1
|
Galvão GDF, Trefilio LM, Salvio AL, da Silva EV, Alves-Leon SV, Fontes-Dantas FL, de Souza JM. Comprehensive analysis of Novel mutations in CCM1/KRIT1 and CCM2/MGC4607 and their clinical implications in Cerebral Cavernous malformations. J Stroke Cerebrovasc Dis 2024; 33:107947. [PMID: 39181174 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Cerebral Cavernous Malformations (CCM) is a genetic disease characterized by vascular abnormalities in the brain and spinal cord, affecting 0.4-0.5 % of the population. We identified two novel pathogenic mutations, CCM1/KRIT1 c.811delT (p.Trp271GlyfsTer5) and CCM2/MGC4607 c.613_614insGG p.Glu205GlyfsTer31), which disrupt crucial protein domains and potentially alter disease progression. OBJECTIVE The study aims to comprehensively analyze a Brazilian cohort of CCM patients, integrating genetic, clinical, and structural aspects. Specifically, we sought to identify novel mutations within the CCM complex, and explore their potential impact on disease progression. METHODS We conducted a detailed examination of neuroradiological and clinical features in both symptomatic and asymptomatic CCM patients, performing genetic analyses through sequencing of the CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10 genes In silico structural predictions were carried out using PolyPhen-2, SIFT, and Human Genomics Community tools. Protein-protein interactions and docking analyses were explored using the STRING database. RESULTS Genetic analysis identifies 6 pathogenic mutations, 4 likely pathogenic, 1 variants of uncertain significance, and 7 unclassified mutations, including the novel mutations in CCM1 c.811delT and CCM2 c.613_614insGG. In silico structural analysis revealed significant alterations in protein structure, supporting their pathogenicity. Protein-protein interaction analysis indicated nuanced impacts on cellular processes. Clinically, we observed a broad spectrum of symptoms, including seizures and focal neurological deficits. However, no statistically significant differences were found in lesion burden, age of first symptom onset, or sex between the identified CCM1/KRIT1 and CCM2/MGC4607 mutations among all patients studied. CONCLUSION This study enhances the understanding of CCM by linking clinical variability, genetic mutations, and structural effects. The identification of these novel mutations opens new avenues for research and potential therapeutic strategies.
Collapse
Affiliation(s)
- Gustavo da Fontoura Galvão
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil; Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Departamento de Neurocirurgia, Rio de Janeiro RJ, Brasil
| | - Luisa Menezes Trefilio
- Universidade Estadual do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Farmacologia e Psicobiologia, Rio de Janeiro RJ, Brasil; Universidade Federal do Estado do Rio de Janeiro, Instituto Biomédico, Rio de Janeiro RJ, Brasil
| | - Andreza Lemos Salvio
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil
| | - Elielson Veloso da Silva
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil
| | - Soniza Vieira Alves-Leon
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil; Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Departamento de Neurologia, Rio de Janeiro RJ, Brasil
| | - Fabrícia Lima Fontes-Dantas
- Universidade Estadual do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Farmacologia e Psicobiologia, Rio de Janeiro RJ, Brasil.
| | - Jorge Marcondes de Souza
- Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Departamento de Neurocirurgia, Rio de Janeiro RJ, Brasil
| |
Collapse
|
2
|
Cici M, Dilmac S, Aytac G, Tanriover G. Cerebral cavernous malformation proteins, CCM1, CCM2 and CCM3, are decreased in metastatic lesions in a murine breast carcinoma model. Biotech Histochem 2024; 99:76-83. [PMID: 38293758 DOI: 10.1080/10520295.2024.2305114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Three genes are associated with cerebral cavernous malformations (CCMs): CCM1, CCM2 and CCM3. These genes participate in microvascular angiogenesis, cell-to-cell junctions, migration and apoptosis. We evaluated the expression in vivo of CCM genes in primary tumors and metastastases in a murine model of metastatic breast carcinoma. We used cell lines obtained from metastasis of 4T1, 4TLM and 4THM breast cancer to liver and heart. These cells were injected into the mammary ridge of Balb/C female mice. After 27 days, the primary tumors, liver and lung were removed and CCM proteins were assessed using immunohistochemistry and western blot analysis. CCM proteins were expressed in primary tumor tissues of all tumor-injected animals; however, no CCM protein was expressed in metastatic tumor cells that migrated into other tissues. CCM proteins still were observed in the lung and liver tissue cells. Our findings suggest that CCM proteins are present during primary tumor formation, but when these cells develop metastatic potential, they lose CCM protein expression. CCM protein expression was lost or reduced in metastatic tissues compared to the primary tumor, which indicates that CCM proteins might participate in tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Mansur Cici
- Department of Histology and Embryology, Akdeniz University, Antalya, Turkey
| | - Sayra Dilmac
- Department of Histology and Embryology, Akdeniz University, Antalya, Turkey
| | - Gunes Aytac
- Faculty of Medicine, Department of Anatomy, TOBB University of Economics and Technology, Ankara, Turkey
| | - Gamze Tanriover
- Department of Histology and Embryology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
3
|
Abou-Fadel J, Bhalli M, Grajeda B, Zhang J. CmP Signaling Network Leads to Identification of Prognostic Biomarkers for Triple-Negative Breast Cancer in Caucasian Women. Genet Test Mol Biomarkers 2022; 26:198-219. [PMID: 35481969 DOI: 10.1089/gtmb.2021.0221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective: Triple-negative breast cancer (TNBC) constitutes ∼15% of all diagnosed invasive breast cancer cases with limited options for treatment since immunotherapies that target ER, PR, and HER2 receptors are ineffective. Progesterone (PRG) can induce its effects through either classic, nonclassic, or combined responses by binding to classic nuclear PRG receptors (nPRs) or nonclassic membrane PRG receptors (mPRs). Under PRG-induced actions, we previously demonstrated that the CCM signaling complex (CSC) can couple both nPRs and mPRs into a CmPn signaling network, which plays an important role during nPR(+) breast cancer tumorigenesis. We recently defined the novel CmP signaling network in African American women (AAW)-derived TNBC cells, which overlapped with our previously defined CmPn network in nPR(+) breast cancer cells. Methods: Under mPR-specific steroid actions, we measured alterations to key tumorigenic pathways in Caucasian American women (CAW)- derived TNBC cells, with RNAseq/proteomic and systems biology approaches. Exemption from ethics approval from IRB: This study only utilized cultured NBC cell lines with publicly available TNBC clinical data sets. Results: Our results demonstrated that TNBCs in CAW share similar altered signaling pathways, as TNBCs in AAW, under mPR-specific steroid actions, demonstrating the overall aggressive nature of TNBCs, regardless of racial differences. Furthermore, in this report, we have deconvoluted the CmP signalosome, using systems biology approaches and CAW-TNBC clinical data, to identify 21 new CAW-TNBC-specific prognostic biomarkers that reinforce the definitive role of CSC and mPR signaling during CAW-TNBC tumorigenesis. Conclusion: This new set of potential prognostic biomarkers may revolutionize molecular mechanisms and currently known concepts of tumorigenesis in CAW-TNBCs, leading to hopeful new therapeutic strategies.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, Texas, USA
| | - Muaz Bhalli
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, Texas, USA
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, Texas, USA
| |
Collapse
|
4
|
Abou-Fadel J, Grajeda B, Jiang X, Cailing-De La O AMD, Flores E, Padarti A, Bhalli M, Le A, Zhang J. CmP signaling network unveils novel biomarkers for triple negative breast cancer in African American women. Cancer Biomark 2022; 34:607-636. [DOI: 10.3233/cbm-210351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most diagnosed cancer worldwide and remains the second leading cause of cancer death. While breast cancer mortality has steadily declined over the past decades through medical advances, an alarming disparity in breast cancer mortality has emerged between African American women (AAW) and Caucasian American women (CAW). New evidence suggests more aggressive behavior of triple-negative breast cancer (TNBC) in AAW may contribute to racial differences in tumor biology and mortality. Progesterone (PRG) can exert its cellular effects through either its classic, non-classic, or combined responses through binding to either classic nuclear PRG receptors (nPRs) or non-classic membrane PRG receptors (mPRs), warranting both pathways equally important in PRG-mediated signaling. In our previous report, we demonstrated that the CCM signaling complex (CSC) consisting of CCM1, CCM2, and CCM3 can couple both nPRs and mPRs signaling cascades to form a CSC-mPRs-PRG-nPRs (CmPn) signaling network in nPR positive(+) breast cancer cells. In this report, we furthered our research by establishing the CSC-mPRs-PRG (CmP) signaling network in nPR(-) breast cancer cells, demonstrating that a common core mechanism exists, regardless of nPR(+/-) status. This is the first report stating that inducible expression patterns exist between CCMs and major mPRs in TNBC cells. Furthermore, we firstly show mPRs in TNBC cells are localized in the nucleus and participate in nucleocytoplasmic shuttling in a coordinately synchronized fashion with CCMs under steroid actions, following the same cellular distribution as other well-defined steroid hormone receptors. Finally, for the first time, we deconvoluted the CmP signalosome by using systems biology and TNBC clinical data, which helped us understand key factors within the CmP network and identify 6 specific biomarkers with potential clinical applications associated with AAW-TNBC tumorigenesis. These novel biomarkers could have immediate clinical implications to dramatically improve health disparities among AAW-TNBCs.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Xiaoting Jiang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Alyssa-Marie D. Cailing-De La O
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Esmeralda Flores
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Muaz Bhalli
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Alexander Le
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| |
Collapse
|
5
|
Valentino M, Dejana E, Malinverno M. The multifaceted PDCD10/CCM3 gene. Genes Dis 2021; 8:798-813. [PMID: 34522709 PMCID: PMC8427250 DOI: 10.1016/j.gendis.2020.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
The programmed cell death 10 (PDCD10) gene was originally identified as an apoptosis-related gene, although it is now usually known as CCM3, as the third causative gene of cerebral cavernous malformation (CCM). CCM is a neurovascular disease that is characterized by vascular malformations and is associated with headaches, seizures, focal neurological deficits, and cerebral hemorrhage. The PDCD10/CCM3 protein has multiple subcellular localizations and interacts with several multi-protein complexes and signaling pathways. Thus PDCD10/CCM3 governs many cellular functions, which include cell-to-cell junctions and cytoskeleton organization, cell proliferation and apoptosis, and exocytosis and angiogenesis. Given its central role in the maintenance of homeostasis of the cell, dysregulation of PDCD10/CCM3 can result in a wide range of altered cell functions. This can lead to severe diseases, including CCM, cognitive disability, and several types of cancers. Here, we review the multifaceted roles of PDCD10/CCM3 in physiology and pathology, with a focus on its functions beyond CCM.
Collapse
Affiliation(s)
| | - Elisabetta Dejana
- The FIRC Institute of Molecular Oncology (IFOM), Milan, 16 20139, Italy.,Department of Oncology and Haemato-Oncology, University of Milan, Milan, 7 20122, Italy.,Vascular Biology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, SE-751 05, Sweden
| | - Matteo Malinverno
- The FIRC Institute of Molecular Oncology (IFOM), Milan, 16 20139, Italy
| |
Collapse
|
6
|
Padarti A, Abou-Fadel J, Zhang J. Resurgence of phosphotyrosine binding domains: Structural and functional properties essential for understanding disease pathogenesis. Biochim Biophys Acta Gen Subj 2021; 1865:129977. [PMID: 34391832 DOI: 10.1016/j.bbagen.2021.129977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phosphotyrosine Binding (PTB) Domains, usually found on scaffold proteins, are pervasive in many cellular signaling pathways. These domains are the second-largest family of phosphotyrosine recognition domains and since their initial discovery, dozens of PTB domains have been structurally determined. SCOPE OF REVIEW Due to its signature sequence flexibility, PTB domains can bind to a large variety of ligands including phospholipids. PTB peptide binding is divided into classical binding (canonical NPXY motifs) and non-classical binding (all other motifs). The first atypical PTB domain was discovered in cerebral cavernous malformation 2 (CCM2) protein, while only one third in size of the typical PTB domain, it remains functionally equivalent. MAJOR CONCLUSIONS PTB domains are involved in numerous signaling processes including embryogenesis, neurogenesis, and angiogenesis, while dysfunction is linked to major disorders including diabetes, hypercholesterolemia, Alzheimer's disease, and strokes. PTB domains may also be essential in infectious processes, currently responsible for the global pandemic in which viral cellular entry is suspected to be mediated through PTB and NPXY interactions. GENERAL SIGNIFICANCE We summarize the structural and functional updates in the PTB domain over the last 20 years in hopes of resurging interest and further analyzing the importance of this versatile domain.
Collapse
Affiliation(s)
- Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA.
| |
Collapse
|
7
|
Systems Wide Analysis of CCM Signaling Complex Alterations in CCM-Deficient Models Using Omics Approaches. Methods Mol Biol 2021; 2152:325-344. [PMID: 32524563 DOI: 10.1007/978-1-0716-0640-7_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Omics research has garnered popularity recently to integrate in-depth analysis of alterations at the molecular level to elucidate observable phenotypes resulting from knockdown/knockout models. Genomics, performed through RNA-seq, allows the user to evaluate alterations at the transcription level, oftentimes more sensitive than other types of analysis, especially when attempting to understand lack of observation of an expected phenotype. Proteomics facilitates an understanding of mechanisms being altered at the translational level allowing for an understanding of multiple layers of regulation occurring, elucidating discrepancies between what is seen at the RNA level compared to what is translated to a functional protein. Here we describe the methods currently being used to evaluate CCM-deficient strains in human brain microvascular endothelial cells (HBMVEC), zebrafish embryos as well as in vivo mouse model to evaluate impacts on various signaling cascades resulting from deficiencies in KRIT1 (CCM1), MGC4607 (CCM2), and PDCD10 (CCM3). The integration of data from genomics and proteomics analysis allows for the composition of interactomes, elucidating systems wide impacts resulting from disruption of the CCM signaling complex (CSC).
Collapse
|
8
|
Abou-Fadel J, Qu Y, Gonzalez EM, Smith M, Zhang J. Emerging roles of CCM genes during tumorigenesis with potential application as novel biomarkers across major types of cancers. Oncol Rep 2020; 43:1945-1963. [PMID: 32186778 PMCID: PMC7160551 DOI: 10.3892/or.2020.7550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/14/2020] [Indexed: 12/31/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are microvascular anomalies in the brain that result in increased susceptibility to stroke. Three genes have been identified as causes of CCMs: cerebral cavernous malformations 1 [(CCM1) also termed Krev interaction trapped 1 (KRIT1)], cerebral cavernous malformation 2 [(CCM2) also termed MGC4607] and cerebral cavernous malformation 3 [(CCM3) also termed programmed cell death 10 (PDCD10)]. It has been demonstrated that both CCM1 and CCM3 bind to CCM2 to form a CCM signaling complex (CSC) with which to modulate multiple signaling cascades. CCM proteins have been reported to play major roles in microvascular angiogenesis in human and animal models. However, CCM proteins are ubiquitously expressed in all major tissues, suggesting an unseen broader role of the CSC in biogenesis. Recent evidence suggests the possible involvement of the CSC complex during tumorigenesis; however, studies concerning this aspect are limited. This is the first report to systematically investigate the expression patterns of CCM proteins in major human tumors using real‑time quantitative PCR, RNA‑fluorescence in situ hybridization, immunohistochemistry and multicolor immunofluorescence imaging. Our data demonstrated that differential expression patterns of the CSC complex are correlated with certain types and grades of major human cancers, indicating the potential application of CCM genes as molecular biomarkers for clinical oncology. Our data strongly suggest that more efforts are needed to elucidate the role of the CSC complex in tumorigenesis, which may have enormous clinical potential for cancer diagnostic, prognostic and therapeutic applications.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Yanchun Qu
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Elias M. Gonzalez
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Mark Smith
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
9
|
Zhang J, Padarti A, Jiang X, Abou-Fadel J. Redefining PTB domain into independently functional dual cores. Biochem Biophys Res Commun 2020; 524:595-607. [PMID: 32029278 DOI: 10.1016/j.bbrc.2020.01.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022]
Abstract
Current understanding of phosphotyrosine binding (PTB) domain is limited. Recently, we revealed a novel atypical phosphotyrosine binding (aPTB) domain in CCM2, making it a dual PTB domain-containing protein. Since aPTB domain is only 1/3 of the size of typical PTB domain, we explored the possibility to decrease the size of PTB domain and demonstrate that the typical PTB domain can be divided into two similarly structural and functional cores that can independently bind to NPXY motif. Further, we reduced each PTB core into a minimum core motif (mCore) which is the functional unit of PTB domains and structurally similar to the novel aPTB domain. Based on structural data, we developed several cis- and trans-inhibitors for NPXY binding scheme, with potential applications for therapeutic strategies in human health conditions.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA.
| | - Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Xiaoting Jiang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| |
Collapse
|
10
|
Abou-Fadel J, Smith M, Falahati K, Zhang J. Comparative omics of CCM signaling complex (CSC). Chin Neurosurg J 2020; 6:4. [PMID: 32922933 PMCID: PMC7398211 DOI: 10.1186/s41016-019-0183-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs), a major neurosurgical condition, characterized by abnormally dilated intracranial capillaries, result in increased susceptibility to stroke. KRIT1 (CCM1), MGC4607 (CCM2), and PDCD10 (CCM3) have been identified as causes of CCMs in which at least one of them is disrupted in most familial cases. Our goal is to identify potential biomarkers and genetic modifiers of CCMs, using a global comparative omics approach across several in vitro studies and multiple in vivo animal models. We hypothesize that through analysis of the CSC utilizing various omics, we can identify potential biomarkers and genetic modifiers, by systemically evaluating effectors and binding partners of the CSC as well as second layer interactors. METHODS We utilize a comparative omics approach analyzing multiple CCMs deficient animal models across nine independent studies at the genomic, transcriptomic, and proteomic levels to dissect alterations in various signaling cascades. RESULTS Our analysis revealed a large set of genes that were validated across multiple independent studies, suggesting an important role for these identified genes in CCM pathogenesis. CONCLUSION This is currently one of the largest comparative omics analysis of CCM deficiencies across multiple models, allowing us to investigate global alterations among multiple signaling cascades involved in both angiogenic and non-angiogenic events and to also identify potential biomarker candidates of CCMs, which can be used for new therapeutic strategies.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905 USA
| | - Mark Smith
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905 USA
| | - Kamran Falahati
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905 USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905 USA
| |
Collapse
|
11
|
Abou-Fadel J, Vasquez M, Grajeda B, Ellis C, Zhang J. Systems-wide analysis unravels the new roles of CCM signal complex (CSC). Heliyon 2019; 5:e02899. [PMID: 31872111 PMCID: PMC6909108 DOI: 10.1016/j.heliyon.2019.e02899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/17/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are characterized by abnormally dilated intracranial capillaries that result in increased susceptibility to stroke. Three genes have been identified as causes of CCMs; KRIT1 (CCM1), MGC4607 (CCM2) and PDCD10 (CCM3); one of them is disrupted in most CCM cases. It was demonstrated that both CCM1 and CCM3 bind to CCM2 to form a CCM signaling complex (CSC) to modulate angiogenesis. In this report, we deployed both RNA-seq and proteomic analysis of perturbed CSC after depletion of one of three CCM genes to generate interactomes for system-wide studies. Our results demonstrated a unique portrait detailing alterations in angiogenesis and vascular integrity. Interestingly, only in-direct overlapped alterations between RNA and protein levels were detected, supporting the existence of multiple layers of regulation in CSC cascades. Notably, this is the first report identifying that both β4 integrin and CAV1 signaling are downstream of CSC, conveying the angiogenic signaling. Our results provide a global view of signal transduction modulated by the CSC, identifies novel regulatory signaling networks and key cellular factors associated with CSC.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Mariana Vasquez
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Brian Grajeda
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Cameron Ellis
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| |
Collapse
|
12
|
Jiang X, Padarti A, Qu Y, Sheng S, Abou-Fadel J, Badr A, Zhang J. Alternatively spliced isoforms reveal a novel type of PTB domain in CCM2 protein. Sci Rep 2019; 9:15808. [PMID: 31676827 PMCID: PMC6825194 DOI: 10.1038/s41598-019-52386-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) is a microvascular disorder in the central nervous system. Despite tremendous efforts, the causal genetic mutation in some CCM patients has not be identified, raising the possibility of an unknown CCM locus. The CCM2/MGC4607 gene has been identified as one of three known genes causing CCMs. In this report, we defined a total of 29 novel exons and 4 novel promoters in CCM2 genomic structure and subsequently identified a total of 50 new alternative spliced isoforms of CCM2 which eventually generated 22 novel protein isoforms. Genetic analysis of CCM2 isoforms revealed that the CCM2 isoforms can be classified into two groups based on their alternative promoters and alternative start codon exons. Our data demonstrated that CCM2 isoforms not only are specific in their subcellular compartmentation but also have distinct cellular expression patterns among various tissues and cells, indicating the pleiotropic cellular roles of CCM2 through their multiple isoforms. In fact, the complexity of the CCM2 genomic structure was reflected by the multiple layers of regulation of CCM2 expression patterns. At the transcriptional level, it is accomplished by alternative promoters, alternative splicing, and multiple transcriptional start sites and termination sites; while at the translational level, it is carried out with various cellular functions with a distinguishable CCM2 protein group pattern, specified abundance and composition of selective isoforms in a cell and tissue specific fashion. Through experimentation, we discovered a unique phosphotyrosine binding (PTB) domain, namely atypical phosphotyrosine binding (aPTB) domain. Some long CCM2 isoform proteins contain both classes of PTB domains, making them a dual PTB domain-containing protein. Both CCM1 and CCM3 can bind competitively to this aPTB domain, indicating CCM2 as the cornerstone for CCM signaling complex (CSC).
Collapse
Affiliation(s)
- Xiaoting Jiang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Yanchun Qu
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Shen Sheng
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Ahmed Badr
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA.
| |
Collapse
|
13
|
Wang K, Wu D, Zhang B, Zhao G. Novel KRIT1/CCM1 and MGC4607/CCM2 Gene Variants in Chinese Families With Cerebral Cavernous Malformations. Front Neurol 2018; 9:1128. [PMID: 30622508 PMCID: PMC6308150 DOI: 10.3389/fneur.2018.01128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/10/2018] [Indexed: 02/03/2023] Open
Abstract
Familial cerebral cavernous malformations (CCMs) are autosomal dominant disorders characterized by hemorrhagic strokes, recurrent headache, epilepsy, and focal neurological deficits. Genetic variants in KRIT1/CCM1, MGC4607/CCM2, and PDCD10/CCM3 genes contribute to CCMs. The clinical information of two Chinese families with CCMs was collected. MRI and video-electroencephalography were performed. Genetic variants of CCM1, CCM2, and CCM3 genes were investigated by exome sequencing. The patients were presented with recurrent epilepsy or headache. Susceptibility-weighted images of brains showed many dark dots, while video-electroencephalography revealed many spikes from multiple brain regions of patients. Exome sequencing revealed a novel CCM1 genetic variant (c.1599_1601TGAdel, p.Asp533del) and a novel CCM2 genetic variant (c.773delA, p.K258fsX34) in Family one and Family two, respectively; cosegregation existed in these two families. The two family members presented typical CCMs symptoms. These two novel genetic variants in CCM1 and CCM2 genes were the causation of CCM in the two Chinese families, and our data enriched the genetic variant spectrum of CCM genes.
Collapse
Affiliation(s)
- Kang Wang
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dengchang Wu
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guohua Zhao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
14
|
Abstract
Cerebral cavernous malformations (CCM) are manifested by microvascular lesions characterized by leaky endothelial cells with minimal intervening parenchyma predominantly in the central nervous system predisposed to hemorrhagic stroke, resulting in focal neurological defects. Till date, three proteins are implicated in this condition: CCM1 (KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10). These multi-domain proteins form a protein complex via CCM2 that function as a docking site for the CCM signaling complex, which modulates many signaling pathways. Defects in the formation of this signaling complex have been shown to affect a wide range of cellular processes including cell-cell contact stability, vascular angiogenesis, oxidative damage protection and multiple biogenic events. In this review we provide an update on recent advances in structure and function of these CCM proteins, especially focusing on the signaling cascades involved in CCM pathogenesis and the resultant CCM cellular phenotypes in the past decade.
Collapse
Affiliation(s)
- Akhil Padarti
- Department of Biomedical Sciences, Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Biomedical Sciences, Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|