface nanopatterning on internalization and amyloid aggregation of the fragment 264-277 of Nucleophosmin 1. Colloids Surf B Biointerfaces 2020; 197:111439. [PMID: 33137636 DOI: 10.1016/j.colsurfb.2020.111439] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
The mechanical interpretation of the plethora of factors that governs cellular localization of amyloid aggregates is crucial for planning novel therapeutical interventions in neurodegenerative diseases since these aggregates exert a primary role in the proteostasis machinery. The uptake of Cell Penetrating Peptides (CPPs) conjugated with different amyloid polypeptides occurs via different endocytic processes regulated by cytoskeleton organization and cell morphology. Herein, we deepened the internalization of an amyloid system in cells cultured on nanopatterned surfaces that represent a powerful tool to shape cell and regulate its contractility. We analyzed the behavior of an amyloid model system, employing NPM1264-277 sequence, covalently conjugated to Tat fragment 48-60 as CPP. To investigate its internalization mechanism, we followed the formation of aggregates on two kinds of substrates: a flat and a nanopatterned surface. Herein, investigations during time were carried out by employing both confocal and second harmonic generation (SHG) microscopies. We showed that modifications of cellular environment affect peptide localization, its cytoplasmic translocation and the size of amyloid aggregates.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples "Federico II", Italy; Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Carlo F Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | | | - Maurizio Ventre
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Italy
| |
Collapse
|
12
|
Modulation of Amyloidogenic Peptide Aggregation by Photoactivatable CO-Releasing Ruthenium(II) Complexes. Pharmaceuticals (Basel) 2020; 13:ph13080171. [PMID: 32751396 PMCID: PMC7464691 DOI: 10.3390/ph13080171] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 01/19/2023] Open
Abstract
Three Ru(II)-based CO-releasing molecules featuring bidentate benzimidazole and terpyridine derivatives as ligands were investigated for their ability to modulate the aggregation process of the second helix of the C-terminal domain of nucleophosmin 1, namely nucleophosmin 1 (NPM1)264-277, a model amyloidogenic system, before and after irradiation at 365 nm. Thioflavin T (ThT) binding assays and UV/Vis absorption spectra indicate that binding of the compounds to the peptide inhibits its aggregation and that the inhibitory effect increases upon irradiation (half maximal effective concentration (EC50) values in the high micromolar range). Electrospray ionization mass spectrometry data of the peptide in the presence of one of these compounds confirm that the modulation of amyloid aggregation relies on the formation of adducts obtained when the Ru compounds react with the peptide upon releasing of labile ligands, like chloride and carbon monoxide. This mechanism of action explains the subtle different behavior of the three compounds observed in ThT experiments. Overall, data support the hypothesis that metal-based CO releasing molecules can be used to develop metal-based drugs with potential application as anti-amyloidogenic agents.
Collapse
|
13
|
Di Natale C, De Benedictis I, De Benedictis A, Marasco D. Metal-Peptide Complexes as Promising Antibiotics to Fight Emerging Drug Resistance: New Perspectives in Tuberculosis. Antibiotics (Basel) 2020; 9:antibiotics9060337. [PMID: 32570779 PMCID: PMC7344629 DOI: 10.3390/antibiotics9060337] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
In metal-peptide interactions, cations form stable complexes through bonds with coordinating groups as side chains of amino acids. These compounds, among other things, exert a wide variety of antimicrobial activities through structural changes of peptides upon metal binding and redox chemistry. They exhibit different mechanisms of action (MOA), including the modification of DNA/RNA, protein and cell wall synthesis, permeabilization and modulation of gradients of cellular membranes. Nowadays, the large increase in antibiotic resistance represents a crucial problem to limit progression at the pandemic level of the diseases that seemed nearly eradicated, such as tuberculosis (Tb). Mycobacterium tuberculosis (Mtb) is intrinsically resistant to many antibiotics due to chromosomal mutations which can lead to the onset of novel strains. Consequently, the maximum pharmaceutical effort should be focused on the development of new therapeutic agents and antimicrobial peptides can represent a valuable option as a copious source of potential bioactive compounds. The introduction of a metal center can improve chemical diversity and hence specificity and bioavailability while, in turn, the coordination to peptides of metal complexes can protect them and enhance their poor water solubility and air stability: the optimization of these parameters is strictly required for drug prioritization and to obtain potent inhibitors of Mtb infections with novel MOAs. Here, we present a panoramic review of the most recent findings in the field of metal complex-peptide conjugates and their delivery systems with the potential pharmaceutical application as novel antibiotics in Mtb infections.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Ilaria De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Arianna De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Correspondence:
| |
Collapse
|
14
|
Di Natale C, La Manna S, Avitabile C, Florio D, Morelli G, Netti PA, Marasco D. Engineered β-hairpin scaffolds from human prion protein regions: Structural and functional investigations of aggregates. Bioorg Chem 2020; 96:103594. [PMID: 31991323 DOI: 10.1016/j.bioorg.2020.103594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/16/2022]
Abstract
The investigation of conformational features of regions of amyloidogenic proteins are of great interest to deepen the structural changes and consequent self-aggregation mechanisms at the basis of many neurodegenerative diseases. Here we explore the effect of β-hairpin inducing motifs on regions of prion protein covering strands S1 and S2. In detail, we unveiled the structural and functional features of two model chimeric peptides in which natural sequences are covalently linked together by two dipeptides (l-Pro-Gly and d-Pro-Gly) that are known to differently enhance β-hairpin conformations but both containing N- and the C-terminal aromatic cap motifs to further improve interactions between natural strands. Spectroscopic investigations at solution state indicate that primary assemblies of the monomers of both constructs follow different aggregativemechanisms during the self-assembly: these distinctions, evidenced by CD and ThT emission spectroscopies, reflect into great morphological differences of nanostructures and suggest that rigid β-hairpin conformations greatly limit amyloid-like fibrillogenesis. Overall data confirm the important role exerted by the β-structure of regions S1 and S2 during the aggregation process and lead to speculate to its persistence even in unfolding conditions.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Concetta Avitabile
- Institute of Biostructures and Bioimaging (IBB), National Research Council, Via Mezzocannone 16, 80134 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; Task force di Ateneo"METODOLOGIE ANALITICHE PER LA SALVAGUARDIA DEI BENI CULTURALI" MASBC, University of Naples "Federico II", Italy.
| |
Collapse
|
15
|
Florio D, Iacobucci I, Ferraro G, Mansour AM, Morelli G, Monti M, Merlino A, Marasco D. Role of the Metal Center in the Modulation of the Aggregation Process of Amyloid Model Systems by Square Planar Complexes Bearing 2-(2'-pyridyl)benzimidazole Ligands. Pharmaceuticals (Basel) 2019; 12:ph12040154. [PMID: 31614832 PMCID: PMC6958441 DOI: 10.3390/ph12040154] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022] Open
Abstract
The effect of analogue Pd(II)-, Pt(II)-, and Au(III) compounds featuring 2-(2'-pyridyl)benzimidazole on the aggregation propensity of amyloid-like peptides derived from Aβ and from the C-terminal domain of nucleophosmin 1 was investigated. Kinetic profiles of aggregation were evaluated using thioflavin binding assays, whereas the interactions of the compounds with the peptides were studied by UV-Vis absorption spectroscopy and electrospray ionization mass spectrometry. The results indicate that the compounds modulate the aggregation of the investigated peptides using different mechanisms, suggesting that the reactivity of the metal center and the physicochemical properties of the metals (rather than those of the ligands and the geometry of the metal compounds) play a crucial role in determining the anti-aggregation properties.
Collapse
Affiliation(s)
- Daniele Florio
- Department of Pharmacy, University of Naples Federico II, Napoli 80134, Italy.
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
- CEINGE Biotecnologie Avanzate S.c.a r.l., University of Naples Federico II, Napoli 80145, Italy.
| | - Giarita Ferraro
- Department of Chemistry Ugo Schiff, University of Florence, Sesto Fiorentino (FI) 50019, Italy.
| | - Ahmed M Mansour
- Department of Chemistry, Faculty of Science, University of Cairo, Gamma street, Giza, 12613, Egypt.
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples Federico II, Napoli 80134, Italy.
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
- CEINGE Biotecnologie Avanzate S.c.a r.l., University of Naples Federico II, Napoli 80145, Italy.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Napoli 80134, Italy.
| |
Collapse
|
16
|
Florio D, Malfitano AM, Di Somma S, Mügge C, Weigand W, Ferraro G, Iacobucci I, Monti M, Morelli G, Merlino A, Marasco D. Platinum(II) O, S Complexes Inhibit the Aggregation of Amyloid Model Systems. Int J Mol Sci 2019; 20:ijms20040829. [PMID: 30769904 PMCID: PMC6413125 DOI: 10.3390/ijms20040829] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Platinum(II) complexes with different cinnamic acid derivatives as ligands were investigated for their ability to inhibit the aggregation process of amyloid systems derived from Aβ, Yeast Prion Protein Sup35p and the C-terminal domain of nucleophosmin 1. Thioflavin T binding assays and circular dichroism data indicate that these compounds strongly inhibit the aggregation of investigated peptides exhibiting IC50 values in the micromolar range. MS analysis confirms the formation of adducts between peptides and Pt(II) complexes that are also able to reduce amyloid cytotoxicity in human SH-SY5Y neuroblastoma cells. Overall data suggests that bidentate ligands based on β-hydroxy dithiocinnamic esters can be used to develop platinum or platinoid compounds with anti-amyloid aggregation properties.
Collapse
Affiliation(s)
- Daniele Florio
- Department of Pharmacy, University of Naples Federico II, Napoli 80134, Italy.
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples Federico II, Napoli 80131, Italy.
| | - Sarah Di Somma
- Department of Translational Medical Science, University of Naples Federico II, Napoli 80131, Italy.
| | - Carolin Mügge
- Institute for Inorganic and Analytical Chemistry, University of Jena, Jena 07743, Germany.
- Department of Biology, Ruhr-University Bochum, Bochum 44801, Germany.
| | - Wolfgang Weigand
- Institute for Inorganic and Analytical Chemistry, University of Jena, Jena 07743, Germany.
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
- CEINGE Biotecnologie Avanzate s.c.a r.l., University of Naples Federico II, Napoli 80145, Italy.
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
- CEINGE Biotecnologie Avanzate s.c.a r.l., University of Naples Federico II, Napoli 80145, Italy.
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples Federico II, Napoli 80134, Italy.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Napoli 80134, Italy.
| |
Collapse
|
17
|
La Manna S, Roviello V, Scognamiglio PL, Diaferia C, Giannini C, Sibillano T, Morelli G, Novellino E, Marasco D. Amyloid fibers deriving from the aromatic core of C-terminal domain of nucleophosmin 1. Int J Biol Macromol 2019; 122:517-525. [DOI: 10.1016/j.ijbiomac.2018.10.210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022]
|
18
|
Di Natale C, La Manna S, Malfitano AM, Di Somma S, Florio D, Scognamiglio PL, Novellino E, Netti PA, Marasco D. Structural insights into amyloid structures of the C-terminal region of nucleophosmin 1 in type A mutation of acute myeloid leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:637-644. [PMID: 30710643 DOI: 10.1016/j.bbapap.2019.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/11/2019] [Accepted: 01/26/2019] [Indexed: 12/22/2022]
Abstract
Acute myeloid leukemia (AML) is a clinically and a molecularly heterogeneous disease characterized by the accumulation of undifferentiated and uncontrolled proliferation of hematopoietic progenitor cells. The sub-group named "AML with gene mutations" includes mutations in nucleophosmin (NPM1) assumed as a distinct leukemic entity. NPM1 is an abundant multifunctional protein belonging to the nucleoplasmin family of nuclear chaperones. AML mutated protein is translocated into the cytoplasm (NPM1c+) retaining all functional domains except the loss of a unique NoLs (nucleolar localization signal) at the C-term domain (CTD) and the subsequent disruption of a three helix bundle as tertiary structure. The oligomeric state of NPM1 is of outmost importance for its biological roles and our previous studies linked an aggregation propensity of distinct regions of CTD to leukomogenic potentials of AML mutations. Here we investigated a polypeptide spanning the third and second helices of the bundle of type A mutated CTD. By a combination of several techniques, we ascertained the amyloid character of the aggregates and of fibrils resulting from a self-recognition mechanism. Further amyloid assemblies resulted cytoxic in MTT assay strengthening a new idea of a therapeutic strategy in AML consisting in the self-degradation of mutated NPM1.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples "Federico II", Italy; Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", Italy
| | | | - Sarah Di Somma
- Department of Translational Medicine, University of Naples "Federico II", Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", Italy
| | | | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Italy.
| |
Collapse
|
19
|
De Santis A, La Manna S, Krauss IR, Malfitano AM, Novellino E, Federici L, De Cola A, Di Matteo A, D'Errico G, Marasco D. Nucleophosmin-1 regions associated with acute myeloid leukemia interact differently with lipid membranes. Biochim Biophys Acta Gen Subj 2018; 1862:967-978. [PMID: 29330024 DOI: 10.1016/j.bbagen.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/04/2017] [Accepted: 01/08/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Augusta De Santis
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy
| | - Anna Maria Malfitano
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Luca Federici
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, University of Chieti "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Antonella De Cola
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, University of Chieti "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology, CNR, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy.
| |
Collapse
|
20
|
Hanley ML, Yoo TY, Sonnett M, Needleman DJ, Mitchison TJ. Chromosomal passenger complex hydrodynamics suggests chaperoning of the inactive state by nucleoplasmin/nucleophosmin. Mol Biol Cell 2017; 28:1444-1456. [PMID: 28404751 PMCID: PMC5449145 DOI: 10.1091/mbc.e16-12-0860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 01/30/2023] Open
Abstract
The chromosomal passenger complex (CPC) is a conserved, essential regulator of cell division. As such, significant anti-cancer drug development efforts have been focused on targeting it, most notably by inhibiting its AURKB kinase subunit. The CPC is activated by AURKB-catalyzed autophosphorylation on multiple subunits, but how this regulates CPC interactions with other mitotic proteins remains unclear. We investigated the hydrodynamic behavior of the CPC in Xenopus laevis egg cytosol using sucrose gradient sedimentation and in HeLa cells using fluorescence correlation spectroscopy. We found that autophosphorylation of the CPC decreases its sedimentation coefficient in egg cytosol and increases its diffusion coefficient in live cells, indicating a decrease in mass. Using immunoprecipitation coupled with mass spectrometry and immunoblots, we discovered that inactive, unphosphorylated CPC interacts with nucleophosmin/nucleoplasmin proteins, which are known to oligomerize into pentamers and decamers. Autophosphorylation of the CPC causes it to dissociate from nucleophosmin/nucleoplasmin. We propose that nucleophosmin/nucleoplasmin complexes serve as chaperones that negatively regulate the CPC and/or stabilize its inactive form, preventing CPC autophosphorylation and recruitment to chromatin and microtubules in mitosis.
Collapse
Affiliation(s)
- Mariah L Hanley
- Department of Systems Biology, Harvard Medical School, Boston, MA 02114-5701.,Department of Chemistry, Harvard University, Cambridge, MA 02138-2902
| | - Tae Yeon Yoo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138-2902
| | - Matthew Sonnett
- Department of Systems Biology, Harvard Medical School, Boston, MA 02114-5701
| | - Daniel J Needleman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138-2902.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138-2902
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02114-5701
| |
Collapse
|