1
|
Boumali R, Urli L, Naim M, Soualmia F, Kinugawa K, Petropoulos I, El Amri C. Kallikrein-related peptidase's significance in Alzheimer's disease pathogenesis: A comprehensive survey. Biochimie 2024; 226:77-90. [PMID: 38608749 DOI: 10.1016/j.biochi.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Alzheimer's disease (AD) and related dementias constitute an important global health challenge. Detailed understanding of the multiple molecular mechanisms underlying their pathogenesis constitutes a clue for the management of the disease. Kallikrein-related peptidases (KLKs), a lead family of serine proteases, have emerged as potential biomarkers and therapeutic targets in the context of AD and associated cognitive decline. Hence, KLKs were proposed to display multifaceted impacts influencing various aspects of neurodegeneration, including amyloid-beta aggregation, tau pathology, neuroinflammation, and synaptic dysfunction. We propose here a comprehensive survey to summarize recent findings, providing an overview of the main kallikreins implicated in AD pathophysiology namely KLK8, KLK6 and KLK7. We explore the interplay between KLKs and key AD molecular pathways, shedding light on their significance as potential biomarkers for early disease detection. We also discuss their pertinence as therapeutic targets for disease-modifying interventions to develop innovative therapeutic strategies aimed at halting or ameliorating the progression of AD and associated dementias.
Collapse
Affiliation(s)
- Rilès Boumali
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France
| | - Laureline Urli
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France
| | - Meriem Naim
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France
| | - Feryel Soualmia
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France
| | - Kiyoka Kinugawa
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France; AP-HP, Paris, France; Charles-Foix Hospital, Functional Exploration Unit for Older Patients, 94200 Ivry-sur-Seine, France
| | - Isabelle Petropoulos
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France.
| | - Chahrazade El Amri
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France.
| |
Collapse
|
2
|
Ge Y, Zhou C, Xiao X, Jin Z, Zhou L, Chen Z, Liu F, Yuan Q, Zhang G, Shan L, Tong P. A Novel Mutation of the KLK6 Gene in a Family With Knee Osteoarthritis. Front Genet 2021; 12:784176. [PMID: 34858488 PMCID: PMC8631809 DOI: 10.3389/fgene.2021.784176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
To investigate the correlation between gene mutation and knee osteoarthritis (KOA), a whole-exome sequencing (WES) was applied to analyze blood samples of four KOA patients and two normal subjects in a family. Gene mutations were identified by gene-trapping and high-throughput sequencing analysis across the differences between the patients and normal subjects. The interactive gene network analysis on the retrieval of interacting genes (STRING) database and the KOA-related genes expression data sets was performed. A possibly detrimental and nonsynonymous mutation at the kallikrein-related peptidase 6 (KLK6) gene (rs201586262, c. C80A, P27H) was identified and attracted our attention. KLK6 belongs to the kallikrein family of serine proteases and its serum level is known as a prevalent biomarker in inflammatory and malignant diseases. KLK6 expresses in the extracellular compartment for matrix degradation, highlighting that KLK6 plays a role in the pathogenesis of KOA. By using the gene databases, the KOA-related genes were mined after de-duplication and IL6 was selected as the most relevant gene through interactive analysis of protein-protein interaction (PPI) network. The data suggested that KLK6 gene mutation and the related expression alteration of IL6 gene might determine the occurrence of hereditary KOA. The is the first study discovering the gene mutation of KLK6 as a factor of pathogenesis of KOA, especially the hereditary KOA.
Collapse
Affiliation(s)
- Yanzhi Ge
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenfen Zhou
- National Genomics Data Center, CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiujuan Xiao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijiang Jin
- Department of Orthopaedics, The 9th People's Hospital of Hangzhou, Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zuxiang Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fucun Liu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qiang Yuan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoqing Zhang
- National Genomics Data Center, CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Mella C, Figueroa CD, Otth C, Ehrenfeld P. Involvement of Kallikrein-Related Peptidases in Nervous System Disorders. Front Cell Neurosci 2020; 14:166. [PMID: 32655372 PMCID: PMC7324807 DOI: 10.3389/fncel.2020.00166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Kallikrein-related peptidases (KLKs) are a family of serine proteases that when dysregulated may contribute to neuroinflammation and neurodegeneration. In the present review article, we describe what is known about their physiological and pathological roles with an emphasis on KLK6 and KLK8, two KLKs that are highly expressed in the adult central nervous system (CNS). Altered expression and activity of KLK6 have been linked to brain physiology and the development of multiple sclerosis. On the other hand, altered levels of KLK6 in the brain and serum of people affected by Alzheimer's disease and Parkinson's disease have been documented, pointing out to its function in amyloid metabolism and development of synucleinopathies. People who have structural genetic variants of KLK8 can suffer mental illnesses such as intellectual and learning disabilities, seizures, and autism. Increased expression of KLK8 has also been implicated in schizophrenia, bipolar disorder, and depression. Also, we discuss the possible link that exists between KLKs activity and certain viral infections that can affect the nervous system. Although little is known about the exact mechanisms that mediate KLKs function and their participation in neuroinflammatory and neurodegenerative disorders will open a new field to develop novel therapies to modulate their levels and/or activity and their harmful effects on the CNS.
Collapse
Affiliation(s)
- Cinthia Mella
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de Chile, Valdivia, Chile
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology, and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D. Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology, and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carola Otth
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology, and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
4
|
Sánchez-Tejeda JF, Sánchez-Ruiz JF, Salazar JR, Loza-Mejía MA. A Definition of "Multitargeticity": Identifying Potential Multitarget and Selective Ligands Through a Vector Analysis. Front Chem 2020; 8:176. [PMID: 32232029 PMCID: PMC7083080 DOI: 10.3389/fchem.2020.00176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/26/2020] [Indexed: 11/13/2022] Open
Abstract
The design of multitarget drugs is an essential area of research in Medicinal Chemistry since they have been proposed as potential therapeutics for the management of complex diseases. However, defining a multitarget drug is not an easy task. In this work, we propose a vector analysis for measuring and defining "multitargeticity." We developed terms, such as order and force of a ligand, to finally reach two parameters: multitarget indexes 1 and 2. The combination of these two indexes allows discrimination of multitarget drugs. Several training sets were constructed to test the usefulness of the indexes: an experimental training set, with real affinities, a docking training set, within theoretical values, and an extensive database training set. The indexes proved to be useful, as they were used independently in silico and experimental data, identifying actual multitarget compounds and even selective ligands in most of the training sets. We then applied these indexes to evaluate a virtual library of potential ligands for targets related to multiple sclerosis, identifying 10 compounds that are likely leads for the development of multitarget drugs based on their in silico behavior. With this work, a new milestone is made in the way of defining multitargeticity and in drug design.
Collapse
Affiliation(s)
| | | | | | - Marco A Loza-Mejía
- Facultad de Ciencias Químicas, Universidad La Salle, Mexico City, Mexico
| |
Collapse
|
5
|
Teles CM, Lammoglia LC, Juliano MA, Ruiz ALTG, Candido TZ, de Carvalho JE, Lima CSP, Abbehausen C. Novel anticancer Pd II complexes: The effect of the conjugation of transferrin binding peptide and the nature of halogen coordinated on antitumor activity. J Inorg Biochem 2019; 199:110754. [PMID: 31401348 DOI: 10.1016/j.jinorgbio.2019.110754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/14/2019] [Accepted: 06/23/2019] [Indexed: 01/06/2023]
Abstract
A series of PdII complexes with bis-(2-pyridylmethyl)glycine as a ligand of formula [PdX(bis-(2-pyridylmethyl)glycine)] where X = Cl, Br, I were prepared and the effect of the halogen nature in the antitumor activity of eight tumorigenic and one non-tumorigenic cell line was evaluated. The chloride derivative was further functionalized with a transferrin receptor binding peptide, generating the first PdII based metallopeptide. Its antitumor activity was also evaluated. However, among all the complexes, the chloride and iodine parent compounds showed the lowest GI50 values in the panel evaluated, and lowest GI50 than cisplatin in several cell lines. In contrast, the bromine derivative showed higher values of GI50 than chloride and iodine (around 30 - 50 μM). The same trend was observed for the bovine serum albumin binding constant with higher values for iodine, chlorine, and bromine in this order. In aqueous solution, the chloride is exchanged by water while the bromine and iodine are not. DNA was evaluated as a target and showed no significative interaction for all the compounds. The results suggest sulfur-rich proteins and not DNA as a target. This report represents the first PdII metallopeptide reported, its evaluation in solution and antitumor activity. This work opens the possibilities for further functionalization of PdII complexes and the importance of the halogen coordination in the design of novel metallodrugs.
Collapse
Affiliation(s)
- C M Teles
- Institute of Chemistry, University of Campinas - UNICAMP, PO Box 6154, 13083-970 Campinas, SP, Brazil
| | - L C Lammoglia
- Faculty of Pharmaceutical Sciences, University of Campinas, UNICAMP, 13083-871 Campinas, SP, Brazil
| | - M A Juliano
- Universidade Federal de São Paulo, Escola Paulista de Medicina, UNIFESP, 04063-062 São Paulo, SP, Brazil
| | - A L T G Ruiz
- Faculty of Pharmaceutical Sciences, University of Campinas, UNICAMP, 13083-871 Campinas, SP, Brazil
| | - T Z Candido
- Faculty of Medical Sciences, University of Campinas, UNICAMP, 13083-970 Campinas, SP, Brazil
| | - J E de Carvalho
- Faculty of Pharmaceutical Sciences, University of Campinas, UNICAMP, 13083-871 Campinas, SP, Brazil
| | - C S P Lima
- Faculty of Medical Sciences, University of Campinas, UNICAMP, 13083-970 Campinas, SP, Brazil
| | - C Abbehausen
- Institute of Chemistry, University of Campinas - UNICAMP, PO Box 6154, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
6
|
Figueroa CD, Molina L, Bhoola KD, Ehrenfeld P. Overview of tissue kallikrein and kallikrein-related peptidases in breast cancer. Biol Chem 2019; 399:937-957. [PMID: 29885274 DOI: 10.1515/hsz-2018-0111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
Abstract
The kallikrein family comprises tissue kallikrein and 14 kallikrein-related peptidases (KLKs) recognized as a subgroup of secreted trypsin- or chymotrypsin-like serine proteases. KLKs are expressed in many cellular types where they regulate important physiological activities such as semen liquefaction, immune response, neural development, blood pressure, skin desquamation and tooth enamel formation. Tissue kallikrein, the oldest member and kinin-releasing enzyme, and KLK3/PSA, a tumor biomarker for prostate cancer are the most prominent components of the family. Additionally, other KLKs have shown an abnormal expression in neoplasia, particularly in breast cancer. Thus, increased levels of some KLKs may increase extracellular matrix degradation, invasion and metastasis; other KLKs modulate cell growth, survival and angiogenesis. On the contrary, KLKs can also inhibit angiogenesis and produce tumor suppression. However, there is a lack of knowledge on how KLKs are regulated in tumor microenvironment by molecules present at the site, namely cytokines, inflammatory mediators and growth factors. Little is known about the signaling pathways that control expression/secretion of KLKs in breast cancer, and further how activation of PAR receptors may contribute to functional activity in neoplasia. A better understanding of these molecular events will allow us to consider KLKs as relevant therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Carlos D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Molina
- Department of Science, Universidad San Sebastián, sede De la Patagonia, Puerto Montt, Chile
| | - Kanti D Bhoola
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Centro de Investigaciones del Sistema Nervioso (CISNe), Valdivia, Chile, e-mail:
| |
Collapse
|